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Abstract

Two complementary hypotheses have been proposed to explain variation in sperm size. The first proposes that post-
copulatory sexual selection favors an increase in sperm size because it enhances sperm swimming speed, which is an
important determinant of fertilization success in competitive contexts. The second hypothesis proposes that mass-specific
metabolic rate acts as a constraint, because large animals with low mass-specific metabolic rates will not be able to process
resources at the rates needed to produce large sperm. This constraint is expected to be particularly pronounced among
mammals, given that this group contains some of the largest species on Earth. We tested these hypotheses among
marsupials, a group in which mass-specific metabolic rates are roughly 30% lower than those of eutherian mammals of
similar size, leading to the expectation that metabolic rate should be a major constraint. Our findings support both
hypotheses because levels of sperm competition are associated with increases in sperm size, but low mass-specific
metabolic rate constrains sperm size among large species. We also found that the relationship between sperm size and
mass-specific metabolic rate is steeper among marsupials and shallower among eutherian mammals. This finding has two
implications: marsupials respond to changes in mass-specific metabolic rate by modifying sperm length to a greater extent,
suggesting that they are more constrained by metabolic rate. In addition, for any given mass-specific metabolic rate,
marsupials produce longer sperm. We suggest that this is the consequence of marsupials diverting resources away from
sperm numbers and into sperm size, due to their efficient sperm transport along the female tract and the existence of
mechanisms to protect sperm.
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Introduction

Spermatozoa are cells which show a striking degree of variation

in size, ranging from the tiny sperm of the porcupine Hystrix

africaeaustralis (28 mm) [1] to the gigantic sperm of the fly Drosophila

bifurca (58,290 mm) [2]. Since the main biological function of

sperm is to fertilize, such variation has puzzled researchers for a

long time. Two complementary hypotheses have been put forward

to explain variation in sperm size.

First, it has been suggested that when females mate with several

males, sperm competition would favor the evolution of longer

sperm which would swim faster and have greater chances of

winning the race to fertilize the ova [3]. Despite the considerable

controversy that this hypothesis generated, recent comparative

studies have shown that, in several taxa, sperm competition is

associated with an increase in sperm dimensions which enhances

sperm swimming speed [4–8]. Studies on mammals have remained

contradictory because although some did find clear associations

between sperm size and levels of sperm competition [3,4] others did

not [9,10]. In addition, studies differed in the component of the

sperm cell found to be under the influence of sperm competition,

leading to different hypotheses about the relative importance of

each component in determining sperm swimming speed. While

some studies argued that increased midpiece size would increase

mitochondrial volume, resulting in more energy production [7,

11,12], others argued that increases in whole flagellum length would

enhance propelling thrust [3,4], and others emphasized sperm head

elongation that would reduce drag [13]. A recent comparative

analysis [8] on a large sample of eutherian mammals has now

provided robust evidence that sperm size does increase under sperm

competition in this group, and that all sperm components respond

by increasing in size because all of them perform complementary

roles which are needed to improve swimming speed.

However, a more detailed analysis of different mammalian line-

ages reveals a more complex picture [14]. Thus, rodents do re-

spond to sperm competition by increasing sperm size (and the size

of all sperm components), but other lineages (artiodactyls, car-

nivores and primates), with larger body sizes, do not. This observa-

tion led us to propose a second hypothesis to explain variation in

sperm size, named the "metabolic rate constraint hypothesis",

which states that small mammals (such as rodents) with high

mass-specific metabolic rates have spermatogenic cells capable of

processing resources fast enough to respond to sperm competition

by producing long sperm, while large mammals are constrained by

their low mass-specific metabolic rates and cannot afford the

increased costs in terms of energy and time of producing longer

sperm [14]. These differences in mass-specific metabolic rates arise

because basal metabolic rate scales negatively with body size, so
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that small mammals have high mass-specific metabolic rates, are

more efficient at processing resources, have shorter inter-birth

intervals, larger litter sizes and follow a "live fast and die young"

strategy, while large mammals have the opposite patterns [15]. In

addition, body size is also associated with cellular metabolic rate,

so that small mammals have more efficient cells (that are able to

process more resources per time unit) than large mammals [16].

