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Abstract: Animal welfare status is assessed today through visual evaluations requiring an on-farm
visit. A convenient alternative would be to detect cow welfare status directly in milk samples,
already routinely collected for milk recording. The objective of this study was to propose a novel
approach to demonstrate that Fourier transform infrared (FTIR) spectroscopy can detect changes in
milk composition related to cows subjected to movement restriction at the tie stall with four tie-rail
configurations varying in height and position (TR1, TR2, TR3 and TR4). Milk mid-infrared spectra
were collected on weekly basis. Long-term average spectra were calculated for each cow using
spectra collected in weeks 8–10 of treatment. Principal component analysis was applied to spectral
averages and the scores of principal components (PCs) were tested for treatment effect by mixed
modelling. PC7 revealed a significant treatment effect (p = 0.01), particularly for TR3 (configuration
with restricted movement) vs. TR1 (recommended configuration) (p = 0.03). The loading spectrum of
PC7 revealed high loadings at wavenumbers that could be assigned to biomarkers related to negative
energy balance, such as β-hydroxybutyrate, citrate and acetone. This observation suggests that
TR3 might have been restrictive for cows to access feed. Milk FTIR spectroscopy showed promising
results in detecting welfare status and housing conditions in dairy cows.

Keywords: milk FTIR spectroscopy; animal welfare; biomarker

1. Introduction

Animal welfare status is typically assessed using visual observations such as body
injuries scores requiring an on-farm visit by a trained assessor. Alternatively, milk samples
are already collected routinely by dairy herd improvement agencies to check quality
and safety. It would be convenient to be able to predict cow welfare status directly in
milk samples [1]. The specific objective of this paper was to develop a methodology to
detect cow welfare status in milk composition by the analysis of milk Fourier transform
infrared (FTIR) spectra to detect the effects of dairy cows housing conditions with a
varying level of welfare. We chose the tie-rail configuration as an example of a variable
housing element to develop this methodology. The tie-rail controls the forward location
of a cow in her stall and facilitates or obstructs the cow movement and access to feed.
We hypothesized that cows more restricted in their movement, and therefore with a
reduced level of welfare, might lead to detectable changes in milk composition. We also
hypothesized that if the restriction of movement led to reduced feed access, changes
in milk composition will be most likely detectable, since reduced carbohydrate intake
results in reduced plasma glucose concentration, which might result in decreased lactose
concentration in milk [2]. Additionally, a reduction in plasma glucose concentration
might elevate body fat mobilization, which is characterized by increased non-esterified
fatty acids (NEFA), β-hydroxybutyrate (BHB) and reduced glucose concentration in the
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plasma, as well as decreased protein and increased acetone, BHB, C18:1 and C16:0 in
milk [2,3]. Monitoring changes of milk composition has already been proposed as a tool to
monitor important health issues in dairy cows, such as negative energy balance, ketosis
and mastitis [4], and changes to the fatty acids profile of milk fat have been reported as a
response to changes in the type of forage (i.e., odd, branched and trans fatty acids) and the
energy status of cows during lactation (i.e., saturated fatty acids vs. monounsaturated fatty
acids) [5]. To test our hypothesis, a methodology was needed to detect trends in changing
milk composition, as early as possible, that might result from changes in the welfare status
due to modifications in the housing conditions of dairy cows, in our case, the tie-rail
configuration. The ultimate goal of this study was to develop precision markers that could
be routinely recorded to detect cows experiencing a good or poor level of welfare, which
will enable dairy herd improvement agencies to offer new services to dairy producers
to improve animal welfare based on routinely collected milk FTIR spectra. According to
our knowledge, no such application of milk FTIR spectroscopy has been reported in the
literature at the time of study.

Over the past six decades, multiple applications based on milk analysis by infrared
(IR) spectroscopy have been developed. Quantitative milk analysis by mid-infrared (MIR)
spectroscopy was proposed in 1960s as a rapid and cheap method [6,7], which did not
involve hazardous chemicals or sample preparation. At that time, milk fat, protein, lactose,
and solids-not-fat were determined by IR spectroscopy. In the 1990s, Fourier transform
infrared (FTIR) spectroscopy was proposed for milk analysis in combination with partial
least squares (PLS) regression [8], which later became the basis of the official method
for milk analysis by IR spectroscopy [9,10]. Over the years, many studies attempted
to predict milk components other than the major ones (i.e., fat, protein, lactose) from
milk FTIR spectra, such as individual and groups of fatty acids [11–17], fatty acid chain
length and unsaturation [18,19], milk protein composition and their genetic variants [20],
milk lactoferrin as an indicator of mastitis [21], major mineral contents of milk (i.e., Ca,
K, Mg, Na and P) [22,23] and milk acetone, BHB and citrate, as biomarkers for a cow’s
metabolic state [24]. Other studies focused on predicting technological properties from milk
FTIR spectra, such as fat globule particle size in homogenized milk [25], milk coagulation
properties [23,26–29], titratable acidity and pH in milk [26]. All these studies had two
common aspects: (1) they all relied on PLS to predict the trait or property of interest
from milk FTIR spectra; and (2) they all targeted concentrations of milk components
or the technological properties affected by physical attributes of milk components (e.g.,
fat globules and protein micelles sizes) that led to changes in milk FTIR spectra (e.g., IR band
absorbance intensity or band shifts), which could be correlated to the trait or property of
interest. More recently, researchers started to investigate the potential of algorithms other
than PLS to predict milk components and technological properties from milk FTIR spectra.
Ferragina et al. (2015) demonstrated that Bayesian regression models outperformed PLS
in predicting milk components and technological properties [30]. Soyeurt et al. (2020)
compared the performance of a PLS model to those built by combining PLS factors with
linear and polynomial support vector machines and artificial neural networks to predict
milk lactoferrin content [31].

