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Abstract

Perception improves with repeated exposure. Evidence has shown object recognition can be improved by
training for multiple days in adults. Recently, a study of Amar-Halpert et al. (2017) has compared the learning
effect of repetitive and brief, at-threshold training on a discrimination task and reported similar improvement in
both groups. The finding is interpreted as evidence that memory reactivation benefits discrimination learning.
This raises the question how this process might influence different perceptual tasks, including tasks with more
complex visual stimuli. Here, this preregistered study investigates whether reactivation induces improvements
in a visual object learning task that includes more complex visual stimuli. Participants were trained to recog-
nize a set of objects during 5 d of training. After the initial training, a group was trained with repeated practice,
the other a few near-threshold reactivation trials. In both groups, we found improved object recognition at
brief exposure durations. Traditional intense training shows a daily improvement; however, the group with re-
activation does not reach the same level of improvement. Our findings show that reactivation has a smaller ef-
fect relative to large amounts of practice.
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Perceptual learning helps to explore adult plasticity in visual processing. Gradual improvements in the per-
ception of complex objects have been demonstrated across multiple daily training sessions of hundreds of
trials. These improvements in the trained objects and the transfer to new objects, in that sense, support
“practice makes perfect.” Recent research challenges this idea, and suggests that a few critical reactivation
trials can boost the learning processes. Here, we extend this idea to other learning tasks and investigate the
extent to which short reactivation with a small number of trials can replace extensive training with complex

/Significance Statement

\visual objects. In our paradigm, we found larger training effects with extensive training. /

Introduction

Sensory information processing can be improved, but im-
provement requires repetitive practice. Repeated presenta-
tions of the same stimuli induce perceptual learning. A
substantial body of evidence demonstrates training-induced
improvements in the perception of relatively simple visual
aspects, such as frequency discrimination (Fiorentini and
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Berardi, 1981), orientation discrimination (Aberg et al., 2009;
Jeter et al., 2010), and feature discrimination (Karni and
Sagi, 1993; Censor et al., 2006; Censor and Sagi, 2008;
Amar-Halpert et al., 2017). Interestingly, similar learning
curves have been reported with more complex objects
(Furmanski and Engel, 2000; Baeck et al., 2012, 2014, 2016;
Van Meel et al, 2016). This so-called object learning
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involves improved recognition of objects after multiple days
of training. This improvement in object recognition under
perceptually challenging conditions seems related to activity
in high-level object-selective cortex (Grill-Spector et al.,
2000; Van Meel et al., 2016).

While the boundary between simple and complex proc-
essing is difficult to draw, together these findings demon-
strate that a wide variety of visual capabilities improve
with extensive trainings. Recently however, in a texture
discrimination task, the same profile of learning across
days was observed using only a limited number of reacti-
vation trials in the subsequent training days (Amar-
Halpert et al., 2017). This study made use of a hypotheti-
cal window of opportunity during memory consolidation,
where memories are re-evoked in the subsequent days
after the initial encoding training. This reactivation needs
only a few trials but results in similar behavioral improve-
ments compared with the usual practice with hundreds of
training trials. A similar mechanism in the domain of motor
learning suggests memory consolidation because of reac-
tivation in the context of a finger-tapping task (Walker et
al., 2002, 2003). In that case, the induced performance
benefits occurred in a brief reactivation which is <60 s (de
Beukelaar et al., 2014). Although these training paradigms
have shown stable and long-lasting effects in simple
motor and visual learning with such short reactivations,
no study has explored if the same phenomenon can be
observed in more complex processing. The number of
studies on this phenomenon is very limited and it is impor-
tant to explore the necessary and sufficient conditions of
these effects.

Another aspect to consider in visual learning is learning
selectivity. Indeed, the training-induced learning effects
are observed specifically for the stimuli set used for train-
ing. However, the degree of generalization (or transfer) of
learning to new (but related) stimuli varies. In fact, the
learning effects can show a lack of generalization to other
objects (Furmanski and Engel, 2000). On the other hand,
studies have typically noticed a partial generalization
across stimulus size (Furmanski and Engel, 2000) and un-
seen images of the same objects (Baeck et al., 2016). It is
unclear how the aforementioned reactivation protocol
would interact with specificity and generalization.