This is because properties of cells cannot remain invariant as body

size increases, given the associated scaling of whole-organism met-

abolic rate. Thus, either cellular metabolic rate or cell size must

vary with body size, and different cell types follow one strategy or

the other depending on their structure and function. Among fast-

dividing cells, such as spermatogenic cells, cellular metabolic rate

is body-size dependent. As a result, among small mammals sper-

matogenic cells are likely to have higher metabolic rates which

allow them to process energy and resources at a faster rate. When

sexual selection intensifies small mammals have spermatogenic

cells able to turn resources into sperm rapidly enough to increase

sperm size. In contrast, among large mammals, metabolic rate acts

as a constraint so spermatogenic cells are unable to respond to

sexual selection by producing longer sperm. We tested this

hypothesis among eutherian mammals, and found that species

with large body sizes and low mass-specific metabolic rate have

uniformly small sperm. In contrast, small-bodied species have a

large range of sperm sizes because when there is no sperm com-

petition sperm remain small, but as sperm competition intensifies

species respond by increasing sperm size [14]. Such increases

result in sperm sizes four times larger than those found among

large mammals. These findings seem to be driven by differences

between rodents and large body-sized mammals, but further

analyses are needed to test the generality of this hypothesis.

In this study we test both hypotheses in marsupials (Infraclass:

Metatheria), which constitute a monophyletic group considered to

be the sister taxon of eutherian mammals. This group seems to be

a good model because species differ in levels of sperm competition

to a considerable degree (see reviews in [17–20]). In addition,

comparative studies have revealed that marsupials show extreme

variation in sperm length [18], including the mammalian species

with the longest sperm (Tarsipes rostratus: 350 mm). Marsupials differ

from eutherian mammals in that their basal metabolic rate is

about 30% lower for any given body size [21,22] and is more

closely associated to body size [22], suggesting that any constraint

related to metabolic rate-body size scaling would have a major

impact on marsupial physiology. The fact that studies on mar-

supial sperm size have found a negative effect of body size upon

the length of the sperm [18] supports this idea.

Results

Marsupial sperm
The dataset analyzed in this study is presented in Table S1, and

a summary of information on body mass, relative testes mass and

sperm dimensions is shown in Table S2.

Among the 28 marsupial species analyzed, total sperm length

ranged from 79.50 mm to 349.44 mm (CV = 45.04) with a mean

value of 162.67 mm. Sperm head length represented a mean 4.9%

of the total sperm length, ranging from 4.10 mm to 12.80 mm

(CV = 34.20). Midpiece accounted for a mean 11.45% of total

sperm length and showed the highest variability of all sperm

components (CV = 102.26), ranging from 6.90 mm to 88.50 mm.

The principal piece comprised a mean 76.63% of total sperm

length (range: 50.00–248.65 mm; CV = 43.51).

Testes mass was strongly associated to body mass (R2
adj = 0.85,

p,0.0001) and could be predicted by the following potential

equation: testes mass = 0.033 * body mass0.64. Body mass (CV =

155.54) and testes mass (CV = 134.47) were highly variable when

compared to sperm dimensions. However, relative testes size

(mean = 1.21) displayed a similar degree of variability (CV = 56.67)

than those of sperm dimensions.

Effects of sperm competition upon marsupial sperm size
The phylogenetically controlled GLS multiple regression ana-

lysis showed a significant positive association between testes mass

corrected for body mass (i.e. relative testes mass) and total sperm

length (Table 1; Fig. 1A). When different sperm components were

analyzed separately, the same, positive pattern emerged for

principal piece length (Table 1; Fig 1D) and total flagellum length

(Table 1; Fig 1E). On the other hand, neither head length nor

midpiece length were significantly associated with relative testes

size (Table 1; Fig 1B and C respectively). There was no rela-

tionship between sperm head length/width ratio and relative testes

size (Table 1; Fig. 1F).

Effect of mass-specific metabolic rate on sperm size
A significant negative effect of body size on the length of the

sperm and all of its components was found regardless of the

association of this trait with relative testes size (Table 1). It is

important to note that no species with body mass higher than 9 kg

produces sperm longer than the mean for this group.

We found a significant positive relation between mass-specific

metabolic rate and total sperm length (Table 2; Fig. 2A) and the

length of all sperm components (Table 2; Fig. 2B–E) after cor-

recting for phylogenetic effects. However, head length/width ratio

showed no association with mass-specific metabolic rate (Table 2;

Fig. 2F).