Other studies focused on predicting important indicators for the dairy farming sector
that are indirectly correlated to changes in milk FTIR spectra, such as methane production
in the rumen [32,33], body energy status [34], feed efficiency [35], dry matter intake and
feed residual [36], and blood metabolites (e.g., BHB, urea, and NEFA) in early-lactation
cows [37]. In these studies, the PLS algorithm was used to predict the indicator of interest.
Other studies implemented clustering (e.g., K-means clustering) and classification (partial
least squares discriminant analysis and random forests) algorithms to predict dairy farming
indicators from milk FTIR spectra. Such applications included the classification of milk
according to its production system (i.e., fresh grass feeding, pasture grazing and organic
farming) [38], the prediction of the metabolic status and energy balance of dairy cows [39],
metabolic profiling [40] and clustering [41] of early-lactation dairy cows, prediction of
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physiological imbalance in Holstein dairy cows [42], the prediction of cows’ pregnancy
status [43], fertility [44] and the likelihood of conception to first insemination [45]. Other
studies looked into the correlation between milk FTIR spectra and lameness in later lac-
tation [46], milk MIR predicted gastro-enteric methane production and the technical and
financial performance of commercial dairy herds [47], diagnosing pregnancy status in
dairy cows [48], and predicting the heritability and genetic correlation of milk coagulation
properties from milk FTIR spectra [49].

In our study, we propose a novel approach for the implementation of milk FTIR
spectroscopy as a tool to monitor dairy cows’ welfare status. A milk FTIR spectrum
contains information about all milk molecules that contain covalent bonds that absorb IR
energy; hence, this FTIR spectrum will provide insights about the chemical composition
of a milk sample beyond the concentrations of a limited number of milk components.
Our hypothesis was that milk FTIR spectra can capture changes in milk composition that
can be attributed to the modifications of stall housing conditions and changing welfare.
We propose combining principal component analysis (PCA) as a multivariate analysis
tool with mixed modelling to identify and associate the relevant spectral features from
milk spectra to different housing conditions in tie-stalls as a proxy for changing welfare
status. Specific aspects related to animal behavior and welfare outcomes are discussed in
an accompanying publication [50].

2. Materials and Methods
2.1. Experimental Setup

The animal trial was conducted at the Macdonald Campus Dairy Complex of McGill
University (Sainte-Anne-de-Bellevue, QC, Canada). Details on the experimental handling
were described elsewhere [50]. Briefly, 48 lactating Holstein cows were assigned to 4 tie-rail
configurations varying in height and position. Tie-rail configurations were TR1 (122 and
36 cm; height from the stall base and forward position from the manger well, respectively),
TR2 (122 and 18 cm), TR3 (112 and 18 cm), and TR4 (112 and 36 cm). While tie-rail
configuration TR1 was based on the current recommendation for tie-stalls in Canada as
outlined in the Dairy Code of Practice [51], TR2 reflected the tie-rail position most found
on Quebec dairy farms [52], and TR3 and TR4 were designed to increase the opportunity
of movements of the cow in the stall and hence, improve cow comfort and welfare relative
to treatments TR1 and TR2, respectively. Cows were assigned to 6 blocks to account for
parity (primiparous: n = 12, multiparous: n = 36), days in milk (DIM; early: 0–100 d,
mid: 101–200 d or late: 201–305 d), and location in the barn prior to the start of the
experiment. Cows were in trial for 10 weeks with 24 cows starting in summer 2016 (period
1: 25 July–3 October) and the remaining 24 cows starting in fall 2016 (period 2: 10 October–
19 December).

2.2. Housing and Management

Cows were housed in two separate rows of tie-stalls facing the barn wall equipped
with rubber mats with wood shavings supplemented once a day. Stall dimensions were
adapted to the cow size following current recommendations outlined in the Dairy Code
of Practice [51]. Cows were fed a total mixed ration four times daily with feed pushed
up 6 times per day to ensure food availability. Water was accessible ad libitum from a
self-filling water bowl. Cows were milked in-stall twice daily at a 12 h interval. Detailed
housing and management specifications can be found in an accompanying publication [50].

2.3. Milk Analysis

One composite milk sample per week was collected from each cow participating in the
trial. The sample consisted of milk collected during the evening milking and the morning
milking of the next day. The collected milk samples were analyzed for milk composition
by FTIR spectroscopy at Lactanet laboratory (Sainte-Anne-de-Bellevue, QC, Canada) using
the same CombiFoss FT+ analyzer (FOSS, Hillerød, Denmark). The concentrations of fat
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(g/100 g milk), protein (g/100 g milk), lactose (g/100 g milk), urea (mg/dL milk) and BHB
(mmol/L) were determined.

2.4. Milk FTIR Spectra, Outliers Check and Spectral Pre-Treatments

The full FTIR spectra for the respective milk samples were collected and each FTIR
spectrum contained of 1060 spectral variables between 5008 and 925 cm−1. The spectra were
visualized using the OMNICTM software (version 7.3; Thermo Fisher Scientific, Waltham,
MA, USA) and PCA in JMP Pro 13.2.1 (SAS Institute, Cary, NC, USA) was used as a tool
to detect spectral outliers. In the PCA scores plot (PC1 vs. PC2), all samples clustered
randomly at the origin of the PCA space, which was an indicator of the absence of spectral
outliers.