This preregistered study will therefore test (1) whether
the short reactivation strategy can induce object learning
to the same extent as classical intensive training and
(2) how selective this learning process is. The experimen-
tal design will in many details be based on earlier object
learning experiments (Baeck et al., 2012), using the same
materials and dependent variable they used. In addition,
we will add a between-subject manipulation of reactivation
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training similar to the procedure from Amar-Halpert et al.
(2017). Based on the previous success with this reactiva-
tion protocol, we predict similar learning curves in this pro-
tocol compared with the standard object training protocol
with a much higher number of trials.

Earlier studies on object recognition training have
started with a group of common objects as stimuli. With
hundreds of repetitive trials, recognition can be improved
by training. However, we hope to uncover the detailed
reasons for changes in object recognition. Now, our study
aims to bridge the gap between object learning para-
digms that involve long exposure and shorter paradigms
that rely on memory reactivation. This work will inform us
about the mechanisms underlying learning-induced im-
provements in object recognition. The larger the extent
that memory reactivation is involved in such improve-
ments, the more improvement we expect to find after brief
periods of training that are designed to reactivate
memory.

Materials and Methods

The approved Stage 1 protocol, the anonymized study
data and digital materials can be found on the Open
Science Framework (OSF) at https://osf.io/utx6n/.

Participants

Fifty-two participants in this study were randomly as-
signed to two groups: 26 in the full-practice groups (aged
22.5 = 5.2 years, six males and 20 females) and 26 in the
short-reactivation group (aged 22.1 +4.3years, two
males and 24 females).

Participants of either gender (aged between 18 and 40)
were recruited online through a university online recruit-
ment system (SONA), Facebook, as well as through ban-
ners and leaflets. The volunteers received monetary
rewards.

Initially, a planned sample of 50 was set from a power
analysis over 0.90. Data collection was prone to no-
shows, which is why we scheduled >50 participants. In
the last week of testing, we needed one participant but
scheduled three and all three showed up. As such a final
sample of 52 was obtained.

There was no a priori limit on the proportion of male/fe-
male participants. The experiment was approved by the
Social and Societal Ethics Committee of Katholieke
Universiteit Leuven (G-2017 121045). Participants signed
an informed consent before every session. The following
criteria was used to exclude a participant’s data: (1) a par-
ticipant does not attend all sessions; (2) the obtained
threshold value on the first or the last day is worse than
the baseline (>120 ms).

On top of the final sample of 52, three more participants
started with the first session, but were removed from the
data file; one because of the obtained threshold value on
the first day (140.94 ms) was worse than the starting value
of 120 ms set a priori, one because of cancelation of the
later slots, and one because of being outside of the pre-
defined age range.

eNeuro.org
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Figure 1. Two stimulus sets. Each set contains five different object categories. Panels A and B display 2 of the 6 subsets used in

the experiment.

Apparatus

The whole experiment was conducted using a Dell
desktop computer (GX-780), using MATLAB and
Psychtoolbox 3 (Brainard, 1997; Pelli, 1997; Kleiner et al.,
2007). Visual stimuli were displayed on a 16-inch CRT
monitor (Dell 790) with a 1024 x 768 pixels resolution at
100Hz. The room was dim and viewing distance was
90cm.

Stimuli

The full stimulus set consisted of 40 gray-scale pictures
of common manmade and natural objects that were used
in a previous study (Baeck et al., 2012). The contrast of
stimuli was reduced to 12.5% of the original contrast to
make objects harder to recognize. Masking stimuli are
made by a combination of fragments (70 x 70 pixels) of all
different object pictures. Image size was 450 x 450 pixels
(8.7 visual degrees). All stimuli were y corrected to create
a linear luminescence range. As the vy correction de-
creased overall contrast, an inverse y-correction was ap-
plied to the masking stimuli to increase the contrast of the
masks and thus obtaining a more robust masking effect.

Selection of image set

In Beaeck et al.’s (2012) work, the large stimulus set
was divided in two subsets. One subset was used for
training the other subset as a control. This design as-
sumed that 20 stimuli per subset would be sufficient to
average out possible stimulus-specific variations in diffi-
culty (e.g., a stimulus that is more difficult than other stim-
uli). However, the large number of stimuli results in less
exposure to each individual stimulus. In the current study
there is an additional disadvantage, namely that the num-
ber of reactivation trials goes up linearly with the number
of stimuli. For that reason, we decided to limit the number
of stimuli in each subset to five stimuli.