When we compared marsupials with eutherian mammals we

found that the relationship between mass-specific metabolic rate

and sperm length is much steeper in the former (Fig. 3). This

implies that, at any given mass-specific metabolic rate, marsupials

produce longer sperm than eutherian mammals, and that mar-

supials respond to changes in mass-specific metabolic rate with

comparatively greater changes in sperm length than do eutherians.

Discussion

Our results show that marsupials respond to increased levels of

sperm competition by increasing total sperm size. This increase

results mainly from an elongation of the flagellum, which is in turn

accounted for by an elongation of the principal piece, as only these

two sperm components were significantly associated to relative

testes size (a proxy of sperm competition levels; reviewed in [8]) in

phylogenetically controlled analyses. A longer flagellum could

increase sperm velocity by providing more propelling thrust, as it

has been shown in other groups [3–6,23]. Recent studies have

shown sperm velocity to be related to sperm competition [5,8] and

to constitute a main determinant of fertility in both non-com-

petitive [24–26] and competitive contexts [27,28]. In addition, the

effect of sperm competition on the principal piece could result in

an increase in energy production. The principal piece is, by far,

the largest sperm component among the marsupials, comprising

more than 75% of the total sperm length. Among mammals,

oxidative phosporylation in the mitochondria has been tradition-

ally considered as the source of energy for sperm movement [29].

Nevertheless, there is evidence that eutherian sperm also produce

energy via sperm-specific glycolytic enzymes present in the fibrous

sheath of the principal piece [29–31]. Furthermore, it has been

demonstrated that this sperm component functions as a scaffold

for localized proteins involved in signaling cascades [32,33], which

Sperm Size in Marsupials
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are critical for normal flagellar function [29,32,34]. Lastly, since

there is evidence of extended periods of sperm storage in the

female reproductive tract among marsupial species (families Das-

yuridae, Didelphidae and Peramelidae; reviewed in [18]), larger

sperm could be advantageous if size was associated with increased

survival time [35]. However, there is not enough information on

energy production, sperm motility duration, or sperm physiology

inside the female reproductive tract among marsupials to test these

hypotheses.

In contrast to eutherian mammals [8], sperm competition levels

are not associated with differences in head length or mid-piece

length among marsupials. The lack of relationship with head

length may be due to differences in sperm head shape between

marsupials and eutherian mammals (because of a distinct asym-

metric positioning of the acrosomal granule in marsupials, their

nuclear shape and stability, or the site of insertion of the flagellum

[21]). The fact that no relationship was found between relative

testes size and midpiece is perhaps more surprising given that this

component shows the greatest degree of variation in marsupial

sperm, and is considered to be an important determinant of energy

supply. However, this finding is in agreement with previous studies

which have found no relationship (or a negative relationship)

between the length of the midpiece and levels of sperm com-

petition [13].

The range of body mass is narrower in marsupials than in

terrestrial eutherians, particularly on the high end (the largest

marsupial weighing about 1/100th of the largest terrestrial

eutherian) [36]. Recent studies suggest that basal metabolic rate

and mass-specific metabolic rates are roughly 30% lower in

marsupials, and also less variable, when compared with eutherians

of similar size [21,22] (see also dataset in [36]). Our findings show

that, in marsupials, sperm size is associated with mass-specific

metabolic rate, which is inversely related to body size, thus

supporting the "metabolic rate constraint hypothesis" [14]. In

addition, mass-specific metabolic rate influences the length of all

sperm components, suggesting that metabolic rate constrains an

increase in each and every one of them. Thus, large body-sized

species are constrained by the low mass-specific metabolic rates in

a similar way than their eutherian counterparts [14].

Nevertheless, there are substantial differences regarding the

magnitude of the influence of mass-specific metabolic rate on

sperm size between marsupial and eutherian mammals. The slope

predicted for this relation for eutherians [14] was considerably

lower than the one predicted in the present study for marsupials

using the same variables. This difference suggests that decreases in

mass-specific metabolic rate associated to larger body size would

have a higher impact on sperm size in marsupials. Thus, as

marsupials have lower mass-specific metabolic rates than euthe-

rian mammals for any given body size, the constraint on sperm

size would be stronger among the former. This may explain why

sperm competition levels seem to have no effect on sperm com-

ponents such as the midpiece which may be costly to enlarge given

the mitochondria they contain. Remarkably, our results show that

the largest marsupial species that produces sperm longer than the

mean for this group has a body size (9 kg) 30.8% smaller than the

larger eutherian mammal (13 kg) that produces a sperm longer

than the eutherian mean. Therefore, the threshold value of mass-

specific metabolic rate necessary to produce relatively large sperm

would be reached at lower body sizes in marsupials.