Only spectral regions containing information related to milk composition were re-
tained for spectral analysis, which were 3061–2803 cm−1; 1797–1681 cm−1; and 1612–
925 cm−1 [12,15,23,26,31,32,38]. The total number of spectral variables that were retained
for analysis was 278 wavenumbers. Codes were written in MATLAB R2018a (MathWorks,
Natick, MA, USA) to apply, separately or combined, the differential first derivative with a
derivative window of 1 and vector normalization [53] as pre-treatments to milk spectra.
As a result, four sets of milk FTIR spectra were obtained: raw, vector normalized raw (VN),
first derivative (FD), vector normalized first derivative (VN-FD).

In addition, short-term and long-term average spectra were calculated for each cow.
The short-term and long-term averages included the spectra of samples collected from
week 1 to week 3 and from week 8 to week 10, respectively. These averages were calculated
for raw, VN raw, FD and VN-FD spectral sets.

2.5. Statistical Model

Data of this trial were analysed under the following statistical model:

Yijk = µ + trti + startj + blockkji + eijk (1)

where trti was the fixed effect of the ith TR configuration treatment, startj was the fixed
effect of the jth start date, blockkji was the fixed effect of kth parity, DIM and location in the
barn from the jth start date (i.e., period 1 or 2) on the ith TR configuration treatment and eijk
was the random residual error [50]. The significance level was defined at p ≤ 0.05.

Originally, the statistical model of the trial included the fixed effect of the week and
the random effect of the cow [50]. However, due to the ongoing changing milk composition
during the lactation from one week to another, it was decided to calculate an average
spectrum for each cow for the first and last three weeks of each start date of the trial to
evaluate the short- (week 1–3), and long-term effects (week 8–10) of the stall configuration
treatments. This approach reduced the sources of variability in milk composition related to
changes in lactation stage as the trial was progressing.

2.6. Combined Mixed Model and PCA for Spectral Analysis

A novel approach was developed to detect the TR configuration treatment effect on
milk FTIR spectra by combining multivariate analysis with mixed modelling (Figure 1).
In JMP Pro 13.2.1., PCA was applied to the four versions (i.e., raw, FD, VN raw, VN-
FD) of the short- and long-term spectral averages as a dimension reduction method to
reduce the number of spectral features that would be tested by the mixed model for the
treatment effect [54]. Scores of the principle components (PCs) were calculated through
the decomposition of the original spectral matrix X (i.e., milk FTIR spectra) that contains i
samples and j variables as follows [55]:

X = f1qT
1 + f2qT

2 + f3qT
3 + tl pT

l (2)

where l ≤ min {i, j}, l is the mathematical rank of the spectral matrix X, f1qT
1 is PC1 that

describes the greatest amount of variance in X, f2qT
2 is PC2 that describes the second largest
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amount of variance in X and so on. fl are the sample scores in the space defined by the lth

PC and ql are the loadings of the original variables (i.e., spectral variables or wavenumbers
in X) for the lth PC.
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When PCs containing meaningful information are retained and noisy PCs are dis-
carded, the general description of the PCA model becomes as follows:

X = f1qT
1 + f2qT

2 + · · ·+ fKqT
K + E = FKQT

K + E (3)

where K is the number of the retained meaningful PCs and E is the residual matrix that
contains the noisy PCs. From Equation (3), we can say that each PC consists of a vector
of scores (f ) and a vector of loadings (q). Both vectors contain information that provided
answers to questions related to the investigated problem. PCs with an eigenvalue equal
or greater than 1 and that explained at least 1% of the variance in the spectral dataset
were saved for testing by the mixed model. Thus, only PCs that contained meaningful
information from milk FTIR spectra were retained for statistical analyses and PCs that
mainly contained noise were discarded. The mixed procedure in SAS 9.4 (SAS Institute,
Cary, NC, USA) was utilized to test the retained PC scores for the treatment effect. If a PC
had revealed a significant treatment effect at p ≤ 0.05, then the least squares means of its
scores were examined to determine the treatment levels that were significantly different
from the other levels using a Scheffé adjustment for multiple comparisons. The influential
spectral features could be directly extracted from the loading spectrum of the PC that had
revealed the significant treatment effect if it was obtained from a raw spectral dataset. If this
PC was obtained from an FD spectral dataset, then the spectral integral of the PC’s loading
spectrum had to be calculated before extracting the influential spectral features. The cumu-
lative trapezoidal numerical integration function in MATLAB R2018a (MathWorks, Natick,
MA, USA) was used to calculate the spectral integral for the loading spectrum in question.
If the integrated loading spectrum had produced wide humps with no clear peaks, the Peak
Resolve feature in OMNICTM 7.3 (Thermo Fisher Scientific, Waltham, MA, USA) was used
to fit the integrated loading spectrum for probable peaks. To do so, the Voigt function [56]
with low or high sensitivity, was used and the baseline was set to none. The noise and the
full width at half height of the narrowest peak in the region of interest were determined by
the software. The fitting process was repeated several times until an acceptable residual
spectrum was obtained.

2.7. Interpretation of Spectral Features in PCA Loading Spectra

Bulk tank raw milk was obtained from the Dairy Research Complex, Macdonald
Campus, McGill University (Ste.-Anne-de-Bellevue, QC, Canada). Milk samples of 35 mL
were spiked with different amounts of minor milk components and aqueous solutions
with different concentrations of these chemicals were prepared. Their FTIR spectra were
recorded at Lactanet laboratory (Ste.-Anne-de-Bellevue, QC, Canada) by the same milk
analyzer that was used for the trial’s milk samples. Linoleic acid was chosen as an example
of unsaturated fatty acid. It must be noted that different fatty acids do not produce
distinct FTIR signals from each other, especially when they are present in a mixture of
fatty acids [15]. Urea, ammonium, creatine, histamine, orotic acid and hippuric acid were
chosen as representatives of nonprotein nitrogen (NPN) compounds present in milk [57].
Milk BHB, acetone, citrate and acetate were chosen as markers for energy intake-related
issues in dairy cows [24]. In addition, phosphate, lactose, glucose, and galactose were
also chosen. OMNICTM 7.3 (Thermo Fisher Scientific, Waltham, MA, USA) was used to
calculate variance spectra and the second derivative for the collected spectra, and the
Find Peaks functionality was used to determine IR band centers whose intensity was
increasing as a function of the increased concentration of the compound in milk and in the
aqueous solution.

