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Abstract: The impact of the charge transfer complex on the dielectric relaxation processes in free
poly(methyl methacrylate) (PMMA) polymer sheets was investigated. The frequency dependence of
dielectric properties was obtained over the frequency range 0.1 Hz–1 MHz at temperatures ranging
between 303 K and 373 K for perylene dye and acceptors (picric acid (PA) and chloranilic acid (CLA))
in an in situ PMMA polymer. The TG/dTG technique was used to investigate the thermal degradation
of the synthesized polymeric sheets. Additionally, the kinetic parameters have been assessed using
the Coats–Redfern relation. The dielectric relaxation spectroscopy of the synthesized polymeric sheets
was analyzed in terms of complex dielectric constant, dielectric loss, electrical modulus, electrical
conductivity, and Cole–Cole impedance spectroscopy. α- and β-relaxation processes were detected
and discussed. The σ(ω) dispersion curves of the synthesized polymeric sheets show two distinct
regions with increasing frequency. The impedance data of the synthesized polymeric sheets can be
represented by the equivalent circuit (parallel RC).

Keywords: PMMA polymer; charge transfer complexes; relaxation processes

1. Introduction

The presently existing technologies based on inorganic semiconductor materials plat-
forms suffer from rigidity and mechanical stiffness, which degrades the device performance.
Polymers have received increasing attention in solution-processable technology due to
their flexibility, transparency, and reduced weight. They have gained widespread consider-
ation in recent years due to their valuable electronic, optoelectronic, electrochemical, and
non-linear optical properties [1–6].

Poly(methyl methacrylate) or so-called acrylic glass is an electron donor material that
can be used in the synthesis of solid polymeric materials. It has an amorphous structure
due to the presence of the ester group in its backbone chain. PMMA is a polar dimensional
stable thermoplastic material with high transparency and high strength [7]. On the other
hand, the donor–acceptor interfaces of the small organic molecules exhibit smaller areas as
well as higher crystallinity, which are opposed to charging transfer and exciton dissociation.
Furthermore, polymer films with good molecular π–π stacking typically display high
mobility for the electric charge carrier. The solar cells based on small organic molecules
are characterized by a high open-circuit voltage (VOC) since it is mainly determined by
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the difference between the highest occupied molecular orbital (HOMO) of the donor
molecule and the lowest unoccupied molecular orbital (LUMO) of the acceptor molecule.
To improve electric charge generation and transport properties, the blend structure and
surface morphology must also be enhanced [8–10].

The analysis of the dielectric relaxation characteristics of insulating polymers is diffi-
cult due to their dependency on backbone chain structure and impurities. The complex
dielectric relaxation process is a powerful method for studying the molecular dynamics
in a wide range of materials including glasses, oxides, and polymers. The wide range
of frequencies allows investigations of various relaxation processes concurrently. The
small changes in the dielectric properties of polymer as a response to the application of
a frequency-dependent electric field can be measured with high accuracy [11–14]. Di-
electric properties of hybrid PMMA/RGO/Fe2O3 nanocomposites fabricated by in situ
polymerization increased the dielectric constant of PMMA [15]. The complex dielectric
permittivities of polymer nanocomposites comprising a PMMA matrix and ZnO, SnO2, and
TiO2 nanofillers (20 Hz to 1 MHz) were investigated by Sengwa and Dhatarwal [16]. They
reported that the complex dielectric permittivities increased with the increase in the SnO2
and ZnO concentrations, whereas TiO2 loading lowered the permittivities as compared to
the host PMMA matrix film. Dielectric characterization of polyvinyl chloride/poly(methyl
methacrylate) was investigated [17]. The studied PVC/PMMA blends were found to be
miscible for PMMA weight ratio less than or equal to 60%. An increase in the dielectric loss
when the PMMA weight ratio increases was observed.

The π-conjugated organic materials that have alternating double bonds (as perylene
dye) depict the mobility of electrons along the polymer backbone (delocalization) and
usually lead to stabilization of the molecule. The strategy of the current research article is
to explore the impact of the charge-transfer (CT) complexes of perylene dye, and acceptors
(iodine, picric acid, and chloranilic acid) on the dielectric relaxation processes in in situ
PMMA polymers. The frequency and temperature dependence of the dielectric constant
and the electrical conductivity have been examined to discover and predict the electronic
conduction mechanisms in the synthesized polymeric sheet samples.

