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Agonist-induced phosphorylation 
bar code and differential post-
activation signaling of the delta 
opioid receptor revealed by 
phosphosite-specific antibodies
Anika Mann1 ✉, Sophia Liebetrau1, Marie Klima1, Pooja Dasgupta1, Dominique Massotte   2 & 
Stefan Schulz   1 ✉

The δ-opioid receptor (DOP) is an attractive pharmacological target due to its potent analgesic, 
anxiolytic and anti-depressant activity in chronic pain models. However, some but not all selective 
DOP agonists also produce severe adverse effects such as seizures. Thus, the development of novel 
agonists requires a profound understanding of their effects on DOP phosphorylation, post-activation 
signaling and dephosphorylation. Here we show that agonist-induced DOP phosphorylation at 
threonine 361 (T361) and serine 363 (S363) proceeds with a temporal hierarchy, with S363 as primary 
site of phosphorylation. This phosphorylation is mediated by G protein-coupled receptor kinases 2 and 
3 (GRK2/3) followed by DOP endocytosis and desensitization. DOP dephosphorylation occurs within 
minutes and is predominantly mediated by protein phosphatases (PP) 1α and 1β. A comparison of 
structurally diverse DOP agonists and clinically used opioids demonstrated high correlation between 
G protein-dependent signaling efficacies and receptor internalization. In vivo, DOP agonists induce 
receptor phosphorylation in a dose-dependent and agonist-selective manner that could be blocked 
by naltrexone in DOP-eGFP mice. Together, our studies provide novel tools and insights for ligand-
activated DOP signaling in vitro and in vivo and suggest that DOP agonist efficacies may determine 
receptor post-activation signaling.

The δ-opioid (DOP) receptor, as member of the opioid receptor family, was first discovered in 1975, based on 
the preference of [Leu]-enkephalin binding to receptors in mouse vas deferens, significantly later followed by 
the cloning of the single-copy gene OPRD for DOP receptor1–3. The endogenous enkephalins ([Met]-enkephalin 
and [Leu]-enkephalin), and the frog skin peptides dermenkephalin and deltorphins I and II were identified as 
naturally-occurring ligands4–6. Deltorphins have high DOP receptor selectivity, whereas enkephalins are moder-
ately DOP receptor-selective4. Through coupling to Gαi/Gα0 proteins, DOP receptor activation leads to inhibition 
of cAMP production and voltage-gated calcium channels (N- and P/Q-type), as well as induction of β-arrestin 
signaling and activation of G protein-coupled inwardly rectifying potassium (GIRK) channels7–10. In addition, 
signaling kinases such as ERK, c-Jun N-terminal kinase (JNK), src, Akt, p38 mitogen-activated protein kinase 
(p38 MAPK) or phospholipase C (PLC) and phospholipase A2 (PLA2) are also activated by DOP receptors11–17. 
DOP receptor mRNA and protein are widely expressed throughout the brain, spinal cord and dorsal root ganglia 
(DRG)18–21. The DOP receptor is involved in the regulation of important physiological processes such as ther-
mal and mechanical hyperalgesia, chronic inflammatory pain, anxiety and depression, migraine, locomotion, 
seizures, emotions, learning and memory, as well as addiction and tolerance development22–26. DOP receptor is 
also involved in wound healing, neuronal, retinal and cardiovascular cytoprotection during hypoxia, as well as 
cardioprotection during infarct and ischemia27–29. Given the more recently discovered DOP receptor expression 
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in peripheral myelinated mechanosensors surrounding hair follicles, DOP receptor may also regulate cutaneous 
mechanical hypersensitivity30.