2.8. Ethics Statement

Use of animals and all procedures were approved by the Animal Care Committee of
McGill University and affiliated hospitals and research institutes (protocol #2016–7794).
All aspects of this study met the standards established by the Canadian Council on Animal
Care to ensure the humane and ethical use of animals in research.
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3. Results
3.1. Interpretation of Spectral Features in Loading Spectra

Table 1 summarizes the spectral features of minor milk components observed in the
second derivative of FTIR spectra of milk samples spiked with these molecules and their
respective aqueous solutions. These observed features were used to identify the influential
features and their respective molecules in the loading spectra of principal components that
revealed a significant treatment effect in this study.

Table 1. IR band centers of minor milk components detected in the FTIR spectra of spiked milk samples and aqueous
solutions of the respective molecules.

Molecule Band Centers in Milk cm−1

(Second Derivative)
Band Centers in Water cm−1

(Second Derivative)

Urea 1457, 1156 1461, 1160

β-Hydroxybutyric acid (BHB) 2926, 1554, 1405, 1316, 1077 2981, 1559, 1404, 1311, 1269, 1207, 1130,
1060, 948

Acetone 1690, 1414, 1373, 1239 1689, 1424, 1370, 1239, 1096

Citrate 2926, 1557, 1394, 1248, 1078 2923, 1581-1566, 1390, 1288, 1093

Acetate 1551, 1414 1554, 1416, 1348, 1060, 1021, 933

Phosphate 1156, 1077, 940 1261, 1236, 1160, 1077, 941

Ammonium chloride 1457 1454

Linoleic acid
(fatty acid)

3012, 2927, 2857, 1705, 1581, 1554, 1458,
1408, 987 3011, 2929, 2861, 1597, 1554, 1458, 1405

Creatine 1538, 1396, 1311, 1106, 980 2950, 2835, 1538, 1431, 1396, 1307, 1168, 1107,
1049, 976

Histamine 3012, 2857, 1581, 1457, 1315, 1033, 987 3008, 2888, 1573, 1488, 1310, 1033, 987, 941

Orotic acid 1700, 1500, 1377, 1033 1700, 1497, 1377, 1014

Hippuric acid 1581, 1400, 1307 1584, 1489, 1396, 1301

3.2. Spectral Analysis

Table 2 summarizes the PCs that were extracted from the raw, FD, VN raw and VN-FD
spectral datasets of the short-term and long-term milk samples spectral averages of the
tie-rail trial. The PCA yielded five, seven, four and nine PCs from the raw, FD, VN raw and
VN-FD long-term spectral average datasets that explained 97.35, 94.92, 96.99 and 95.44%
of the variance in the spectral datasets, respectively. These PCs, whose eigenvalue and
percentage of explained variance ≥1, represent the sources of systemic variation in their
respective spectral datasets that were separated from noise and that were tested for the
treatment, start (i.e., period 1 or 2) and block effects by the SAS Mixed procedure. PC6
(p = 0.0371), PC4 (p = 0.0462) and PC7 (p = 0.0106) extracted from long-term FD, VN raw,
VN-FD spectral average datasets, respectively, revealed significant treatment effect. Among
the three PCs that revealed a significant treatment effect, PC7 (p = 0.0106) isolated from
the long-term VN-FD spectral dataset revealed the strongest treatment effect, and unlike
the other two PCs, the start (p = 0.5590) and block (p = 0.0600) had insignificant effects
on it. This observation can be explained by the fact that FD exposed more details in the
spectral dataset and VN eliminated variability not related to the chemical composition
of milk samples, which facilitated the isolation of the treatment effect from the other two
studied effects on the FTIR spectra of milk. For these reasons, PC7, isolated from the
long-term VN-FD spectral dataset, was considered for further analysis to determine the
treatment levels that were significantly different from each other and the spectral features
that were responsible for these differences. PC7 explained 1.37% of the variance in its
respective dataset, which suggests that the treatment effect is limited, but the change in milk
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composition that can be attributed to this effect was captured by milk FTIR spectra at an
early point in time before these changes in milk composition may reach critical thresholds.

Table 2. Principal components extracted from the raw, FD, vector normalized (VN) raw, VN-FD spectral datasets of the
short-term and long-term milk spectral averages for the tie-rail trial. The table also lists p values obtained from the SAS
mixed procedure for the treatment, start and block effects that are tested in this trial. Values in bold indicate principal
components that revealed significant treatment effect.