2. Materials and Methods

All chemicals used throughout this work were pure grade. Perylene (C20H12; ≥99%),
and acceptors were purchased from Sigma-Aldrich. The chemicals were used as received.
The general chemical structures of donor and acceptors are as follows (Figure 1):

The preparation of the charge-transfer (CT) complex of PMMA-perylene dye, PMMA-
perylene-PA and PMMA-perylene-CLA polymer sheets was reported by Altalhi et al. [18].

Thermogravimetric analysis of the synthesized polymeric sheet samples in the temper-
ature range of 303–873 K with a rate of 10 K min−1 was analyzed by a Shimadzu (TGA-50H)
thermal analyzer.

The dielectric relaxation processes of the synthesized polymeric sheets were investi-
gated using a high-resolution impedance analyzer spectrometer (Schlumberger Solartron
1260), supplied with a measuring cell and an electrometer amplifier. Silver conductive paste
was used as an ohmic electrode. The complex dielectric permittivity ε*(ω) of the polymeric
sheet samples can be obtained as follows [14]:

ε∗(ω) = ε1 − iε2 =
C d
ε0U
− i

d
ωZε0U

(1)

where ε1 and ε2 are the real and imaginary parts of the complex permittivity, respectively. d
and U are the thickness and the cross-sectional area of polymeric sheet samples, respectively.
ω is the angular frequency (=2πf ) and ε0 is the permittivity of vacuum.
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Figure 1. Chemical structures of PMMA, perylene donor and PA and CLA acceptors. 
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Figure 1. Chemical structures of PMMA, perylene donor and PA and CLA acceptors.

3. Results and Discussion
3.1. Thermogravimetric Analysis

Figure 2a–d illustrate the degradation of free PMMA, PMMA-perylene dye, PMMA-
perylene-PA, and PMMA-perylene-CLA polymeric sheets during thermal decomposition.
The obtained data from the TG method show that one to three different stages of frag-
ments. The PMMA polymer sheet (Figure 2a) has only an intense broad band within the
temperature range 252–419 ◦C, which is supported by the maximum dTG peak at 374 ◦C,
accompanied by additional weight loss of 52.65% that can be attributed to the evolution
of the carbon dioxide gaseous phase, and few unoxidized carbon atoms are formed as
a residual product. In the case of polymer sheets consisting of perylene dye in in situ
PMMA (Figure 2b), the first thermal decomposition step is assigned to the decomposi-
tion of perylene dye, attributed to the small endothermic dTG at 231 ◦C and weight loss
(found = 10.811%) detectable in the 167–261 ◦C temperature range. The second thermal
degradation stage is due to the decomposition of PMMA, which, displayed in the broad
endothermic peak with experimental mass loss, is 82.465% in the 310–429 ◦C temperature
range with dTG peaks at 370 ◦C. The residual mass is equal to 6.724%, which is attributed
to the unoxidized few carbon atoms. Regarding the thermal decomposition of the two
PMMA-perylene-PA and PMMA-perylene-CLA polymer sheets (Figure 2c,d), they have
three stages at first (193–240 ◦C), second (243–315 ◦C), and third (317–435 ◦C) and first
(114–134 ◦C), second (248–318 ◦C), and 3rd (319–419 ◦C) with the dTG peaks at 212, 291, and
371 ◦C and 121, 294, and 374 ◦C, respectively. The thermal decomposition steps in the N2
environment pass through three species as donor (perylene dye), acceptor (PA or CLA), and
PMMA decompositions and the residual product is un-oxidized free carbon atoms. These
thermal decomposition steps have a weight loss that changes with various thermodynamic
behaviors [18]. A substantially broad endothermic peak with a mass loss shown at the
temperature range of 317–435 ◦C to be 88.183% and 43.377% for PMMA-perylene-PA, and
PMMA-perylene-CLA polymer sheets, respectively, can be attributed to the acceptors and
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PMMA species and residual unoxidized carbon atom formation. The observed difference
between mass loss curves of PMMA-perylene-PA and PMMA-perylene-CLA polymer
sheets is related to the difference in the molecular formula of acceptor that the PA acceptor
has a rich amount of oxygen atoms allowed to facilitate the oxidizing of free carbon atoms.
The thermal analysis of the PMMA-perylene-iodine polymer sheet was not performed
because the polymer sheet contains iodine, as iodine has sublimation properties, which
does not give accurate thermal cracking values.
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Figure 2. (a) TG and dTG curves of free PMMA polymer sheet; (b) TG and dTG curves of PMMA-
perylene polymer sheet; (c) TG and dTG curves of PMMA-perylene-PA polymer sheet; (d) TG and
dTG curves of PMMA-perylene-CLA polymer sheet.