Our study shows that the spermatozoa of marsupials are longer

than those of eutherian mammals of similar body size throughout

all of the marsupial body size range (total sperm length ranges:

79.50–349.44 mm for marsupials [this study], and 28.30–

258.33 mm for eutherians [8]), despite having lower relative testes

size and lower mass-specific metabolic rate. If we compare the

predicted testes size equations for marsupials (testes mass = 0.033

* body mass0.64) and eutherians (testes mass = 0.060 * body

mass0.63; source: dataset in [8]), marsupials have a predicted testes

size approximately 40% smaller than eutherian mammals of

equivalent size. Testes size in relation to body size is directly

associated with sperm production [37–39], so these differences are

likely to explain the lower sperm numbers found in marsupials

(reviewed in [18,19]). Theoretical studies [35,40,41] predict that,

since sperm is energetically costly [42–46], and ejaculate

expenditure can be defined as the product between sperm number

and sperm size [47], decreasing sperm numbers could result in

more resources available for sperm size. Marsupials exhibit

extremely efficient rates of transport of ejaculated sperm to the

fertilization site (proportion of ejaculated sperm reaching the

oviduct up to four orders of magnitude higher than in some

eutherian mammals), which is suspected to be a consequence of

the unusual sinusoidal sperm movement (reviewed in [18,19]). In

Figure 1. Relations between relative testes mass and sperm
dimensions (mm) in marsupial mammals. (A) Total sperm length
(R2

adj = 0.68, p = 0.0071), (B) sperm head length (R2
adj = 0.17, p = 0.3923),

(C) sperm midpiece length (R2
adj = 0.24, p = 0.1641), (D) sperm principal

piece length (R2
adj = 0.58, p = 0.0253), (E) total sperm flagellum length

(R2
adj = 0.68, p = 0.0059), and (F) sperm head length/width ratio

(R2
adj = 0.02, p = 0.5704).

doi:10.1371/journal.pone.0021244.g001
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addition, marsupials have evolved some protective measures, such

as the ability to store sperm and the formation of sperm pairs in

some species which protects the integrity of the acrosome [48].

Thus, resources could be diverted away from producing higher

sperm numbers and allocated to greater sperm size.

In conclusion, our results present phylogenetically robust evi-

dence indicating that sperm competition favors an increase in

sperm size, while mass-specific metabolic rate acts as a constraint,

among marsupials. Compared to eutherian mammals, marsupials

have small testes for their body size and lower mass-specific

metabolic rates, suggesting that the latter acts as a major con-

straint. However, marsupials produce longer sperm than eutherian

mammals, presumably because efficient transport along the female

tract and protective measures allows them to divert resources away

from sperm numbers and into sperm size.

Materials and Methods

Sperm competition and sperm design
Data on body mass (g), testes mass (g) and sperm dimensions

(mm) were obtained from the literature for 28 species (11 families)

of marsupials (see Table S1 for data and references). Sperm

dimensions included total sperm length (TSL), head length (HL),

head width (HW), midpiece length (MPL), principal piece length

(PPL), and total flagellum length (TFL). We also calculated the

ratio HL/HW. Additionally, data on basal metabolic rate (BMR)

(ml O2 . h21) were obtained for a subset of 23 species (11 families)

(Table S1). Mass-specific metabolic rate (ml O2 . h21 . g21) was

calculated as the ratio between basal metabolic rate and body

mass. Since body mass measurements taken to determine relative

testes size belong to mature males (BM) and basal metabolic rates

usually represent a mean value for the species, we used additional

body mass measurements (BM2 in table S1) from the same sources

of BMR values to calculate mass-specific metabolic rate. Finally,

data on the mating system of 17 species were obtained (see Table

S1 for data and references) and classified in two categories

(polyandrous or monandrous) according to the conclusions of the

literature used (Table S1).

Data analyses
To test whether levels of sperm competition were associated

with sperm dimensions, we carried out multiple regression analyses

with HL, MPL, PPL, TFL, TSL and HL/HW ratio for all species

as dependent variable and relative testes mass as predictor.