Long Term

Spectral
Dataset

Meaningful
PC

Eigenvalue Explained
Variance %

Cumulative
Explained Variance %

p Values

Treatment Start Block

Raw

PC1 144.01 51.61 51.62 0.2897 0.0768 0.0081

PC2 83.97 30.10 81.71 0.9753 0.2931 0.1052

PC3 38.26 13.71 95.43 0.7750 0.0013 0.0001

PC4 5.36 1.92 97.35 0.0836 0.7465 0.2169

PC5 2.70 0.97 98.31 0.3495 0.1821 0.0859

FD

PC1 161.77 58.19 58.19 0.3120 0.1375 0.0091

PC2 39.03 14.04 72.23 0.4568 0.0130 0.0010

PC3 33.63 12.10 84.33 0.7935 0.0307 0.0388

PC4 12.46 4.48 88.81 0.0519 0.0817 0.0071

PC5 7.31 2.63 91.44 0.6068 0.0001 0.4963

PC6 5.39 1.94 93.38 0.0371 0.0238 0.0464

PC7 4.27 1.54 94.92 0.8602 0.7468 0.7219

VN Raw

PC1 189.23 68.07 68.07 0.4486 0.3247 0.0941

PC2 62.68 22.55 90.62 0.9549 0.1570 0.0003

PC3 11.23 4.04 94.66 0.6285 0.6290 0.1392

PC4 6.49 2.34 96.99 0.0462 0.0695 0.0223

VN-FD

PC1 161.38 58.05 58.05 0.4429 0.2729 0.1311

PC2 52.76 18.98 77.30 0.3412 0.0794 0.0001

PC3 17.70 6.37 83.40 0.0698 0.2443 0.0145

PC4 10.96 3.94 87.34 0.4485 0.0001 0.0513

PC5 7.23 2.60 89.94 0.1883 0.0031 0.1370

PC6 5.10 1.84 91.77 0.6687 0.2201 0.8147

PC7 3.82 1.37 93.15 0.0106 0.5590 0.0600

PC8 3.32 1.20 94.34 0.1827 0.1467 0.3407

PC9 3.05 1.10 95.44 0.5853 0.9014 0.3648

Short Term

Spectral
Dataset

Meaningful
PC

Eigenvalue Explained
Variance %

Cumulative Explained
Variance %

p Values

Treatment Start Block

Raw

PC1 120.20 43.24 43.24 0.8027 0.2834 0.3742

PC2 116.59 41.94 85.17 0.4505 <0.0001 0.0024

PC3 28.43 10.23 95.40 0.9673 0.0022 0.0005

PC4 4.70 1.69 97.09 0.7538 0.5885 0.2833

PC5 3.42 1.23 98.32 0.4750 0.0667 0.1672
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Table 2. Cont.

FD

PC1 143.72 51.70 51.70 0.7183 0.8642 0.2918

PC2 53.42 19.22 70.916 0.8662 <0.0001 0.0028

PC3 30.73 11.05 81.97 0.7711 0.0011 0.0509

PC4 14.51 5.22 87.19 0.5312 0.0157 0.0699

PC5 8.54 3.07 90.26 0.4634 0.0012 0.0001

PC6 7.12 2.56 92.82 0.9830 0.4151 0.0185

PC7 4.03 1.45 94.27 0.6678 0.1466 0.0445

PC8 3.38 1.22 95.49 0.9792 0.2750 0.7527

VN Raw

PC1 184.33 66.305 66.305 0.8430 0.0835 0.4132

PC2 59.13 21.27 87.57 0.8334 0.2707 0.0002

PC3 18.65 6.70 94.28 0.3532 0.0001 0.0252

PC4 6.05 2.18 96.46 0.3044 0.0524 0.2503

PC5 3.00 1.08 97.54 0.5695 0.0047 0.1282

PC6 2.14 0.77 98.31 0.3011 0.1517 0.0000

PC7 1.42 0.51 98.82 0.2854 0.0331 0.2038

VN-FD

PC1 157.19 56.54 56.54 0.8203 0.1957 0.5475

PC2 53.57 19.26 75.80 0.9078 0.4261 0.0057

PC3 15.28 5.50 81.30 0.6044 0.0272 0.0968

PC4 11.74 4.22 85.52 0.3441 <0.0001 0.0070

PC5 7.86 2.83 88.35 0.3957 0.3243 <0.0001

PC6 6.25 2.25 90.60 0.6979 0.0064 0.1319

PC7 5.70 2.05 92.64 0.7479 0.9305 0.9583

PC8 4.20 1.51 94.15 0.9162 0.5622 0.9332

PC9 2.99 1.08 95.23 0.2639 0.8408 0.2663

PC10 2.89 1.04 96.27 0.6651 0.2540 0.3726

Tables 3 and 4 summarize the least squares means and their differences produced by
the mixed procedure for the scores of PC7 extracted from the long-term VN-FD spectral
average dataset that revealed a significant treatment effect. These tables show that the
PC7 scores of milk samples of cows enrolled in TR3 were significantly different from the
scores of milk samples of other treatments (p = 0.0038) and the Scheffé adjusted p value
shows that TR3 is significantly different from TR1 (p = 0.0332).

Inspection of the integral of PC7 loading spectrum (Figure 2) revealed high positive
loadings at the following wavenumbers: 3008, 2919, 2851, 1716, and 1407 cm−1, which
can be theoretically assigned to the following IR bands: the C–H stretching in the alkene
(olefinic) bond (C = C–H) in unsaturated fatty acids, the asymmetrical stretching (νasCH2)
of the methylene group in fatty acids, symmetrical stretching (νsCH2) of the methylene
group in fatty acids, the C = O stretching vibration in the carboxyl functional group in free
fatty acids and the symmetrical stretching of the carboxylate ion or the C–O–H bending in
BHB, respectively [58]. Experimentally, these assignments can be confirmed by the results
of the spiking experiment reported in Table 1. For example, the aqueous solutions of BHB
and spiked milk samples with BHB revealed IR bands with increased intensity centered at
1404 and 1405 cm−1, respectively. These wavenumbers are within band 4 of the increased
loadings in Figure 2.
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Table 3. Least squares means produced by the mixed procedure for the scores of PC7 extracted from
long-term VN-FD spectral average dataset and that revealed a significant treatment effect. This table
shows that TR3 scores were significantly different from the other treatments (bolded). DF = degrees
of freedom.