3.2. Kinetic Thermodynamic Study

To determine the kinetic thermodynamic parameters dependent on the thermogravi-
metric curves regarding the non-isothermal decomposition reactions, there are several
equations [19–26] that can be used to analyze a TGA curve. Concerning the estimation
of thermodynamic parameters of our synthetic polymeric sheets of PMMA-perylene dye,
PMMA-perylene-PA, and PMMA-perylene-CLA, Table 1 contains some parameters such as
range of stability, dTG peaks, and kinetic thermodynamic parameters. The Coats–Redfern
relationship [21,22] is employed to calculate the kinetic thermodynamic parameters (∆H, ∆S
and ∆G). The results of the thermodynamic data of the thermal decomposition peak in each
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of three materials I, II, and III are calculated based on the Coats–Redfern relationship [21,22]
as follows.

ln
(
− ln(1− α)

T2

)
= ln

(
ZR
ϕE

)
− E

RT
(2)

where α and ϕ are the fraction of the fraction decomposed at time t and the linear heating
rate, respectively. R is the gas constant and E is the activation energy in kJ mol−1.

Table 1. Kinetic and thermodynamic parameters data of PMMA-perylene dye (I), PMMA-perylene-PA
(II), and PMMA-perylene-CLA (III) polymer sheets.

Compounds
Parameter

rE
(kJ mol−1)

A
(s−1)

∆S
(J mol−1 K−1)

∆H
(kJ mol−1)

∆G
(kJ mol−1)

I 99 3.99 × 108 −82 96 138 0.9954

II 46 2.67 × 104 −155 44 99 0.9943

III 65 4.05 × 1010 −26 54 54 0.9962

A plot of ln
(
− ln(1−α)

T2

)
against 1

T was found to be linear, from the slope of which E
was calculated and Z (Arrhenius constant) can be deduced from the intercept. The enthalpy
of activation ∆H and the free energy of activation, ∆G, can be calculated (Table 1) via
the equation

∆H = E− RTm; ∆G = ∆H − Tm∆S (3)

The negative values of activation entropy (−∆S) revealed that the associated charge
transfer compounds in in situ polymeric sheets are more ordered than the initial reactants;
so, the thermal degradation steps of charge transfer compound are non-spontaneous and
thermally stable. From the Arrhenius plots, it was found that the correlation coefficient
factors of the thermal degradation stages are in the range of ~0.99, showing a good linear fit.