We partitioned the stimuli in six subsets of five stimuli,
then tested five pilot participants with six two-down, one-
up staircases per subset. The obtained thresholds of
these pilot trials helped us to select a number of stimulus
subsets with equal difficulty. However, the task with five
stimuli became so easy that the responses were achieved
at the minimum stimulus duration without fluctuation,
making it impossible to investigate the main effect. To
prevent visual adaptation, the stimulus size was changed
randomly from 250 pixels to 450 pixels, and this additional
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need for size invariance increased the difficulty of the rec-
ognition at short stimulus durations.

Two stimulus sets (Fig. 1) were counterbalanced across
participants so that all stimulus sets will be included to
the same extent as training and control stimuli between
the two subject groups.

Object learning task

Each trial started with a fixation and the stimulus pre-
sentation for a variable time [stimulus onset asynchrony
(SOA)]. Next, three consecutive masks were presented at
the same location for 250 ms each, to prevent further vis-
ual processing (Op de Beeck et al., 2007). The presented
position of stimuli and masks was randomized with a
maximum deviation of 1.8 degrees from the screen cen-
ter, the size-invariant stimuli and masks ranging randomly
from 250 x 250 pixels to 450 x 450 pixels. The variable
stimulus duration was determined through two inter-
leaved two-down, one-up staircases. Stimulus duration
was initially set at 120 ms (12 frames at a 100-Hz refresh
rate), decreased by 10 ms (one frame) after two consecu-
tive correct answers and increased by 10 ms after each
incorrect answer. Participants were requested to type
the first two letters of the name of the presented object.
Three-letter responses have been used before (Baeck
et al., 2012), but we can simplify this to two letters be-
cause stimulus sets included only five stimuli. A “true”
or “false” feedback was shown after each trial. In case
of a wrong answer, the correct object name was pro-
vided (see Fig. 2).

Note that the procedure of shortening stimulus duration
as the SOA gets smaller in could arguably result in a situa-
tion in which challenges in recognition performance are
because of reductions in perceived stimulus contrast in
low-level visual areas. We cannot rule out this possibility,
yet it is assuring that the same manipulation was used in
previous studies that found correlations with object rec-
ognition performance in object-selective cortex (Grill-
Spector et al., 2000) and causal effects after stimulation in
lateral occipital cortex (Van Meel et al., 2016).

Procedure

Participants were randomly assigned to two training
paradigms (full-practice vs short-reactivation trainings).
Each participant was trained with one subset of five

eNeuro.org
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Figure 2. Example of one trial. The durations between the ob-
ject and the mask stimuli (SOA) are determined based on an
adaptive interleaved two-down, one-up staircase procedure.
The object stimulus in this example trial is a car (“auto”). If the
participant types “au,” the feedback “CORRECT!” (English:
“CORRECT”) is shown. If the participant gives another re-
sponse, then “FOUT! HET was auto” (English: “WRONG! It was
car”) appears.

stimuli. Threshold values are the average of the last four
reversals of all staircases per day.

One other subset of five stimuli was used as a control
set for individual participants, only to be seen during the
first and last session. Across participants, each stimulus
subset served equally often as a training set and as a con-
trol set.

The participants in the full-practice group completed
standard training sessions between the first and the last
day (see Table 1). The other participants in the short-reac-
tivation group completed a standard training session on
the first day and perform only short reactivation on the
other 3 d. The fifth day is a test session which is the same
for both groups.

Preview

In earlier work (Furmanski and Engel, 2000; Baeck and
Op de Beeck, 2010; Baeck et al., 2012, 2014, 2016; Van
Meel et al., 2016), each session started with a preview of
all stimuli presented in that session. A preview of the

Table 1: Study design
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stimuli (2 s each) with their corresponding names was dis-
played to ensure that participants know the object images
and their names. In the present experiment, we included
this preview in the first and the last session for all 10 ob-
ject stimuli (two subsets). The preview was not shown in
the intermediate training sessions to not interfere with the
reactivation procedure.

First test and training session

The first session involved a preview and eight experi-
mental blocks of 100 trials (800 trials). Each block com-
prised two interleaved staircases of 50 trials. Baeck et al.
(2012) only used 40 trials per staircase, but we expect to
be able to collect more trials per unit of time because the
required responses have been simplified (two instead of
three letters). Each block included only five stimuli, either
the stimuli that were trained or the control stimuli. Of the
eight blocks in the first session, four blocks included
trained and four blocks control stimuli, interleaved, and
the stimulus set that came first was counterbalanced
across participants. The total duration of the experimental
session on day 1 would last 1 h.