Treatment Estimate Standard Error DF t Value p Value

1 0.6846 0.4959 30 1.38 0.1776

2 0.5001 0.5267 30 0.95 0.3499

3 −1.4596 0.4652 30 −3.14 0.0038

4 0.4188 0.4652 30 0.9 0.3752

Table 4. Differences of least squares means for PC7 scores. The Scheffé adjusted p values show that
TR3 scores are significantly different from TR1 scores (bolded). DF = degrees of freedom.

Treatment Treatment Estimate Standard
Error DF t

Value p Value Scheffé Adj.
p Value

1 2 0.1845 0.7097 30 0.26 0.7967 0.9953

1 3 2.1442 0.68 30 3.15 0.0037 0.0332

1 4 0.2658 0.68 30 0.39 0.6986 0.9845

2 3 1.9597 0.7027 30 2.79 0.0091 0.0711

2 4 0.08133 0.7027 30 0.12 0.9086 0.9996

3 4 −1.8784 0.6579 30 −2.86 0.0077 0.0622
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Figure 2. The spectral integral of the PC7 loading spectrum extracted from the long-term VN-FD spectral average dataset for
the tie-rail trial. Shaded regions can be assigned to (1) lactose 1200–1000 cm−1, (2) acetone ~1237 cm−1, (3) citrate, BHB and
acetone 1390–1250 cm−1, (4) BHB ~1404 cm−1, (5) fatty acids and carboxylate ion in citrate, BHB, free fatty acids and acetate
1618–1424 cm−1, (6) carboxylic group of free fatty acids ~1716 cm−1, (7) CH stretching of fatty acids 3000–2800 cm−1, and
(8) =C–H stretching of fatty acids ~3008 cm−1.

The peak fitting process was applied to regions 1618–1424, 1390–1250 and 1250–1180 cm−1,
which did not show any clear peaks. In the first region, a probable peak was detected at
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1237 cm−1, which can be assigned to the stretching of the C–C–C group and the bending
of C–C(= O)–C in the C–C–C group in acetone [58]. In the second region, peaks were
detected at 1287, 1317 and 1372 cm−1, which can be assigned to the C–O stretching that
appears in the FTIR spectrum of the aqueous solution of citrate, the C–O stretching in BHB
and the symmetrical (δsCH3) bending vibration of the methyl group in acetone, respec-
tively [58]. In the third region, peaks were detected at 1460 and 1541 cm−1. The 1460 cm−1

peak can be assigned to the asymmetrical bending vibration of the methyl group (δasCH3)
or to the scissoring band of the methylene group (δsCH2) in fatty acids [58]. On the other
hand, the 1541 cm−1 peak can be assigned to the symmetrical stretching of the carboxylate
ion that was found in citrate, BHB, free fatty acids and acetate [58]. In addition, negative
loadings were observed in the region between ~1040 and ~1100 cm−1, which is dominated
by lactose absorption in milk FTIR spectra [59].

To summarize, the results of the spectral analysis suggests that the average FTIR
spectra of milk samples collected from cows enrolled in TR3 in the last three weeks of the
trial (long-term effect) had significance differences compared to the average FTIR spectra
of milk samples collected from cows enrolled in TR1 during the same period. The loading
spectrum of the principal component that revealed the significant treatment effect showed
high positive loadings for spectral features that can be assigned to fatty acids, BHB, acetone
and citrate. It also showed negative loadings for spectral features that can be assigned
to lactose. This observation suggests that lactose had an inversed relationship with fatty
acids, BHB, acetone and citrate in milk samples collected during the last three weeks of the
trial (i.e., long-term effect of the tie-rail configuration treatment application). In addition,
treatment TR3 tended to differ from treatment TR2 (p = 0.0711, less restricted than TR3 in
its height from the stall base) and treatment TR4 (p = 0.0622, less restricted than TR3 in its
forward position from the manger wall).

4. Discussion

Combining PCA and mixed modelling proved to be a successful strategy to assess the
relationship between housing conditions and the trends of changes in milk composition in
dairy cows. The spectral analysis methodology described in Figure 1 could address two
points required for this specific application. First, the analysis was directly applied to the
FTIR spectral data of milk, which contain more information related to milk composition
than the concentrations of specific milk components reported by milk analyzers. The FTIR
spectrum of a milk sample is a chemical fingerprint of that sample; hence, it can provide
information about milk components other than the major ones (e.g., fat, protein, and lactose)
and some minor ones (e.g., urea and BHB) that are routinely analyzed by IR milk analyzers.
Second, this methodology enabled hypothesis testing and assessing multiple effects on
spectral data through mixed modelling while retaining the multivariate structure of the
spectral data. To our knowledge, at the time of the trial, no tool was available to test
random effects on spectral data and provide statistical significance for the tested factors.

In the following section, we will discuss how PCA principal components, loadings,
and scores were used in combination with mixed modelling to answer specific questions
related to the problem under investigation and the interpretation of the results of this
methodology of spectral analysis.

4.1. Effect of Tie-Rail Configuration on Milk FTIR Spectral Data

PCA was applied to the four versions of the milk spectral dataset (i.e., raw, FD, VN raw,
VN-FD) to reduce their dimensionality. PCA created a new dataset of orthogonal variables
called principal components (PCs), which were obtained as linear combinations of the
original variables. Those PCs described the same variance structure that was described
by 278 inter-correlated dependent spectral variables, which were present in the original
spectral dataset [55]. Each of these PCs described a unique source of variation that affected
the composition of milk samples and their FTIR spectra. However, these sources of variation
might have been meaningful factors that led to systemic variation in milk composition or
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they might have been noise related to the experimental procedure or the FTIR analyzer.
A PC was considered describing meaningful information or a systemic source of variation
when it explained 1% or more of the variance in the dataset and when its eigenvalue was
equal to or greater than 1. These criteria were recommended by SAS statistical software
developers [54,60,61], among others [55]. As a result, PCA dimensionality reduction
separated meaningful information from noise in milk FTIR spectra and a maximum of
10 PCs were retained. This reduction in variable numbers (i.e., from 278 to a maximum
of 10) facilitated testing milk FTIR spectra for fixed and random effects by the Mixed
procedure.