3.3. Dielectric Polarization and Relaxation Processes

Electric permittivity ε∗(ω) is the furthermost meaningful and common demonstration
of the dielectric data in polymers. The energy storage ability of the polymer can be shown
by the real part of the dielectric permittivity (ε1). Alternatively, the energy dissipation
(absorption of the polymer) due entirely to the material medium can be shown by the imag-
inary component (ε2). For the synthesized polymeric sheets, the frequency dependences of
ε1 and ε2 were obtained at a temperature range of 303–373 K and over a frequency ranging
between 0.1 Hz and 1 MHz. The frequency and temperature dependences of ε1 for the
polymeric sheets are shown in Figure 3a–e. An increase in ε1 with decreasing frequency
over the investigated temperature range (dispersion of ε1) was observed. Alternatively,
at constant frequency, a decrease in ε1 with decreasing temperature (the mobility of polar
molecules increases) was observed.
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The baseline of ε1 without the contribution of free charge migration and dipole orien-
tation can be obtained from unrelaxed ε1 ( εu or ε∞; i.e., ε1 measured at f → ∞) , which is
identified as the plateau reached in ε1 at high frequencies when all polarization fluctuations
due to orientation polarization cease. The decrease in ε1 with increasing frequency can
be described based on several types of polarization (orientation, and electronic). All types
of polarizations may be effective in low frequencies. However, at higher frequencies, the
ε1 may be quite small because some polarization types may not be effective. Temperature
dependency and the contribution of the different types of polarizations may not be same.
Additionally, the higher degree of dipole orientation in the polymeric sheets can be obtained
from the relaxed permittivity or static permittivity ( εr or εs; i.e., ε1 measured at f → 0).
The oscillator or dielectric strength (∆ε) of the polymeric sheets can be describes from
the relation, ∆ε = εr − εu. The dielectric strength of the polymer provides information
about the voltage that the synthesized polymeric sheet can withstand before breakdown
occurs [27]. In addition, the dielectric strength of the synthesized polymeric sheet repre-
sents the effective moment of the orienting unit increases with a temperature increase on
the whole, in which certain units of the chain are gradually motivated with increasing
temperature, and the dielectric polarization is enhanced. The dielectric relaxation time is
gradually decreased with increasing temperature. This is evidence that the response time of
the polymeric chain polarization is progressively harmonious with the alternative electric
field [28]. The temperature dependence of εr, εu and ∆ε of the synthesized polymeric sheets
are shown in Figure 4. At higher frequencies, electric dipoles are unable to follow the fast
variations in the AC field, resulting in low values of εr. At low frequencies, higher values
of εr were observed as a result of the electric dipoles responding faster with the AC field. In
addition, space charge polarization occurred due to presence of different boundary regions
and a difference in conductivity, so dielectric constant increases with the increment of
temperature [29–31]. Moreover, at 303 K, Figure 4 shows that the εu has a value of 3.42, 3.91,
3.87, 4.28 and 3.62; εr has a value of 3.86, 4.22, 4.25, 4.62 and 3.97; and the ∆ε has a value of
0.44, 0.31, 0.38, 0.34 and 0.35 for free PMMA, PMMA-perylene dye, PMMA-perylene-PA,
and PMMA-perylene-CLA, respectively.
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Figure 4. The temperature dependence of εr, εu and ∆ε of the synthesized polymeric sheets.

In general, dielectric losses exhibit a bell-shaped curve. The dielectric loss peaks for
most polymers are asymmetric (distorted) and broad. The frequency dependence of ε2 at
different temperatures for the polymeric sheets are shown in Figure 5a–e. For temperatures
below 353 K, a broad second dielectric relaxation peak appears in (ε2) for all polymeric
sheets corresponding to the β relaxation. The magnitude of the maximum height of the β
peaks are temperature independent. The intra molecular fluctuations may be the source of
β relaxation that is affected by partial rotation of the side group around the bond, linking
it to the main chain (heterogeneous local environment) [32,33]. For temperatures above
353 K, two peaks of dielectric relaxation appear in ε2 for all polymeric sheets corresponding
to the α and β relaxation. α relaxation is associated to the glass transition of the polymer
and refers to cooperative transitions.

The experimental relaxation behavior of the above results can be described by the
empirical dispersion function reported by Havriliak–Negami (HN) [34,35].

ε∗ (ω) = εu +
εr − εu[

1 + (iωτ)α]β
with 0 ≤ α, β ≤ 1 (4)

Here, α and β are exponent parameters ranging between 0 and 1. For the Debye
dispersion function, α = 1, β = 1, Cole–Cole dispersion β = 1, α 6= 1, whereas for the
Cole–Davidson function, α = 1, β 6= 1.
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For many electrical engineering applications, the loss tangent or so-called dissipation
factor (tan δ = ε2/ε1) is also frequently used to describe the amount of energy dissipated
inside the polymer due to the alternative field. It is an amount of polymer polarization
inertia with respect to the applied electric stimulus. The tan δ can be used to demonstrate
a dielectric of polymer in cases where the geometry of the polymer is not known. The
frequency and temperature dependences of tan δ for the polymeric sheets are shown in
Figure 6a–e. The loss tangent at lower frequencies is related to the loss of the interfacial
polarization, while the loss tangent at higher frequencies is related to the change in dipole-
relaxational polarization [36].
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Another representation of the complex relative permittivity (ε∗) is the complex electric
modulus (M∗). The M∗ formalism gives a clearer characterization of the dipolar relaxation
mechanisms of the synthesized polymeric sheets. The M∗ formalism is described by the
following relation [25].

