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Abstract: Advanced fluid models relating viscosity and density to resonance frequency and quality
factor of vibrating structures immersed in fluids are presented. The numerous established models
which are ultimately all based on the same approximation are refined, such that the measurement
range for viscosity can be extended. Based on the simple case of a vibrating cylinder and dimensional
analysis, general models for arbitrary order of approximation are derived. Furthermore, methods
for model parameter calibration and the inversion of the models to determine viscosity and/or
density from measured resonance parameters are shown. One of the two presented fluid models
is a viscosity-only model, where the parameters of it can be calibrated without knowledge of
the fluid density. The models are demonstrated for a tuning fork-based commercial instrument,
where maximum deviations between measured and reference viscosities of approximately ±0.5% in
the viscosity range from 1.3 to 243 mPas could be achieved. It is demonstrated that these results show
a clear improvement over the existing models.

Keywords: fluid model; hydrodynamic function; fluid sensor; Reynolds number

1. Introduction

When electromechanical transducers are immersed in a fluid, the mechanical properties of
the fluid influence the resonance spectrum measured at the electrical terminals [1]. Based on the
theory of Sauerbrey [2], quartz thickness shear mode resonators have long been used to measure
smallest mass depositions on these sensors, e.g., in vapor deposition chambers under close to vacuum
conditions. An equivalent to the Sauerbrey equation for fluids has been developed by Kanazawa and
Gordon [3] and found wide application in measurement practice following the work of Martin [4].
In the subsequent years, the sensitivity of acoustic fluid sensors was enhanced by replacing these
bulk acoustic wave devices by surface acoustic wave sensors [5]. The drawback of using such sensors
featuring dominant shearing motion, is that that according to the one-dimensional model, only the
density-viscosity product can be measured, but not the individual parameters. The ability to separate
density ρ and viscosity η due to spurious effects (e.g., finite area of vibration and boundary effects) is
very limited for shear sensors and yields large measurement errors on the individual parameters [6].
Although this problem could be solved by adding liquid traps (see e.g., [7,8]), such sensors are not
widely used in measurement practice, likely due to demanding cleaning requirements.

Piezoelectric cantilevers [9–13] and quartz tuning fork sensors [14–17] are excellent candidates
for simultaneous determination of density and viscosity, when the resonance characteristics of the
immersed sensors are evaluated. Contrary to shear wave sensors, where the relationship between
the resonance parameters and ρ, η is simple, the problem is profound e.g., for vibrating cantilevers in
general. Even when the cantilever is assumed with infinite length, such that the problem can be reduced
to two dimensions, closed form solutions are only available for cylindrical cross-sections [18,19].
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A numerically determined correction factor, boundary element methods, and tabulated values for the
hydrodynamic loading for rectangular cross-sections are found in [11,20,21], respectively. However,
the numerical modeling approach for vibrating rectangular cross-sections [21] is already involved,
and closed form expressions are only available in some limiting cases, such as for zero viscosity
or for infinitely extended plates.To our best knowledge, finding closed form solutions for arbitrary
geometries is a hopeless endeavor, but the significance of such forms is questionable in measurement
practice, in particular since fabrication and material tolerances are encountered. In order to achieve
measurement accuracies which are on par with lab grade instruments, additional model parameter
adjustments using test liquids are always required. It is therefore more suitable to work with
parametrized models which approximate the physical problem well and can be adjusted by calibration
measurements. In the derivation of such parametrized models, the hydrodynamic function [11],
which essentially describes the fluid resistance acting against a vibrating body, is central. This fluid
force constitutes a boundary condition for the resonator changing its resonance frequency and Q-factor.
It is therefore possible to establish a relationship between the physical fluid properties and the measured
resonance parameters. The task of the sensor designer is to guarantee that the resonance parameters
can be correctly measured and that a fluid model is available which can be transformed to yield unique
and accurate fluid parameters from the resonance parameters. As the exact hydrodynamic function is
only known for some special cases, the conventionally used fluid models derived, e.g., by [22–26] are
all based on an approximation of the hydrodynamic function of a vibrating prismatic beam featuring a
cylindrical cross-section by means of a truncated power series. A remarkable fact, shown by a many
researchers in experimental work [22–31], is that the resulting reduced order models with adjustable
parameters are suitable for representing various different types of fluid loaded vibrating structures,
including cantilevers of different cross-sections, large steel and miniaturized quartz tuning forks,
spiral springs, platelets, U-shaped wires, piezo buzzers in fluids, etc. However, the limitations of
the approximation being made to obtain models of manageable complexity, narrows the accurately
measurable range of fluid parameters. The unified fluid models presented in this work, follow in a
straightforward manner from the work of [11,22,27]. It encompasses the previous ones but can be
extended to arbitrary order of approximation. The key features of these models are that any order of
approximation can be achieved, given enough calibration measurements. Furthermore, the complexity
of the fluid parameter determination from resonance parameters remains manageable for any order.
As a side effect, also a viscosity-only model is derived which needs no information about the fluid
density for calibrating the model parameters.