Relative testes mass was used as a proxy for sperm competition

since it is correlated with sperm competition levels in mammals

[49,50]. Additionally, preliminary analyses of our dataset revealed

that polyandrous species had larger testes than monandrous

species (GLS p = 0.0365, F = 5.43) when controlling for body size

effect. To accurately represent relative testes mass as a measure of

sperm competition, we performed multiple regression analyses

including both testes mass and body mass as predictors of sperm

dimensions. Given that predictor variables were non orthogonal,

multiple regression analysis was performed using a sequential

(Type I) sum of squares, in which the predictor variables were

added to the model in the following order: body mass, testes mass.

To test whether sperm size is associated to mass specific meta-

bolic rate, we performed single linear regression analyses using

sperm dimensions (TSL, HL, MPL, PPL, TFL, HL/HW) as

dependent variables and mass-specific metabolic rate as predictor.

All variables were log10-transformed prior to analysis.

Since species data may not be free of phylogenetic association

and they may share character values as a result of a common

ancestry rather than independent evolution [51,52], we performed

our regressions using a generalized least-squares (GLS) approach

in a phylogenetic framework [53]. This method estimates a

phylogenetic scaling parameter lambda (l), which represents the

transformation that makes the data fit the Brownian motion

evolutionary model. If l values are close to 0, the variables are

likely to have evolved independently of phylogeny, whereas l
values close to 1 indicate strong phylogenetic association of the

variables. As an advantage, GLS allows a variable degree of phy-

logenetic correction according to each tested model, accounting

for differences in the level of phylogenetic association between

different traits. The estimation of l values and GLS analyses were

performed using a code written by R. Freckleton for the statistical

package R v.2.8.1 (R Foundation for Statistical Computing 2009)

Table 1. Relations between sperm competition and sperm dimensions across marsupials.

Dependent variable Predictor Slope F p l r CLs n

Total sperm length body mass 20.27 37.57 ,0.0001 0.462 n.s., * 0.81 0.69 to 1.59 22

testes mass 0.24 9.11 0.0071 0.57 0.20 to 1.10

Head length body mass 20.11 6.66 0.0161 0.997 *, n.s. 0.46 0.10 to 0.89 28

testes mass 0.06 0.76 0.3923 0.17 20.22 to 0.57

Midpiece length body mass 20.33 6.03 0.0251 0.939 n.s., n.s. 0.51 0.09 to 1.04 20

testes mass 0.29 2.12 0.1641 0.33 20.13 to 0.82

Principal piece length body mass 20.25 20.38 0.0004 0.828 *, n.s. 0.75 0.48 to 1.46 19

testes mass 0.21 6.09 0.0253 0.53 0.09 to 1.07

Total flagellum length body mass 20.28 36.62 ,0.0001 0.466 n.s., * 0.81 0.68 to 1.58 22

testes mass 0.26 9.62 0.0059 0.58 0.21 to 1.11

Head length/head width body mass 20.02 2.21 0.1528 0.981 *, n.s. 0.32 20.11 to 0.76 23

testes mass 20.05 0.33 0.5704 0.13 20.31 to 0.57

Phylogenetically controlled multiple regression analyses revealing the effect of relative testes mass on sperm dimensions. All variables were log10 transformed prior to
analysis. The superscripts following the l value indicate significance levels (n.s. p.0.05; *p,0.05) in likelihood ratio tests against models with l = 0 (first position) and
l = 1 (second position). The effect size r calculated from the F values and its non-central 95% confidence limits (CLs) are presented. Confidence intervals excluding 0
indicate statistically significant relationships. The p-values and CL that indicate statistical significance are shown in bold. Abbreviations: n: number of species in each
analysis.
doi:10.1371/journal.pone.0021244.t001
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and the maximum likelihood value of l was compared against

models with l = 1 and l = 0.

Due to the unavailability of a complete phylogeny for all the

species analyzed, a phylogenetic reconstruction was used (Fig. S1).

Morphological and molecular trees constructed for the Metatheria

were used to determine the phylogenetic position of the higher

groups (orders and families) [54,55], and group-specific molecular

phylogenies were used in the case of the groups that accounted for

more than two species, namely, Dasyuromorpha [56], Peramele-

morpha [56], and Diprotodontia [57–59].