M∗ =
1
ε∗

== M1 + iM2 =
ε1

ε2
1 + ε2

2
+ i

ε2

ε2
1 + ε2

2
(5)

The frequency and temperature dependences of the imaginary part of the electric
modulus (M2) for the polymeric sheets are shown in Figure 7a–e. At low frequencies, large
contributions of nonlocal relaxations of the polymeric sheets can be successfully suppressed
by using M2 plots.
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Figure 7. (a–e): The frequency dependence of the M2 of the synthesized polymeric sheets.

The characteristic relaxation time for the β-relaxation peak in the synthesized poly-
meric sheet has been defined as the reciprocal frequency of the peak maximum
(τmax = 1/ fmax) where fmax is the peak frequency of the ε2, M2 and tanδ. The relaxation
process in the synthesized polymeric sheets networks can be determined via the Arrhenius
equation [37,38]:

fmax = f0 exp
(
−∆Ea

kT

)
(6)

where f0 = fmax at T → 0 , and k is the Boltzmann constant. The transition probabilities
between consecutive minimum energy configurations of the dipoles (minima of the po-
tential valleys) are related with the activation energy ∆Ea. In this case, as follows from
Equation (6), with increasing temperature, the relaxation time decreases exponentially,



Molecules 2022, 27, 1993 17 of 24

and the activation energy does not show any dependence on temperature. The values of
the relaxation activation energy parameter (∆Ea) for the synthesized polymeric sheets are
compared in Table 2. This table shows that the values of the activation energies (∆Ea) for
the molecular rotation in the perylene complexes of (iodine, picric acid, and chloranilic) fall
in the range of 0.51–0.79 eV. These values of the activation energies (∆Ea) are comparable
with those for the less hindered rotation in free PMMA. Higher activation energies for the
C3 rotation were observed for the charge transfer complexes, especially the strong com-
plexes of perylene with nitro (picric acid) and halogens (chloranilic acid). The higher-order
axis of rotation (i.e., C3) is called the major axis of rotation. When the major Cn axis has
even n, it has a C2 process bound to that axis. The C2 vertical axes and their associated
processes must be indicated by initial and double uppercase letters. Ang and Dunell [39]
reported a connection between ∆Ea for the C3 rotation to predictable structural variation in
perylene dye as a result of charge transfer to an electron acceptor [39]. Their efforts were
not promising owing to a shortage of accurate molecular structural data for many of the
perylene dye complexes. ∆Ea for the C3 rotation increases with an increase in the electron
affinity of the acceptor in the series of PA > CLA > I2. Since electron affinity is a measure of
the strength of the acceptor type, the rotational barrier in the donor dye (perylene) increases
as the acceptor strength increases. As for the molecular rotation, the ∆Ea of the complexes
with PA and CLA is higher than that of iodine. In perylene-I2, ∆Ea for the rotation of iodine
molecule about the σ-π* bond is equivalent to that for the aromatic character of perylene
reorientation. We can conclude that perylene and perylene-I2 show similar dynamical
behavior [40–43].

Table 2. Activation energy of the synthesized polymeric sheets.

Polymer Sheet Sample
Activation Energy (eV)

From ε2 Peak Value From M2 Peak Value From tanδ Peak Value

Free PMMA 0.85 0.88 0.91

PMMA-perylene dye 0.52 0.50 0.54

PMMA-perylene-PA 0.79 0.76 0.76

PMMA-perylene-I2 0.53 0.51 0.56

PMMA-perylene-CLA 0.74 0.76 0.74

3.4. AC Electrical Conductivity Dispersion

Figure 8a–e show the real part of the complex electrical conductivity σ(ω) spectra
over the temperature range 303–373 K and frequency range 0.1 Hz–1 MHz for the synthe-
sized polymeric sheets. These figures are characterized by the transition above threshold
angular frequency (ω0) from a low-frequency direct electrical conductivity (σdc) plateau to
a dispersive high-frequency range. The dc conduction in the disordered polymer appears
to be associated to the presence of a polarization process, which is associated with a short
range of mobile electric charges. These mobile electric charges contribute to the σdc at
low frequency region [44]. After the critical angular frequency, the σ(ω) dispersion of the
polymeric sheets shows two distinct regions with increasing frequency. The dependence of
the σ(ω) on the angular frequency is found to follow the form:

σ(ω) = σdc + A′ωS1 + BωS2 (7)

where A′ and B are two constants, while s1 and s2 are fractional exponents. At the first
region, the σ(ω) is nearly temperature independent where S1 ≈ 1, demonstrating obviously
that the nearly constant loss (NCL) phenomenon is predominant. In this model, there is a
negligible frequency dependence of ε2 [44,45]. Polymer/backbone segments are greatly
flexible, and they respond with frequency variation due to rapid changes in the polarity
of the applied field, as well as in temperature. The origin of NCL to the polymer chain
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relaxation strongly depends upon temperature for the pure polymeric system. However,
Das et al. reported that NCL has been attributed to the nature of polymer relaxation rate
for polymer salt concentration [46]. According to studies that have been reported so far, the
following properties are recognized for the NCL. The dielectric loss does not depend on
frequency so much and follows such a power law as ( ε2 ∼ f−ν, ν = 0.1–0.3 ) [47]. In the
second region, S2 ≈ 0.6 and independent of temperature may be attributed to the quantum
mechanical tunneling mechanism of charge carriers over the potential barrier separating
two energetically favorable centers in a random distribution. The QMT mechanism has
been reported to be the dominant operating conduction mechanism in many synthesized
polymeric materials [48–51].
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The complex impedance (Z∗(ω)) of the polymeric sheets can be analyzed by using
the following relation [52]:

Z1 (ω) =
G

(G2 + ω2C2)
(8)

Z2 (ω) =
Cω

(G2 + ω2C2)
(9)

where G is the conductance of the investigated polymeric sheet. Figure 9a–e display the
Nyquist plot (complex impedance plot) of the polymeric sheets at different temperatures.
The Nyquist plot consists of one semicircle demonstrating the bulk resistance of the poly-
meric sheets. The semicircle decreases and bends towards the Z1 (ω) axis with increasing
temperature. The equivalent circuit can be expressed by the capacitor and resistor in
parallel (parallel RC element) [53,54].
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4. Conclusions

Perylene dye and acceptors (iodine, picric acid and chloranilic acid) in an in situ
PMMA polymer were synthesized in methanol solvent at room temperature. TG/dTG
showed that the synthesized charge transfer compounds in an in situ PMMA polymer
are thermally stable. The calculated kinetic and thermodynamic parameters for PMMA-
perylene dye are E = 99 (kJ mol−1), ∆S = −82 (J mol−1 K−1), ∆H = 96 (J mol−1 K−1) and
∆G = 138 (J mol−1 K−1), for PMMA-perylene-PA are E = 46 (kJ mol−1),
∆S = −155 (J mol−1 K−1), ∆H = 44 (J mol−1 K−1) and ∆G = 99 (J mol−1 K−1), and for
PMMA-perylene-CLA are E = 65 (kJ mol−1) ∆S =−26 (J mol−1 K−1), ∆H = 54 (J mol−1 K−1)
and ∆G = 54 (J mol−1 K−1). The frequency dependences of the dielectric properties of poly-
meric sheet samples were obtained over the frequency range 0.1 Hz–1 MHz at temperatures
ranging between 303 and 373 K. Two main mechanisms are observed to describe the molec-
ular motions in the synthesized polymeric sheets; at the lower temperature regime, the
β-relaxation is dominant while the segmental α relaxation is dominant at higher temper-
atures. It was found that the εu has a value of 3.42, 3.91, 3.87, 4.28 and 3.62; εr has a
value of 3.86, 4.22, 4.25, 4.62 and 3.97 and ∆ε has a value of 0.44, 0.31, 0.38, 0.34 and 0.35
for free PMMA, PMMA-perylene dye, PMMA-perylene-PA, and PMMA-perylene-CLA,
respectively. The activation energies ∆Ea obtained from dielectric relaxation data fall in
the range 0.51–0.79 eV. The nearly constant loss (NCL) and quantum mechanical tunneling
mechanisms were used to explain the AC conduction mechanism. The complex impedance
spectra of the polymeric sheets were clarified by parallel RC element.
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