The remainder of the paper is structured as follows: In Section 2, the theoretical background
is established. The two new arbitrary order fluid models in Equations (16) and (24) are derived in
Sections 2.4 and 2.5. Numerical experiments for the vibrating cylinder and analyzes of measured data
obtained using a piezoelectric tuning fork sensor are shown in Section 3. Two fundamental, but longer
treatises on dimensional analysis and resonance parameters are found in the Appendixes A and B.

2. Materials and Methods

The closed form solution for the vibrating cylinder is chosen as a vehicle to reveal functional
dependencies which apply also for more complex cross-sections, but for which no closed forms
are known.

2.1. Vibrating Cylinder Immersed in Viscous Fluid

The complex valued fluid force amplitude per length F′ acting against the oscillatory motion of
an infinitely long prismatic cylinder is given by [19,23]
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F′ = jωvm′Γ(β), (1)

with

Γ(β) = 1 +
4K1(

√
jβ)√

jβK0(
√

jβ)
, (2)

m′ = ρR2π, (3)

β = R2ωρ/η. (4)

The fluid is considered incompressible and Newtonian. The radius of the cylinder, the velocity
amplitude of the rigid cross-section, and the angular frequency are denoted by R, v, and ω, respectively.
The relation between time domain and complex amplitude is given, e.g., for the vibration velocity
by v(t) = R{v exp(jωt)}. K0 and K1 denote the modified Bessel functions of second kind and j is
the imaginary unit

√
−1. The function Γ assumes the value of 1 for vanishing viscosity (i.e., β→ ∞).

The associated flow field in this case is that of the potential flow [32], where the mass/length m′

is periodically displaced, but no viscous losses occur. For non-zero viscosity, the real part of Γ
encompasses how viscous effects add additional mass drag and the imaginary part represents viscous
losses. The function is therefore also termed hydrodynamic function. We demand that the vibration
amplitudes are small enough that the relation between force and velocity amplitudes remain in the
linear range. This means that the convective part in the Navier–Stokes equations causing non-linearity
and fluid instability is neglected. Although not generally permissible, this assumption holds for many
vibrators, especially for QCMs [33], QTFs and micro cantilevers [27]. It is then convenient to eliminate
the driving velocity and to consider the fluid impedance per unit length

Z′ = F′/v = jωm′Γ(β), (5)

henceforth. It is essential to note that Γ and β are both dimensionless variables, where the latter is
termed Reynolds number [11], or non-dimensional frequency [18]. Furthermore, it is a coincidence that
the equivalent moved mass per length m′ equals the area of the cylinder cross-section times the fluid
density. This is generally not the case for other geometries. The derivation of Equation (2) for this very
basic geometry is already involved with details shown, for example, in [19]. The determination of the
fluid parameters from the fluid loaded resonator is difficult, as ρ and η appear also in the arguments
of two Bessel functions. The fluid models presented in this work, are based on an expansion the
hydrodynamic function in Equation (2) into a power series around β→ ∞, yielding

Γ = 1 +
4

(jβ)1/2 +
2
jβ
− 1

2(jβ)3/2 +
1

2(jβ)2 −
25

32(jβ)5/2 +
13

8(jβ)3 + H.O.T, (6)

Γ ≈ 1 +
4√
2β
− j

(
4√
2β

+
2
β

)
. (7)

For the reduced order models [22–26], the approximation of the fluid force in Equation (7) is added to
the equation of motion of the resonator (see Section 2.3), yielding models for the resonance parameters
of the fluid loaded resonator shown in Equation (12). A consequence of the agreement between
Equation (7) and Equation (2) being best for large β is that the model approximation is more accurate
for thicker cylinders vibrating at higher frequencies. By introducing the characteristic decay length of
plane shear waves δ

β =
ρR2ω

η
= 2

(
R
δ

)2
with δ =

√
2η

ρω
, (8)

it also becomes clear that the decay length should be small compared to the dimension of the vibrating
cylinder. Consequently, the reduced fluid models are only applicable up to a certain maximum viscosity
for a given resonator.
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2.2. Arbitrary Cross-Sections Vibrating in Fluid

In general, hydrodynamic functions for different cross-sections must be determined numerically.
For the numerical modeling of complex geometries the characteristic variables are not easily recognized
in the modeling approach. By means of a dimensional analysis, with details given in the Appendix A,
however, it can be shown that the dependence of the hydrodynamic function on the fluid properties
is in all cases determined exclusively by a single Reynolds number β. The additional characteristic
parameters required to describe the problem completely can be expressed by additional aspect ratios αi
as will be illustrated in the following. For the simple cylinder versus a rectangular cantilever vibrating
in a tube (see Figure 1), for instance, follows

cylinder: cantilever in tube: (9)

Z′ = jωAρ Γ(β), Z′ = jωAρ Γ(β, α1, α2),

A = R2π, A = W H,

β = R2ωρ/η, β = max(W, H)2ωρ/η,

α1 = W/H, α2 = W/R.