PCA scores are the projections of samples onto PCs and they can be considered as
values of the new variables (i.e., PCs) for the samples. Samples with scores close to each
other indicate similar attributes described by that PC. Greater differences in scores indicate
more differences in these attributes. Typically, scores are visualized in two- or three-
dimensional scatter plots where each axis represents a PC and where theses plots display
the pattern of similarity of samples as points in a map [55]. In the methodology described
in Figure 1, the scores of each PC were used as input for the mixed procedure, since scores
can be used as input for other algorithms [54,60,61]. The output of the mixed procedure
revealed that the tie-rail configuration treatment had a significant effect on the scores of PC6
(p = 0.0371), PC4 (p = 0.0462) and PC7 (p = 0.0106) extracted from long-term FD, VN raw,
VN-FD spectral average datasets, respectively. The estimates of the least squares means
and their differences calculated by the mixed procedure revealed that PC7 scores of milk
samples collected from cows enrolled in TR3 were significantly different from the scores
of milk samples enrolled in other treatment levels and specially those enrolled in TR1.
This observation indicates that there are significant differences in the attributes of milk
samples belonging to TR1 and TR3 that are affected by the systemic source of variation
described by PC7. We further observed a difference, albeit less clear, between TR3 and
treatments TR2 (p = 0.0711) and TR4 (p = 0.0622). It should be noted that movement was
restricted for either of these treatments but TR2 was less restricted than TR3 in its height
from the stall base and TR4 was less restricted than TR3 in its forward position from the
manger wall.

4.2. Spectral Features Associated to Differences in Milk FTIR Spectra Attributed to Changes in
Tie-Rail Configuration

PCA loadings represent the weights that linearly combine the spectral variables to
calculate the scores for every sample for a specific PC, in other words, they represent the
contribution of each spectral variable to the sample scores of a specific PC. Hence, loadings
can provide insights about the spectral variables capturing differences in the attributes
of samples that are greatly affected by the systemic source of variation described by that
specific PC. The inspection of the loading spectrum of the PC that had revealed a significant
treatment effect helped to identify the actual spectral features that captured differences in
milk FTIR spectra attributed to changes in tie-rail configuration. In this trial, the integral
of the PC7 loading spectrum revealed high positive loadings at 3008, 2919, 2851, 1716,
and 1407 cm−1 and negative loadings between ~1040 and ~1100 cm−1. This observation
suggests that differences in milk sample attributes affected by the tie-rail configuration
treatment were captured by those spectral variables.

4.3. Assigning Potential Milk Components to Wavenumbers with High PC Loadings

The final aim was to identify milk molecules with covalent bonds that absorb IR
energy at wavenumbers showing high loadings in the PC previously attributed to change
in tie-rail configuration. This was performed by extracting the spectral features of milk
components observed in the second derivative of FTIR spectra of milk samples spiked with
increased concentrations of these molecules and their respective aqueous solutions. These
observed features were used to assign potential milk components to the wavenumbers that
had high loadings in the PC that revealed a significant treatment effect. It must be noted
that these wavenumbers need not be an exact match for the IR band centers of the spectral
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features reported in Table 1. If a wavenumber with high loadings falls within the FTIR
band of a specific bond of a molecule then they could be assigned to that molecule. In this
trial, the loadings of PC7 suggested that lactose had an inversed relationship with fatty
acids, BHB, acetone and citrate in milk samples collected from cows enrolled in TR3 during
the last three weeks.

4.4. Interpretation of the Spectral Analysis Observations

Reduced access to feed as a possible interpretation of cow exposure to specific tie-rail
configuration will probably affect the concentrations of several milk components simultane-
ously. The described methodology in this paper could detect a trend in changes of multiple
milk components that could be attributed to the effect of changing tie-rail configuration
before obtaining the concentrations of specific milk components. For example, this method-
ology concluded that lactose had an inversed relationship with fatty acids, BHB, acetone
and citrate in milk samples collected during the last three weeks of the trial. The inverse
relationship between lactose and BHB was confirmed by the concentrations of lactose and
BHB reported by the milk analyzer (Table 5). During the last three weeks, the average
lactose content was 4.62 and 4.60% for TR1 and TR3, respectively, and the average BHB
content was 0.05 and 0.06% mmol/L for TR1 and TR3, respectively. For week 9, the average
lactose content was 4.63 and 4.59% for TR1 and TR3, respectively. For week 10, the average
BHB content was 0.05 and 0.07 mmol/L for TR1 and TR3, respectively. Increased levels
of BHB, acetone, citrate and decreased levels of lactose are indicators of elevated body
fat mobilization or negative energy balance [4,24], which suggests that cows assigned to
TR3 might have been experiencing increased body fat mobilization in comparison to cows
assigned to TR1 during the last three weeks of the trial [2]. This observation suggested that
the TR3 configuration might have been obstructing cows’ access to feed.

Table 5. Milk composition data ± SD for weeks 8–10 for the tie-rail trial with long-term averages by treatment.

Treatment TR1 1 TR2 1

Week 8 9 10 Avg. 8 9 10 Avg.