Training session

A standard training session involved eight experimental
blocks of 100 trials (800 trials) with each block comprising
two interleaved staircases of 50 trials. Standard training
sessions only included the trained stimuli, the control
stimuli were not shown.

Reactivation session

Participants performed five near-threshold trials of each
stimulus, resulting in 25 reactivation trials per session.
Threshold values were the average of the last four reversals
of the last four staircases on day 1 for that participant.

Final test session

The test session on the final day was the same as the
first half of the first session, with a preview of the 10 object
images and four blocks of 100 trials. This test session was
shorter than the first session, because it only served to as-
sess the thresholds and not to induce a large amount of
training.

Full-practice training paradigm

Time Day 1 Days 2-4 Day 5
Session First test and training Training Final test
Training trials 400 800 200
Control trials 400 200
Short-reactivation training paradigm
Time Day 1 Days 2-4 Day 5
Session First test and training Reactivation Final test
Training trials 400 25 200
Control trials 400 200
Procedure of the adapting training sequence for the full-practice training paradigm and the short-reactivation training paradigm.
March/April 2021, 8(2) ENEURO.0008-19.2021 eNeuro.org
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Table 2: Summary of statistical analysis
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Data structure

Type of test

Power/Cls

0OSg3— " ~—JQ *0QO0T®

Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution
Normal distribution

Independent t test
Independent t test
Independent t test

Repeated measures ANOVA

Dependent t test
Dependent t test
Independent t test
Independent t test
Bootstrap t test
Independent t test
Dependent t test
Dependent t test
Independent t test
Independent t test
Independent t test

0.98
0.07

0.09

]

95% Cl[12.35,17.80]
95% Cl [8.78,14.63]
0.73

0.76

95% Cl [~15.54,—2.70]

0.67
95% CI[7.66,14.17]
95% CI [7.17,11.96]
0.17

95% Cl[2.34,6.79)]
95% CI [-1.81,4.55]

50f 9

Analysis pipeline

Learning-related changes were quantified by the
threshold values across sessions, which is the most ob-
vious manner to characterize performance when using an
adaptive procedure (psychometric curve fitting is difficult
given the uneven sampling of this function, see Baeck and
Op de Beeck, 2010). For each participant, threshold values
were the average of the last four reversals of every staircase
complete with a stimulus set in a session. A lower threshold
value corresponds to better performance. If the obtained
threshold on day 1 or day 5 is worse than the baseline
(120 ms), the individual data will be excluded. The data were
presented as mean and the SEM of two stimulus sets
(trained, control), two training paradigms (full-practice,
short-reactivation) and time (sessions). A decline in thresh-
olds over sessions indicates a training effect.

Before analyzing the training effect, individual data on
the initial session was checked for equivalence between
the two training paradigms. Next, the main analysis eval-
uated learning effect with t tests in line with Baeck and Op
de Beeck (2010); Baeck et al. (2012, 2014, 2016) and Van
Meel et al. (2016). In order to test the central hypothesis of
the current paper, the final session performance in the
two groups was compared with find out whether the full-
practice group has reached lower thresholds compared
with the short-reactivation group. We further tested the
specificity for the control stimuli among different training
groups. Results are reported with p values, confidence in-
terval (Cl), and effect size (see Table 2).

Equivalence test for comparing the groups before training

To confirm that the observed training effects are mean-
ingful when assessed from the performance in the last
day, we evaluated whether the two groups had equal per-
formance on the first session using an independent ¢ test.
We did not run an equivalence test as proposed originally
because we did not set the bounds of the latter a priori.
Irrespective of the outcome of this analysis, we also report
the results when data were normalized for the perform-
ance on day 1. The same overall conclusions are reached
with and without normalization, although quantitatively
the numbers change.

March/April 2021, 8(2) ENEURO.0008-19.2021

Overall training effect

The main analysis assessed the effect of training be-
tween day 1 and day 5, with two paired t tests for each
training paradigm.

Group comparison in terms of training effect

We compared the two groups in two ways. First, we
compared the day 5 performance between the full-prac-
tice and the reactivation group with an unpaired t test.
Second, as done by Amar-Halpert et al. (2017), we would
estimate the level of improvement. The training effect is
sometimes referred to as a learning rate. Here, to use a
consistent terminology relative to the study of Amar-
Halpert et al. (2017), we also use the term learning rate.
The learning rate would be computed that divided the dif-
ferences of day 1 and a target day by day 1 performance,
for example (day 1 — day 5)/day 1, multiplied by 100 to ob-
tain percentages.