As the additional aspect ratios α1 and α2 are fixed for a given sensor geometry, the hydrodynamic
function can be considered to be depending only on β for any cross-section and configuration.
The method to derive a reduced order model from the simple cylindrical geometry can therefore
be generally applied, but it must be kept in mind that the shape of the hydrodynamic functions is
unknown and may be more complex, requiring higher orders of approximation. An indicator for
requiring higher orders is, if any involved dimension is comparably small to the decay length δ given
in Equation (8).

Figure 1. Prismatic beam with cylindrical cross-section (a) and a cantilever vibrating in a tube (b) as
examples for a simple and a complex geometry of a vibrating structure.

2.3. Resonator Model

The fluid forces F′ represent a boundary condition for the immersed resonator changing its
resonance parameters. These resonance parameters are defined as characteristics of the mechanical
admittance spectrum and the dependence of these parameters on the hydrodynamic fluid loading is
outlined in the following.
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In the vicinity of a resonance, a vibrating structure can be approximated by an equivalent
spring-mass-damper system with the respective parameters k̄, m̄, and c̄ and the additional fluid
mass loading m f and damping c f . The acoustic admittances Y = v/F of such a system is given by

Y(ω) =
1

jω(m̄ + m f ) + (c̄ + c f )− jk̄/ω
. (10)

The Nyquist plots of such admittances resemble circles as is shown in Figure 2. The resonance
frequency is defined at the point where the function is real and maximum. The bandwidth ∆ω

used to calculate the Q-factor by Q = ωr/∆ω lies between the ±45◦ phase angle points. For driven
resonances, it is therefore favorable to use the admittance Y. (Contrary to when force-displacement
relations of driven resonators, or free vibrations, e.g., measured in ring-down mode, are considered.)
The resonance parameters are given by

ωr =

√
k̄

m̄ + m f
and Qr =

k̄
ωr

1
c̄ + c f

. (11)

A relation between resonance parameters and fluid parameters can be obtained by splitting Equation (7)
in real and imaginary part and attributing them to added fluid mass m f and damping c f (see
e.g., Appendix B for details). Some of the established models, which are all based on similar derivations
and that can in principle be converted into each other (In case of free instead of forced oscillations,
expressions for the resonance parameters have to be adapted.) are:

Heinisch et al.: Youssry et al.:

ωr =
(

m0k + mρkρ + mηρk

√
ηρ
ωr

)−1/2
g2 = ML

(
a1 + a2

√
2η

ρωrb2

)
Qr =

1
ωr

(
c0k + cηkη + cηρk

√
ρηωr

)−1
g1 = MLωr

(
b1

√
2η

ρωrb2 + b2
2η

ρωrb2

)
Toledo et al., Dufour et al.: Zhang et al.:

g1 = C1
√

fr
√

ρη + C2η 1
Qr

ω2
0

ω2
r
= A

√
ρη
ωr

+ B η
ωr

g2 = C3ρ + C4√
fr

√
ρη

ω2
0

ω2
r
− 1 = A

√
ρη
ωr

+ Cρ

(12)

Here, Qr, ωr = 2π fr and ω0 denote Q-factor and angular resonance frequency in the fluid and in
vacuum, respectively. g1 and g2 are functions of the resonance parameters which correspond to the
real and imaginary parts of the hydrodynamic function. It is apparent that the number of parameters
of the models m0k, mρk, mηρk, c0k, cηk, cηρk for [23], C1, C2, C3, C4 for [22,25], ML, a1, a2, b1, b2 for [24] or
A, B, C for [26] differ. For instance, the model from Heinisch et al [23] where the vacuum resonance
parameters ω0 and Q0 are fitted in the calibration procedure (m0k, c0k), are considered known in the
model of Zhang et al. [26]. Furthermore, cηρk and mηρk are allowed to differ, while according to
Equation (7), the same 1/

√
β dependency in real and imaginary part of the hydrodynamic function

suggests that cηρk and mηρk should be equal as in the model of Zhang et al. [26] (parameter A).
Consequently, the model from Heinisch et al., yields lower deviations between the fluid reference
values and the measured values, as is also outlined in [26]. For the above mentioned models, the closed
form solutions for the fluid force of vibrating cylinders have been approximated by a power series
in the Reynolds number, where a low order of approximation was chosen in order to obtain models
which can be rearranged yielding simple expressions for η and ρ [29].
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Figure 2. Nyquist plots of the mechanical admittance of three resonances.

2.4. Higher-Order Fluid Models

The extension to higher-order approximation is motivated by using the expression for the
resonance parameters derived in Appendix B, where ρs represents the resonator mass-density

ωr =
ω0√

1 + ρ
ρs

ΓR

, and Qr =
ω0

ωr

(
1

Q0
+

ωr

ω0

ρ

ρs
ΓI

)−1
. (13)

These relations can also be found in [11], for instance. However, in this work, alternative scales are
used which render the equations more convenient for our approach. ΓR and ΓI represent the real and
the negative imaginary parts of the hydrodynamic function i.e., Γ = ΓR − jΓI . Following the usual
derivation of the fluid model for the cylindrical cross-section, but without the early truncation of
Equation (6), yields

ΓR =
ω2

0
ω2

r
− 1 =

ρ

ρs

(
1 +

4
(2β)1/2 +

1
(2β)3/2 −

2
(2β)4/2 +

25
8(2β)5/2 + H.O.T.