All statistical analyses were conducted with R v.2.8.1, and

p-values were considered statistically significant at a,0.05. We

avoided an increase in the chances of commiting type II errors

[60] by avoiding the use of Bonferroni correction. In its place, we

calculated the effect size r from F values [61–63] obtained from the

Figure 2. Relations between mass-specific metabolic rate (ml
O2.h21.g21) and sperm dimensions (mm) in marsupial mam-
mals. (A) Total sperm length (R2

adj = 0.64, p,0.0001), (B) sperm head
length (R2

adj = 0.31, p = 0.0029), (C) sperm midpiece length (R2
adj = 0.28,

p = 0.0161), (D) sperm principal piece length (R2
adj = 0.53, p = 0.0013), (E)

total sperm flagellum length (R2
adj = 0.62, p = 0.0001), and (F) sperm

head length/width ratio (R2
adj = 0.08, p = 0.1338).

doi:10.1371/journal.pone.0021244.g002

Table 2. Relations between mass-specific metabolic rate (MMR) and sperm dimensions across marsupials.

Dependent variable Predictor Slope F p l r CLs n

Total sperm length MMR 0.39 31.07 ,0.0001 0.696 *, n.s. 0.81 0.63 to 1.64 18

Head length MMR 0.24 11.25 0.0029 0.999 *, n.s. 0.59 0.24 to 1.12 23

Midpiece length MMR 0.57 7.34 0.0161 0.969 n.s., n.s. 0.59 0.13 to 1.22 16

Principal piece length MMR 0.38 16.61 0.0013 0.930 *, n.s. 0.75 0.40 to 1.54 15

Total flagellum length MMR 0.40 28.87 0.0001 0.707 *, n.s. 0.80 0.60 to 1.61 18

Head length/head width MMR 0.20 2.48 0.1338 0.999 *, n.s. 0.37 20.12 to 0.89 18

Phylogenetically controlled multiple regression analyses revealing the effect of mass-specific metabolic rate on sperm dimensions. All variables were log10 transformed
prior to analysis. The superscripts following the l value indicate significance levels (n.s. p.0.05; *p,0.05) in likelihood ratio tests against models with l = 0 (first position)
and l = 1 (second position). The effect size r calculated from the F values and its non-central 95% confidence limits (CLs) are presented. Confidence intervals excluding 0
indicate statistically significant relationships. The p-values and CL that indicate statistical significance are shown in bold. Abbreviations: n: number of species in each
analysis; MMR: mass-specific metabolic rate.
doi:10.1371/journal.pone.0021244.t002

Figure 3. Mass-specific metabolic rate (MSMR – ml O2.h21.g21)
and total sperm length (TSL –mm) scaling between marsupial
and eutherian mammals. Marsupials (grey points and line):
TSL = 166.6*MSMR+234.2 (R2

adj = 0.59, p = 0.0001). Eutherians (black
points and line): TSL = 56.0*MSMR+99.2 (R2

adj = 0.28, p,0.0001). Data
for eutherian mammals were from [8].
doi:10.1371/journal.pone.0021244.g003
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GLS model; effect sizes $0.5 were considered large [64]. Finally,

we calculated the non-central confidence limits (CLs) for r, which

indicate statistical significance if 0 is not contained within the

interval [65].

To be able to construct figures including relative testes mass as a

variable, values were calculated by dividing the actual testes mass

by the predicted testes mass, which was obtained using the method

proposed by Kenagy & Trombulak [66]. Since the original paper

proposed a general equation for all mammals but only included 2

marsupial species, we constructed the following predicted testes

mass equation using the same procedures: testes mass = 0.033 *

body mass0.64. However, because this measure has been criticized

as an inaccurate index of sperm competition levels due to

allometric problems [67], we have not used it in any of the

statistical analyses.

Supporting Information

Figure S1 Phylogenetic reconstruction for the 28 mar-
supial mammal species utilized in the GLS analysis.

Phylogenetic position of the higher groups (orders and families)

was reconstructed first [54,55] and group-specific phylogenies

were used for Dasyuromorpha and Peramelemorpha [56], and for

Diprotodontia [57–59].

(EPS)

Table S1 Sperm dimensions, body mass, testes mass,
basal metabolic rate, and mating system in 28 species of
marsupials.

(PDF)

Table S2 Mean values and ranges of sperm dimensions
in 28 species of marsupial mammals.

(PDF)
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