As a therapeutic target, DOP receptor is under active investigation and appears increasingly attractive because 
of the global opioid epidemic and its therapeutic potential in pain management, as well as clinical applications 
in psychiatric and other neurological disorders. Classical opioids like morphine, oxycodone and fentanyl are the 
most potent clinically used analgesics. However, the prolonged clinical utility of opioids is limited by undesired 
side effects like constipation, potential for abuse, tolerance development and the potentially fatal risk of respira-
tory depression31. Clinically available opioids exert all their biological effects by interacting with the µ-opioid 
(MOP) receptor32 and all efforts to separate analgesic from undesired pharmacological effects have thus far failed 
for MOP receptor agonists. This has significantly shifted the research focus to the κ-opioid (KOP) receptor and 
DOP receptor as potential targets for novel, better-tolerated analgesics. Effective analgesia can be mediated by 
both receptor subtypes, but stress-induction and dysphoric effects mediated by KOP receptor activation make the 
DOP receptor a more attractive alternative for the development of new analgesics33–35. Besides their inherent anal-
gesic activity, DOP receptor-selective agonists also possess anxiolytic and antidepressant profiles24,36,37. Knockout 
of either DOP receptor or the enkephalin precursor results in anxiety-related responses and depressive-like 
behaviors in mice38,39. Both DOP receptor agonists and antagonist confirmed anxiety-related effects in pharma-
cological studies. Selective agonists like SNC80 and AR-M1000390 decreased anxiety-related and depressive-like 
behavior, whereas DOP receptor antagonists produce anxiogenic-like responses in rodents36,37. The inhibitory 
function of DOP receptor agonists on depressive-like behavior is comparable to that of prototypic antidepres-
sant drugs like serotonin reuptake inhibitors or tricyclic antidepressants36,37,40,41. This advantageous psychop-
harmacological profile is desirable in different therapeutic applications and may be important for chronic pain 
treatment, because of the high comorbidity with anxiety or depression42. Besides the positive modulation of 
emotional tone, DOP receptor agonists are highly effective in inflammatory and neuropathic pain states23,43,44 
with a reduced side-effect profile in comparison to selective MOP receptor agonists, especially concerning phys-
ical dependence, abuse liability, respiratory depression and obstipation. DOP receptor antagonists can also block 
rewarding properties of morphine, heroin, cocaine, methamphetamine and MDMA26,45–52. In contrast to MOP 
receptor-selective agonists, compounds with high DOP receptor affinity only weakly modulate acute pain53,54 
but several systemically active DOP receptor agonists were developed as promising alternatives to MOP receptor 
binding agonists in the treatment of chronic pain41,55–59. High DOP receptor expression in DRGs and spinal cord 
suggested an important function in primary pain processing18–21. In peripheral DOP receptor knockout mice, 
DOP receptor agonists produced increased mechanical sensitivity but showed strongly decreased analgesic effects 
in chronic inflammatory and neuropathic pain models compared to control mice60,61. These findings demon-
strated that peripheral DOP receptor signaling is essential to mediate analgesic effects, fostering the hypothesis 
that peripherally-acting DOP receptor agonists might represent a feasible strategy to treat nociceptive hypersen-
sitivity associated with chronic pain, while avoiding drug-induced central effects. Besides chronic pain research, 
new DOP receptor-selective compounds were also developed to address other brain disorders. In animal models, 
DOP receptor agonist were found effective for the treatment of migraine, motor symptoms of Parkinson’s disease, 
hypoxic/ischemic stress and as a neuroprotective mechanism in Alzheimer’s disease25,62–65.

Development and clinical use of new agonists or antagonists targeting DOP receptor requires a profound 
understanding of DOP receptor regulation at both physiological and molecular levels. Especially, key events of 
GPCR regulation like receptor phosphorylation, internalization, desensitization and dephosphorylation have 
been extensively characterized for the closely-related MOP receptor66–70 but much less is known about DOP 
receptor signaling. MOP receptor phosphorylation occurs in an agonist-selective and hierarchical manner at 
a cluster of four carboxyl-terminal serine (S) and threonine (T) residues, namely T370, S375, T376 and T379. 
This receptor phosphorylation is mediated by G protein-coupled receptor kinases 2 and 3 (GRK2/3) as well as 
GRK571–73. Both MOP receptor phosphorylation and internalization were induced in an agonist-specific and 
time-dependent manner and are determined by a 10 residues sequence in the carboxyl-terminal tail of the recep-
tor. S375, present in the middle of this sequence, is the primary phosphorylation site. Many opioids can stimulate 
MOP receptor phosphorylation at S375 and on flanking residues (T370, T376, T379), whereas morphine, oxyco-
done and buprenorphine only induce S375 phosphorylation. Morphine-induced MOP receptor phosphorylation 
at S375 is mediated by GRK571–73. Multisite-phosphorylation on flanking residues (T370, T376 and T379) requires 
GRK2/3 and is induced by high-efficacy agonists like DAMGO, fentanyl and etorphine72,73. Also, higher-order 
phosphorylation at T370, T376 and T379 is necessary for opioid-induced MOP receptor internalization73.