)
, (14)

ΓI =
ω2

0
ω2

r

1
Qr
− ω0

ωr

1
Q0

=
ρ

ρs

(
4

(2β)1/2 +
4

(2β)2/2 −
1

(2β)3/2 +
25

8(2β)5/2 −
13

(2β)6/2 + H.O.T.
)

. (15)

From Equation (8) follows the proportionality 1/
√

β ∝
√

ν/ωr, with ν denoting the kinematic viscosity
ν = η/ρ. It can be expected that for vibrating cross-sections of alternative shape, the constants of the
polynomial are different. By introducing the new variable ξ =

√
ν/ωr, attributing ρs to the constants

(ai and bi) and neglecting higher orders than Na and Nb, the general model follows

ga = ρ
(

a0 + a1ξ + · · ·+ aNa ξNa
)

and gb = ρ
(

b1ξ + · · ·+ bNb ξNb
)

. (16)

Although ga and gb are equal to ΓR and ΓI , i.e.,

ga =
ω2

0
ω2

r
− 1 , and gb =

ω2
0

ω2
r

1
Qr
− ω0

ωr

1
Q0

, (17)

a distinction is made, to emphasize that ga and gb are functions of the resonance parameters that are
measured. It is assumed that the constants ai and bi are known from a model calibration procedure and
ga and gb are calculated from the resonance parameters provided by a resonance estimation algorithm.
ξ and density ρ are therefore the two unknowns to be determined. The density ρ can be eliminated
from Equation (16) yielding a polynomial in ξ alone

(gba0 − gab0) + (gba1 − gab1)ξ + · · ·+ (gbaN − gabN)ξ
N = 0, (18)
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where N = max(Na, Nb). In case of Nb < Na follows that bNb ...Na = 0 or aNb ...Na = 0 for Nb > Na.
Additionally, Qr = Q0 at ξ = 0, and therefore b0 = 0. The constants of the polynomial are all known
such that an estimate for the kinematic viscosity is obtained by ν̂ = ξ∗2ωr, where ξ∗ denotes the correct
real root of Equation (18). Subsequently, an estimate of density ρ̂ is obtained by substituting ξ∗ in
Equation (16) and dynamic viscosity follows from η̂ = ν̂ρ̂.

A comparison with the models in Equation (12) shows that they all can be reduced to

ga = ρ (a0 + a1ξ) and gb = ρ
(

b1ξ + b2ξ2
)

, (19)

which represents a special case ([0,1][1,2]) of the extended model. For equivalence with the model of
Heinisch et al. and Zhang et al., for instance, the parameters are related by

m0k = ω−2
0 , mρk = a1ω2

0 , mηρk = a2ω2
0, c0k = (ω0Q0)

−1, cηk = b2ω2
0, cηρk = b1ω2

0 (20)

or
A = a1, A = b1, B = b2, C = a0, Q0 → ∞, (21)

respectively.

2.4.1. Model Calibration

Given M calibration measurements, Equation (16) can be transformed into matrix form
ga,1

...
ga,M


︸ ︷︷ ︸

ga

=


ρ1 ρ1ξ1 . . . ρ1ξNa

1
...

...
. . .

...
ρM ρMξM . . . ρMξNa

M


︸ ︷︷ ︸

Ξa

·


a0
...

aNa


︸ ︷︷ ︸

a

and


gb,1

...
gb,M


︸ ︷︷ ︸

gb

=


ρ1ξ1 . . . ρ1ξNb

1
...

. . .
...

ρMξM . . . ρMξNb
M


︸ ︷︷ ︸

Ξb

·


b1
...

bNb


︸ ︷︷ ︸

b

. (22)

The ranges of viscosity and density of the test fluids define the valid calibration range. A least square
fit for the parameter vector a and b can be obtained using the Moore–Penrose inverse (where W is an
identity matrix)

â = Ξ†
a · ga and b̂ = Ξ†

b · gb with Ξ† =
(

ΞT ·W · Ξ
)−1
· ΞT ·W . (23)

However, the least squares optimization favors larger relative deviations in the lower viscosity range,
so that W should be adjusted in order to achieve the wanted distribution of the unavoidable model
deviations for M > Na + 1 and M > Nb. With a sufficiently high number of calibration measurements
available, the order of the approximation can be expanded as desired.