Specificity of object learning

Following the analysis of the overall learning effect, we
investigated the specificity of the training in days 2—4 to
the untrained stimuli. Two paired t tests were conducted
to compare the control stimuli performance between the
first and final test sessions within a group of subjects. An
unpaired t test was conducted to compare the day 5 per-
formance between the full-practice and the short-reacti-
vation group.

Effect and sample size calculation

The key comparisons made by Amar-Halpert et al.
(2017) in the 5-d standard practice, memory-reactivation,
and 2-d standard practice suggest that the brief reactiva-
tions during training do improve discrimination thresh-
olds. The original paper did not provide the raw and
average values at the test and retest sessions; we esti-
mated the pooled SD to be 20% within two groups from
the given SEM of 5.9% and 5.5% in each group. Here, we
present effect sizes and required sample sizes, calculated
with a data analytics software (G*Power 3.1.9.2; RRID:
SCR_013726).
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Amar-Halpert et al. (2017) reported that learning rates in
the two groups ranged from 20.6% (memory reactivation)
to 26.6% (standard practice), with a nonsignificant differ-
ence (F(1,22)=0.56, p = 0.46) between total learning rates
in the standard-practice and the memory-reactivation
groups.

Despite a relatively low number of participants per
group (N =12), the study of Amar-Halpert et al. (2017) had
a reasonable power to detect a learning effect in a group,
because these effects are large. To find an effect of 20.6%
with SD of 20%, the power is 0.75. If our null hypothesis is
that memory-reactivation would result in no learning effect
at all and the alternative hypothesis states that there is as
much learning as in the standard practice group, then with
N =18 we would have a power of 0.90. However, we could
also hypothesize that the reactivation might result in some
learning, albeit much smaller than in the standard-practice
group. Thus, to safeguard us against this possibility, we opt
for a sample size of N=25% in each group, which is double
the number in the original study.

Results

All data and analysis scripts are publicly available on the
OSF (https://osf.io/utx6n/). This study obtained 52 partici-
pants, 26 in the full-practice group and 26 in the short-reac-
tivation group. Participants in both groups performed a 5-d
training with the same amount of trials on the first and final
days. Participants in the full-practice group performed a
standard training session of 800 trials in three daily training
sessions (days 2-4). Participants in the short-reactivation
group performed 25 at-threshold trials in three daily reacti-
vation sessions.

Threshold values, representing the performance per sub-
ject, are the average of the last four reversals of every stair-
case. The reversals include local maximums and local
minimums. The local maximums are calculated from a func-
tion (findpeaks) in MATLAB. In order to perform this analysis
of the local minimums, the data are multiplied by —1.

The initial performance on full-practice and short-reacti-
vation training is tested for equivalence. Two-tailed t tests
confirmed that both groups had similar performance on
the first day. Using the data of both stimulus sets, there
was no significant difference, tsg=0.4569, p=0.5793,
d=0.1267°, nor was there a difference when tested only
on the thresholds for only the trained stimulus set,
ts0)=0.6063, p=0.5471, d=0.1682°.

Although the difference is not significant, there is a
trend toward higher initial thresholds in the reactivation
group. Importantly, all our conclusions are not only
backed up by day 5 performance, but also by analyses of
the learning rates that take into account the baseline per-
formance at day 1.

During the reactivation sessions, subjects were given
brief training with the near-threshold trials. To estimate
the individual threshold for each subject, the final four
reversals of last four staircases on day one were aver-
aged, mean = SE: 40.75 = 1.86 ms. Based on this, the
stimulus duration used for the reactivation trials was
41.54 = 2.05ms (note that per participant the duration
is a multiple of 10). The average accuracy during the
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Figure 3. Overall learning effect in the full-practice group and
the short-reactivation group for the trained stimuli. Top panel,
Performance thresholds are plotted as a function of time and
group. Error bars represent the SEM. Middle panel, The distri-
bution shows the spread of the learning rates in each group.
Circles represent the learning rates of individual participants.
The gapped lines represent the SD of each group. Bottom
panel, A bootstrapped resample distribution depicts the learn-
ing rate difference between two groups. A circle represents the
difference between two groups of —8.90 and the end of the ver-
tical black bars represent 95% confident interval of —15.53 and
—2.70, p=0.0072.

reactivation trials was 60 =3.86% on day 2, 67.54 =
4.03% on day 3, and 70.62 = 4.29% on day 4.