Fat % 4.22 ± 0.70 4.16 ± 0.71 4.10 ± 0.46 4.16 ± 0.62 4.20 ± 0.57 4.28 ± 0.63 4.16 ± 0.64 4.21 ± 0.59

Protein % 3.44 ± 0.32 3.44 ± 0.27 3.44 ± 0.26 3.44 ± 0.27 3.37 ± 0.33 3.38 ± 0.31 3.44 ± 0.31 3.39 ± 0.31

Lactose % 4.62 ± 0.12 4.63 ± 0.17 4.61 ± 0.18 4.62 ± 0.15 4.65 ± 0.16 4.65 ± 0.16 4.61 ± 0.19 4.64 ± 0.17

Urea mg/dL 14.29 ± 2.46 14.71 ± 2.90 13.90 ± 2.72 14.30 ± 2.63 14.03 ± 2.07 14.50 ± 3.50 13.54 ± 2.57 14.02 ± 2.71

BHB
mmol/L 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03 0.07 ± 0.03 0.06 ± 0.04 0.08 ± 0.03 0.07 ± 0.03

Treatment TR3 1 TR4 1

Week 8 9 10 Avg. 8 9 10 Avg.

Fat % 3.89 ± 0.45 3.94 ± 0.54 3.92 ± 0.49 3.91 ± 0.48 3.73 ± 0.64 3.90 ± 0.60 4.11 ± 0.56 3.91 ± 0.60

Protein % 3.34 ± 0.27 3.33 ± 0.29 3.36 ± 0.31 3.34 ± 0.28 3.41 ± 0.29 3.39 ± 0.30 3.42 ± 0.31 3.41 ± 0.29

Lactose % 4.63 ± 0.16 4.59 ± 0.20 4.59 ± 0.21 4.60 ± 0.18 4.61 ± 0.10 4.60 ± 0.11 4.59 ± 0.13 4.60 ± 0.11

Urea mg/dL 12.84 ± 2.77 13.05 ± 2.15 12.59 ± 2.13 12.83 ± 2.31 13.35 ± 1.74 14.48 ± 2.37 14.57 ± 2.34 14.13 ± 2.18

BHB
mmol/L 0.06 ± 0.02 0.06 ± 0.02 0.07 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.05 ± 0.03 0.07 ± 0.02 0.06 ± 0.03

1 TR1 (122 and 36 cm; height from the stall base and forward position from the manger well, respectively), TR2 (122 and 18 cm), TR3
(112 and 18 cm), and TR4 (112 and 36 cm).

The interpretations of the spectra analysis regarding the effect of the tie-rail configura-
tion on cow comfort was corroborated by observations of neck injuries collected during
the animal trial. TR3 recorded increased injuries on two locations on the cow’s neck and
those injuries might have been obstructing the cows from accessing feed [50]. While both
TR1 and TR3 showed increased injuries on the proximal area of the cow’s neck (higher
portion, closest to the body), TR3 was the only treatment out of the four tested treatments
to additionally show increased injuries on the medial area of the cow’s neck (lower portion,
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closest to the head) [50]. These injuries resulted from the cows putting pressure on their
neck through repeated contact with the tie-rail, while transitioning from lying to standing
positions and possibly to reach feed [3]. The appearance of neck injuries at two locations of
the neck indicates that TR3 tie-rail configuration was probably obstructing the cow access
to feed, which may have resulted in a possible reduced feed intake (not measured in the
trial) that led to an elevated body fat mobilization. In addition, no significant difference in
eating–rumination time was found between the tie-rail treatments at any time point of the
trial [62]. It must be noted that the effect was limited, and the milk composition dataset
did not indicate any clinical issues with the cows assigned to TR3 or changes in energy
reserves estimable using visual body condition scoring (BCS; no differences reported in St
John et al., 2021 Supplementary Table S4 [62]). In cases of detectable clinical issues such as
subclinical ketosis, BHB concentration increases to >0.1 mmol/L [63]. None of the reported
averages of BHB exceeded this threshold in any treatment during this trial. Our results
show that this spectral analysis approach has the potential to detect, through changes in
milk composition, modifications of welfare status measurable, in the case of our study,
with the appearance of body injuries, but also detected the trend in an early stage of body
fat mobilization before it could be diagnosed.

To summarize, the described methodology in this paper combined tools used in FTIR
spectroscopy and animal behavioral science, namely PCA and mixed modelling, to study
the relationship between milk composition and dairy cow housing conditions providing a
varying level of welfare in the controlled design trials. This methodology will open the
door to study animal welfare from a novel angle, which will eventually help dairy herd
improvement agencies provide new services for dairy farmers to improve animal welfare
based on milk spectra that are routinely recorded, as an alternative to costly on-farm
visits [1]. To our knowledge, this approach in studying animal welfare has never been
reported before.

5. Conclusions

In this paper, a methodology of spectral analysis was developed to study the relation-
ship between animal welfare and milk FTIR spectral data in the context of controlled-design
animal trials by combining PCA with mixed modelling. Different tie-rail configurations for
dairy cows housed in tie stalls were used as a proxy for changing animal welfare to test this
methodology, which was successfully applied to the FTIR spectral data of milk samples
collected during the trial. The proposed novel approach retained the multivariate structure
of the FTIR spectral data and accommodated the use of the Mixed procedure as a powerful
tool to test multiple experimental effects on milk FTIR spectral data. This methodology
also revealed the tie-rail configuration treatment level that had a significant effect on milk
spectral data with differences observed between the treatment with the most restricted
movement and treatments with a less restricted movement. In addition, we could specify
the spectral variables that captured differences in milk FTIR spectra attributed to the effect
of the tie-rail configuration treatment level and milk components that might be assigned to
these spectral variables. The described methodology of spectral analysis provides a new
angle to study animal welfare in dairy cattle and enables field applications to help identify
animal welfare issues using routinely collected milk spectra as an alternative to current
assessment methods requiring an on-farm visit.
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