2.5. Viscosity-Only Model

For the calibration of the previous model, the densities and viscosities of various test liquids where
required. However, it is possible to perform model calibration and measurement of the kinematic
viscosity without knowledge of fluid density. Rearranging Equation (13) for the fluid loss factor
g = ΓI/ΓR yields a model which depends only on the kinematic viscosity ν but not on density ρ

g(ξ) =
gb
ga

(ξ) =
b1ξ + · · ·+ bNb ξNb

a0 + a1ξ + · · ·+ aNa ξNa
≈ c1ξ + · · ·+ cNc ξNc . (24)

The rational function of the fluid loss factor can itself be approximated by a polynomial in ξ.
The unknown ξ can be calculated for given constants ci and a measurement point g by finding
the correct root ξ∗ of Equation (24). Subsequently, the kinematic viscosity results with ν̂ = ξ∗2ωr.
The dynamic viscosity η, however, cannot be determined using this particular model.
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Model Parameter Calibration

A procedure for model calibration similar to that in Section 2.4.1 can be established g1
...

gM


︸ ︷︷ ︸

g

=

1 ξ1 . . . ξNc
1

...
...

. . .
...

1 ξM . . . ξNc
M


︸ ︷︷ ︸

Ξc

·

 c1
...

cNc


︸ ︷︷ ︸

c

. (25)

The constants are again obtained by a weighted least squares fit

ĉ = Ξ†
c · gc. (26)

It is noteworthy that although the resonance parameters depend on both density and viscosity, a fluid
model can be found which depends solely on the kinematic viscosity ν. The question of whether
dynamic (η) or kinematic viscosity should be regarded as the primary viscosity parameter can be
decided on the basis of this model in favor for the kinematic viscosity ν.

In this section, it was shown that extending the usual fluid models to higher polynomial order is
straightforward. Given Equations (13) and (A17), it is apparent that also the extended models rely on
power series approximations of the real and imaginary parts of the hydrodynamic function. Although
polynomials in ξ were used for the presented models, it should be kept in mind that any function
suitably approximating the hydrodynamic function could be used instead.

3. Results and Discussion

Synthetic data, generated using the closed form solution for the cylinder, as well as experimental
data obtained with quartz tuning fork sensors, are analyzed. For the latter, the hydrodynamic function
is estimated from measured data and compared to theoretical predictions. The deviations between the
reference values of certified standard fluids and estimates using different model orders, are analyzed
in detail. It will be shown that with increasing order, the systematic model deviations reduce to a point
where measurement errors and presumably deviations between actual and nominal fluid parameters
or unnoticed fluid degradations become dominant.

3.1. Numerical Analysis for the Vibrating Cylinder

Equations (2) and (13) were used to generate resonance parameters ωr and Qr for a resonator with
vacuum resonance frequency 32.768 kHz (i.e., ω0 = 205.89 · 103 s−1) and unloaded Q-factor of Q0 = 104.
The fluid properties correspond to that of a N140 fluid standard at various temperatures, as shown
in Figure 3. The resonator radius and density are defined with R = 0.1 mm and ρs = 2800 kg/m3,
respectively. The correct hydrodynamic function expression from Equation (2) (solid line in the left
Figure 4) was used to generate the resonance parameters ωr and Qr for the fluid parameters of N140
in the temperature range from 10 ◦C to 100 ◦C. The dashed lines in Figure 4a represent the power
series approximation of different order in Equations (14) and (15) (�, �, ◦, ∗). In (b), the deviations
between reference and calculated viscosities and densities are shown. It is apparent that the first order
power series model is accurate only around β→ ∞ which corresponds to δ/R→ 0 (see Equation (8)).
The approximation (�) [0,1],[1,2] is of the same order as the power series model (�), but the parameters
a0, a1, b1 and b2 were adjusted such that the relative deviations are minimized on average, yielding
deviations which are approximately 5 times smaller at the higher viscosities. The deviations due to
model approximation can be made arbitrarily small by increasing the order of the approximation,
which is a confirmation for the validity of the approach.
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Figure 3. Dynamic viscosities (a) and densities (b) of various NIST-traceable viscosity reference fluids
(◦). The lines represent temperature models [34]. The numbers of the standards coarsely agree with the
kinematic viscosity in cSt at 40 ◦C, i.e., ν of N14 is approx. 14 cSt at 40 ◦C.

Figure 4. (a) Real (black) and imaginary part (red) of the hydrodynamic function (solid line) in
Equation (2), power series model in Equation (7) (�) and three different orders of approximations (e.g.,
[0:2],[1:2] means that coefficients a0 . . . a2 and b1 . . . b3 in Equation (16) are non-zero). (b) The deviations
between reference and estimated viscosities and densities. Deviations are reduced with increasing
order and remain below 0.015% for [0:3],[1:4] (*).