Learning effect

After testing the initial performance between two
groups, the performance on trained stimuli after training
was assessed with two paired t tests. Mean thresholds for
both groups are shown in Figure 3. A learning effect was
found for the full-practice group as in previous studies
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Figure 4. Recognition thresholds in the full-practice group and the short-reactivation group. Scatter plot of the thresholds of individ-
ual participants in the first and last day, plotted separately per stimulus set and per group (N =26 in each group). The diagonal line
represents the same performance on the first and last day, all points falling under this line represent a better performance on the
last day compared with the first day. CF, control stimuli in full-practice group; CS, control stimuli in short-reactivation group; TF,
trained stimuli in full-practice group; TS, trained stimuli in short-reactivation group. Error bars represent 95% CI.

(Fia.120)=56.87, p <0.001, 5? = 0.70%. Overall, perform-
ance thresholds were lower on day 5 than the day 1 in the
full-practice group (tps=11.4, p<0.001, d=2.24°), as
well as in the short-reactivation group (tps=8.24, p <
0.001, d=1.62.

Then we compared the learning-induced changes for
the trained stimulus set between two groups, as inferred
from the performance threshold on the final day and the
learning rate. The a priori hypothesis was that participants
in the short-reactivation group and in the full-practice
group improved equally. However, participants in the
short-reactivation group were found to perform less well
on the final test session (day 5) than participants in the
full-practice group, tsq=2.6096, p=0.0119, d=0.72% A
similar finding was found when focusing on the learning
rate. The learning rates for full-practice (Mean = SD,
34.13 £ 10.93%) and for reactivation group (25.23 =
12.74%) were significantly different (fsq=2.7047, p =0.0093,
d=0.75 h). For the key finding, we compared the mean differ-
ence of the learning rate between groups and performed a
bootstrapped distribution by 5000 resamples. The difference
of learning rates in two groups was 8.90% with a 95% Cl
from —15.54 to —2.70".

Note that these comparisons still overestimate the ef-
fect of the reactivation sessions. Much of the improve-
ment compared with day 1 might be a consequence of
the many trials in day 1. Motivated by the surprising result
of much smaller learning in the reactivation group, we per-
formed an additional analysis that was not mentioned in
the preregistration. We questioned whether there would
be any beneficial effect of the reactivation trials if we take
into account the training induced by day 1. We compared
the learning rate at day 5 in the reactivation group, with
the learning rate at day 2 in the full-practice group. These
two cases are comparable in the sense that participants
have received 1 day of training (day 1), with then the reac-
tivation trials as an additional exposure for the reactivation
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group. This test is not free of confounds though, in partic-
ular, the time intervals are not the same, which should
mostly bias us toward a null effect (no added benefit of
the reactivation trials because potentially undone by a
longer time interval). When tested, day 2 learning rate in
the full-practice group (17.07 = 11.14%) was lower than
the day 5 learning rate in the reactivation-related changes,
ts0=2.46, p=0.0175, d=0.68'. This finding suggests that
the reactivation had some beneficial effect, but, given our
earlier tests, much less than a full practice protocol.

Specificity

Following the analysis of the learning effect, we investi-
gated the specificity of learning to the trained stimulus set
by analyzing the thresholds for the control stimuli that
were only present at the first and final test sessions. The
threshold for the control stimuli was lower on the final test
session (day 5) than the first test session (day 1) in the full-
practice group, tps=6.9011, p <0.001, d=1.35% and in
the short-reactivation group, ts5=28.2303, p < 0.001,
d=1.61'(Fig. 4). On the final test session, performance for
the control stimuli did not differ between groups, tsg) =
1.0095, p=0.3176, d=0.80". Furthermore, on the final
test session, participants in the full-practice group were
better at recognizing trained stimuli than the control stim-
uli, tpsy=4.2261,0=0.0,d = 0.83", while this was not the
case in the short-reactivation group, tp5=0.8877, p=
0.3831,d=0.17°.

Discussion

The main objective of this study was to test the general-
ity of previous work suggesting that in visual learning a
short reactivation protocol results in as much learning as
a more traditional time-intensive training. Our main finding
is a significantly better learning effect in object recognition
for participants who performed traditional repeated
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training. Although there is still a small beneficial effect of
the reactivation protocol, this improvement is much less
than what is achieved through a time-intensive training.
The lack of strong training effects of the reactivation pro-
tocol with one set of stimuli is probably also the main rea-
son why there is no specificity of training when comparing
performance between the trained stimuli and another set
of stimuli that were not shown during reactivation.

This study successfully establishes perceptual learning
and extends the prior knowledge of the effects of memory
reactivation. Our findings of a limited effect of memory re-
activation resonate with other domains in which it has
proven hard to identify the boundary conditions that influ-
ence the beneficial effects of memory reactivation. In sev-
eral domains there has been a discussion that resulted
from a variety of experimental outcomes. The original for-
mulation of memory reconsolidation theory comes from
the domain of fear conditioning. Researchers have hy-
pothesized the stabled memory can be modulated and
even destabilized by performing extinction training during
the reconsolidation window (Monfils et al., 2009; Schiller
et al., 2010). However, the effect of fear memory destabili-
zation reported in the original studies could not always be
replicated, sometimes the reactivation did not differ in or
outside the hypothesized critical period, and in some
studies there was even no effect of reactivation (Luyten
and Beckers, 2017; Chalkia et al., 2020). Similar discus-
sions have arisen in the domain of motor skill learning.
Evaluated by obtaining a key typing task, new learning in-
terfered with performance (Walker et al., 2003). The ex-
pected reconsolidation effect was absent in a direct and
conceptual replication (Hardwicke et al., 2016; Walker
and Stickgold, 2016). In the domain of perceptual learn-
ing, the positive findings of Amar-Halpert et al. (2017) are
accompanied by reactivation effects in similar paradigms
such as orientation discrimination (Bang et al., 2018).
Overall, while a large literature also supports the effects of
reactivation and its induced reconsolidation (for review,
see Lee et al.,, 2017), a lot remains to be done to under-
stand the boundary conditions under which a reactivation
protocol is effective.

It is important to note that our study was not meant to
directly replicate the study of Amar-Halpert et al. (2017).
Instead, we wanted to investigate to what extent similar
effects of reactivation could be found in a paradigm that
focuses on the learning of more complex visual objects.
We decided to stay close to the object naming paradigm
that has been used in several previous studies (Furmanski
and Engel, 2000; Baeck and Op de Beeck, 2010; Baeck et
al., 2014, 2016; Van Meel et al., 2016), rather than trying
to come up with an object recognition task that would be
as similar as possible to the texture discrimination task of
Amar-Halpert et al. (2017). As a consequence, there are
many differences between the two protocols on top of the
difference in domain (texture vs objects), and that might
affect the results given that perceptual learning is sensi-
tive to a lot of variables, including stimulus parameters
(Sagi, 2011). To mention a few differences, we used a dif-
ferent method to obtain thresholds (an adaptive proce-
dure, in contrast to the method of constant stimuli), we
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found different threshold values (which could be because
of the adaptive procedure, or to a different strength of
masking), our paradigm included a preview of the stimuli
which might facilitate performance before training, the
stimulus-response mapping is more complex, the reacti-
vation includes more trials because of having more stimu-
li, and we have a larger sample size which results in a
higher power and thus a higher probability of finding
group differences.

The improvements that we find because of learning are
small in absolute magnitude, and so are the differences
between groups. However, the differences are large in
percentages, and with this paradigm we and others have
consistently found highly replicable learning effects de-
spite the small size in absolute terms (Furmanski and
Engel, 2000; Baeck and Op de Beeck, 2010; Baeck et al.,
2012). This object learning paradigm also results in very
consistent and replicable effects. Nevertheless, we can-
not exclude the possibility that our finding of less learning
in the reactivation group would be related to specific
properties of our methods, such as the way we estimate
the thresholds or the limited temporal resolution with
which we can adjust task difficulty (limited by the frame
rate of the monitor).

The results of the current study support the claim that
the previously noted improvements in the object naming
task require large amounts of practice. In comparison to
what was done in many previous studies (Furmanski and
Engel, 2000; Baeck and Op de Beeck (2010); Baeck et al.,
2012, 2014, 2016), the reactivation protocol is very short.
It did not result in much additional improvement on top of
the effect of the first day of extensive training. However,
many experimental parameters might affect the strength
of effects induced by reactivation, and we might simply
not have found the optimal conditions. Thus, instead of
concluding that reactivation has a smaller effect than the
brute-force method of large amounts of practice, we hy-
pothesize that its effects might simply depend more on
the circumstances.
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