3.2. Quartz Tuning Fork Measurements

The measurement results were obtained with the VDC100 measurement cell and the MFA200
resonance analyzer, both provided by MicroResonant [35]. Details on the instrument and the
dimensions of the QTF can be found e.g., in [36,37]. The parameters of the reference fluids and
the measured resonance parameters are shown in Table 1. The standard fluids were measured at
different temperatures to enhance the use of the fluids.
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Table 1. Table of standard fluids in ascending order of ξ and the associated measured resonance
parameters. The fluids used for model calibration are marked by ∗.

fluid # Fluid Temp. ξ Density Dyn. visc. Kin. visc. Res. freq. Q-Factor
(◦C) (µm) (kg/m3) (mPas) (cSt) (kHz) (1)

1 N2 50 3.0508 740.1 1.2760 1.7241 29.482 95.869
2 * N2 40 3.3007 747.2 1.5060 2.0155 29.444 88.026
3 N2 25 3.7744 757.8 1.9930 2.6300 29.382 76.108
4 N2 20 3.9685 761.4 2.2120 2.9052 29.359 72.136
5 N7 50 5.5440 781.1 4.4050 5.6395 29.202 50.891
6 N7 40 6.3242 787.7 5.7680 7.3226 29.139 44.306
7 N14 50 7.5440 793.3 8.2420 10.390 29.054 36.975
8 N7 25 7.9856 797.5 9.2720 11.626 29.017 34.704
9 N7 20 8.7309 800.8 11.110 13.874 28.967 31.616
10 N14 40 8.8074 799.7 11.290 14.118 28.966 31.412
11 N26 50 9.9273 801.9 14.350 17.895 28.899 27.791
12 N14 25 11.592 809.3 19.670 24.305 28.788 23.563
13 * N26 40 11.835 808.2 20.470 25.328 28.779 23.120
14 N44 50 12.662 808.7 23.410 28.948 28.734 21.571
15 N14 20 12.881 812.5 24.320 29.932 28.711 21.118
16 N44 40 15.366 814.8 34.540 42.391 28.575 17.597
17 N26 25 16.114 817.6 38.050 46.539 28.527 16.715
18 N26 20 18.125 820.8 48.140 58.650 28.414 14.773
19 * N44 25 21.588 824.1 68.120 82.660 28.228 12.280
20 N140 50 22.259 819.1 71.950 87.840 28.218 11.938
21 N44 20 24.541 827.2 87.860 106.214 28.069 10.701
22 N140 40 27.840 825.1 112.20 135.984 27.923 9.3877
23 * N140 25 41.238 834.1 242.90 291.212 27.254 6.0978

3.2.1. Extended Viscosity and Density Model

The set of four fluids # 2, 13, 19, and 23 in Table 1 were used for calibrating the parameters a0 . . . a3

and b1 . . . b4 of the model

ga = ρ
(

a0 + a1ξ̄ + a2ξ̄2 + a3ξ̄3
)

and gb = ρ
(

b1ξ̄ + b2ξ̄2 + b3ξ̄3 + b4ξ̄4
)

. (27)

Scaling ξ̄ = ξ/max(ξ) was introduced so that the constants have the same physical units and the orders
of magnitude are more similar. Using the estimated vacuum resonance parameters ω0 = 205.818 s−1

and Q0 = 14100, the determined constants are (in m3/kg)

a0 = 2.9983× 10−4, a1 = 2.2803× 10−4, a2 = 5.1036× 10−6, a3 = 6.0255× 10−8,
b1 = 2.3219× 10−4, b2 = 1.4708× 10−5, b3 = 6.7354× 10−5, b4 = −3.0329× 10−5.

(28)

Figure 5 shows the deviations between reference and measured values of dynamic viscosity and density
for different orders of the polynomials. The order which corresponds to the models in Equation (12) is
[0,1] and [1,2] (i.e., a0, a1, b1, b2) showing deviations in the range of ±1.5%.Order extension reduces
the deviations gradually, such that deviations of −0.57% to 0.22% are achieved over the full viscosity
range from 1.27 mPas to 242.9 mPas using the parameters in Equation (28). Adding a further point to
the calibration (#22) and increasing the orders by one does not enhance the agreement significantly.
Interestingly, the deviations on density reduce only slightly with increasing order. In Figure 6 the
various models in Equation (12) are compared with an extended model presented in this work.
The models were calibrated using the same fluid as before with no weighting (i.e., W is an identity
matrix, see Equation (23)) applied. The deviations are differently distributed for the various models,
but which is mostly coincidentally. Although all models yield reasonable results, it apparent that the
models using more parameters are superior for minimizing deviations.
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Figure 5. (a) Relative deviations of dynamic viscosity η for different polynomial orders. The filled dots
were used for calibrating the model constants. Fluid #22 was added for calibrating the highest order
[0:4][1:5]. (b) Relative deviations for density ρ. Although for viscosity relative deviations were reduced
using higher orders, the effect on density is less pronounced.

Figure 6. (a) Relative deviations of dynamic viscosity η for different models. The filled dots were used
for calibrating the model constants. (b) Relative deviations for density ρ.

3.2.2. Viscosity-Only Model

The function g is calculated from the resonance parameters in Table 1 by

g(ωr, Qr) =

(
ω0

ωr
− ωr

ω0

)−1 (ω0

ωr

1
Qr
− 1

Q0

)
(29)

and is plotted over ξ in the left Figure 7. The fact that all measured fluids lie closely on a smooth line
confirms the suitability of this model. The filled dots in Figure 7a indicate the fluids selected for model
calibration. In (b), the deviations between calculated ξ̂ and that of the reference values from Table 1
are shown for a third order polynomial. The deviations vanish therefore for these selected fluids.
The blue results represent the deviations when all fluids were used to calibrate the four parameters
of the polynomial. It can be observed that the agreement is not improved drastically, which is an
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indicator that these deviations are not model errors, but measurement errors and alterations of the test
fluids from the certificate values. Figure 8 shows the consequence of reducing the order. The dashed
lines on the left are the measured values g and the solid lines are the models for polynomial orders
ranging from 1 to 5. (All fluids were used for these parameter fits.) The intersections of dashed and
solid lines represent ξ∗. Although the number of roots of the used polynomials is equal to the order
of the polynomial, it is observed that the intersections are unique, i.e., there is only one real root
in the considered range, also for higher orders. In Figure 8b, the deviations between reference and
estimated values of the kinematic viscosity are shown. Orders higher than four do not lead to further
improvements in this case.

Figure 7. (a) Function g in Equation (24) for the liquids in Table 1. The fluids marked by the filled
dots are used for estimating the constants c1 . . . c3 of a third order polynomial. (b) deviations between
reference (ξ) and estimated values ξ̂. These curves result if only the selected (red) or all fluids (blue)
are used for calibrating the four model constants.

Figure 8. (a) The solutions ξ∗ are determined by the intersections of g(ωr, Qr) (dashed lines) and f (ξ)
(solid lines). f (ξ) is shown for different polynomial orders, where all fluids were used for calibration.
(b) The relative deviations between the reference (ν) and estimated (ν̂) kinematic viscosities decrease
with increased order, but do not improve noticeably above an order of 4. The cut-off extreme deviations
for first order are +10% and −22%.
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3.2.3. Measurement of the Hydrodynamic Function of the QTF

As was mentioned in Section 2, the approximation to the hydrodynamic function may be any
suitable function and not necessarily a polynomial as used in this work. If for a given resonator
a sufficient amount of measurements in various test fluids is available, the shape of the sampled
hydrodynamic function can be obtained from resonance parameters by evaluating

Γ(β) =
ρs

ρ

ω2
0

ω2
r

(
1− ω2

r

ω2
0
+ j

1
Q0

ωr

ω0
− j

1
Qr

)
, (30)

i.e., Equation (A17) derived in Appendix B. The results are plotted in Figure 9 versus the Reynolds
number β defined as

β = max(W, H)2ωρ/η. (31)

The density of the quartz material is ρs = 2649 kg/m3 and the width W and thickness H of one prong
of the QTF are 610 µm and 350 µm, respectively (i.e., α = 1.74). The result is compared the a 2D finite
element simulation which was performed for a cantilever with the same cross-section using the solid
mechanics module of COMSOL 5.3a ( The fluid properties were implemented by equivalent complex
elastic moduli [33,38].). The (∗) represent the tabulated values from Brumley et al. [21] for an aspect
ratio of α = 2, where for the alternative definitions of the Reynolds number and the hydrodynamic
function is accounted for by Γ = απΓ∗Brumley/4 and β = 4βBrumley, with ∗ denoting the complex
conjugate. The deviations between 2D FEM simulation of the cantilever and the measurement results
for the QTF may be attributed to the interaction and finite length of the QTF prongs. Furthermore,
the not considered contribution of the fluid interaction at the end faces of the QTF is particularly strong,
as vibration amplitudes are largest at the ends [39]. In addition, the resonator model was considered
purely mechanical, but the neglected electrical interaction also affects the resonance parameters [40].
It can therefore be concluded that in most cases using the theoretical hydrodynamic functions without
model calibration will not allow satisfactory accuracies for the determination of the fluid properties.

Figure 9. Estimated hydrodynamic function using Equation (A17) (◦) and comparison with 2D
simulation of rectangular cross-section (-·-) and tabulated values from [21] for aspect ratio α = 2,
which is the closet match to the actual α = 1.74.
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4. Conclusions

Fluid models providing a higher degree of approximation of the hydrodynamic function than
the conventionally used ones were derived and applied to measurement results obtained with a
quartz tuning fork sensor setup. These models demonstrate a clear advantage in terms of reduced
model deviations for this particular problem, but it is assumed that they can be applied to many
other types of vibrating sensors as well. Increased orders, however, do not significantly increase the
complexity of the model calibration method and the viscosity and density calculation from measured
resonance parameters.
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Appendix A. Dimensional Analysis

Dimensional analysis allows insights into the nature of a problem solely on basis of the involved
variables and their physical units [41]. For this, all involved physical properties are collected and their
scaling with length, time, and mass are noted.

[R] = L, [ω] = T−1, [ρ] = L−3 ·M, [η] = L−1 · T−1 ·M, [Z′] = L−1 · T−1 ·M. (A1)

The square bracket notation, e.g., [R] = L reads as “the dimension of R is L”. In this case L represents
a dimensionless scaling factor that accounts for a change of units e.g., from meters to inch. By taking
the logarithm of the dimensions of the physical quantities, a matrix H can be established

log([R])
log([ω])

log([ρ])
log([η])
log([Z′])

 =


1 0 0
0 −1 0
−3 0 1
−1 −1 1
−1 −1 1


︸ ︷︷ ︸

H

·

 log(L)
log(T)
log(M)

 . (A2)

According to the Buckingham Π theorem [41], there are two dimensionless numbers in our case,
forming the so-called π-group. The dimension of two is a consequence of having five parameters
involved (the dependent variables) and only three basic physical scales (length, time and mass),
which represent the independent variables. One, but not unique, representation of the π-group is
obtained by calculating the kernel (null space) of the transpose of H

ker(HT) =


−2 2
−1 1
−1 1
0 −1
1 0

 . (A3)
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The number of dimensionless variables is therefore equal to the nullity of HT . Each column vector
contains the exponents of the dependent variables, such that their product is dimensionless, i.e.,

π1 =
Z′

R2ωρ
, π2 =

R2ωρ

η
. (A4)

As is outlined in [41], a function f1 can be constructed such that

f1(π1, π2) = 0, (A5)

which implies that one dimensionless variable is a function of the (all) other, i.e.,

π1 = f2(π2). (A6)

Solving Equation (A4) for Z′ yields therefore

Z′ = R2ωρ π1(π2). (A7)

By comparing this result with the solution in Equation (1), π1 is identified as jπΓ and π2 = β as
the Reynolds number. Therefore, the basic structure of the fluid impedance could be revealed by
dimensional analysis alone.

The idea is now applied to the more complex situation of a cantilever of rectangular cross-section
mounted in a tube of radius R as shown in Figure 1. Performing a dimensional analysis with these
parameters adds two aspect ratios as dimensionless variables e.g.,

π3 = W/H = α1, and π4 = W/R = α2. (A8)

In this case, the fluid impedance per length, is

Z′ = jωAρ Γ(β, α1, α2). (A9)

Consequently, the hydrodynamic function Γ is, no matter how complex the geometry actually is,
always a function of the Reynolds number β and all the aspect ratios which appear in the considered
problem. For fluid sensing applications, the geometry of the sensor is fixed, but the fluid parameters ρ

and ν appearing in the fore factor and in the hydrodynamic function are variable. Therefore, for any
vibrating cross-section and configuration the form

Z′ = jωAρ Γ(ξ), (A10)

can be expected, where A is a parameter of dimension L2 which is chosen to coincide with the area of
the vibrating cross-section, as it will turn out to be convenient in Appendix B. The fluid dependent
factor in the Reynolds number β defines a new variable ξ =

√
ν/ω, which is used henceforth.

It is mentioned for the sake of completeness that properties which are associated with the finite
compressibility of the fluid, such as the bulk modulus and the longitudinal viscosity [42] were not
considered, but would extend the π-group. Fluid sensors for density and viscosity sensing, are typically
designed such that these influences need not to be considered.

Appendix B. Resonance Parameters

The deflection amplitude u(x, ω) of a single or double clamped prismatic beam of length L can be
expressed by superposition of modeshapes φi(x) times generalized coordinates q

i
(ω)

u(x, ω) =
∞

∑
i=0

φ(x)q
i
(ω). (A11)
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The equivalent mass and the generalized force due to fluid loading for one particular mode of vibration
can be determined from considering energy balances, yielding

m̄i = ρs A
L∫

0

φi(x)2dx, (A12)

Fi(ω) =

L∫
0

φ(x)F′i(x, ω)dx = −ω2q
i
(ω)ρAΓ

L∫
0

φi(x)2dx = −ω2 ρ

ρs
miΓq

i
(ω). (A13)

When the area A in the fore factor in Equation (A9) is chosen to coincide with the area of the resonator
cross-section, they cancel out. Splitting the complex hydrodynamic function in Γ = ΓR − jΓI and
adding the fluid force to the spring-mass damper system driven with the generalized force F0, yields

F0 = (−ω2mi + jωci + ki)qi
(ω) + Fi (A14)

=

(
−ω2mi

(
1 +

ρ

ρs
ΓR

)
+ jω

(
c̄i + ω

ρ

ρs
miΓI

)
+ ki

)
q

i
(ω). (A15)

As a consequence, the resonance parameters of the fluid loaded resonator can be given solely in terms
of vacuum resonance parameters ω0 and Q0 and the hydrodynamic function scaled with the ratio of
fluid density ρ to resonator density ρs

ωr =
ω0√

1 + ρ
ρs

ΓR

and Qr =
ω0

ωr

(
1

Q0
+

ωr

ω0

ρ

ρs
ΓI

)−1
. (A16)

Given Equation (A16), the hydrodynamic function can be determined from measurements in known
test liquids by

Γ(β) =
ρs

ρ

ω2
0

ω2
r

(
1− ω2

r

ω2
0
+ j

1
Q0

ωr

ω0
− j

1
Qr

)
. (A17)

For unknown sensor parameters, the scaling of Γ and β remain unknown, but the complexity of Γ and
the required order of approximation can readily be assessed from measurements. These scaling factors
are implicitly accounted for by the model parameter calibration procedures in Sections 2.4 and 2.5.
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