In the case of DOP receptor, truncation and site-directed mutants suggest that receptor phosphorylation 
occurs primarily along the C-terminal tail74–77. The two S and T residues, T358 and S363, at the end of the 
C-terminal tail are GRK2 substrates74,78. S363 is the primary phosphorylation site induced by highly efficacious 
agonists like [Met]-enkephalin, DPDPE and SNC80, whereas partial agonists fail to induce DOP receptor phos-
phorylation74,75,79–82. T361 is important for kinase recognition and needed for appropriate T358 and S363 phos-
phorylation74. Also, Glu355 and Asp364 were described as kinase interacting sites, which are necessary for GRK2/
GRK3/GRK5 recruitment83,84. Studies with receptor mutants demonstrated that DOP receptor phosphorylation 
at S344 can also undergo heterologous, PKC-mediated phosphorylation85. β-arrestin 2 as well as β-arrestin 1 can 
interact with DOP receptor and induce receptor internalization via clathrin-coated pits in an agonist-dependent 
manner86–88. Following receptor endocytosis, DOP receptor can be either lysosomally downregulated or recycled 
back to the plasma membrane. Both postendocytotic processes are agonist-dependent89,90. Furthermore, receptor 
dephosphorylation is essential for DOP receptor recycling91. So far, DOP receptor dephosphorylation is not well 
understood and phosphatases involved are still unknown. Furthermore, given the differential functional selectiv-
ity among chemically diverse DOP receptor agonists, it is possible that different agonists may induce a hierarchi-
cal and agonist-induced phosphorylation pattern after recruitment of one or more GRK isoforms to the receptor. 
Agonist-induced selective phosphorylation patterns in vitro and in vivo are poorly understood or unknown.
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Here, we have used phosphosite-specific antibodies for T361 and S363 to detect multiple phosphorylated 
forms of DOP receptor in vitro and in vivo after treatment with chemically diverse DOP receptor agonists as well 
as to investigate DOP receptor dephosphorylation in detail.

Materials and Methods
Animals.  DOP-eGFP mice (8–12 weeks old) were obtained from The Jackson Laboratories (Bar Harbor, 
Maine, US) and used to detect DOP receptor phosphorylation in vivo. Animals were accommodated in small 
groups, with ad libitum access to food and water and under standard laboratory conditions (12 h day/night cycle; 
lights on at 7:00 a.m.), constant temperature (20–22 °C) and humidity (45–55%). Animals were handled three 
times before the experiment. Mice were maintained in accordance with the French ministry and the Thuringian 
state authorities and complied with the European legislation (directive 2010/63/EU acting on protection of labo-
ratory animals) and the European Commission regulations for the care and use of laboratory animals and were 
approved by the Landesamt für Verbraucherschutz (number: UKJ-17-039). All methods used were preapproved 
by the Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives and the University Hospital 
Jena, Institute of Pharmacology and Toxicology (Jena, Germany).

Plasmids.  DNA for human DOP receptor were purchased from cDNA Resource Center (Bloomsberg, PA) 
and human DOP receptor mutants were generated via gene synthesis and cloned into pcDNA3.1 by Eurofins 
Genomics (Ebersberg, Germany). The coding sequence for an amino-terminal HA-tag was added.

Antibodies.  The peptide sequence CERVTA-Abu-(pT)PSDG-NH2 was used to generate the 
phosphosite-specific antibody for the T361-phosphorylated form of the DOP receptor. This sequence corre-
sponds to amino acids 355-365 of the human and mouse DOP receptor, respectively. The hemagglutinin peptide 
sequence YPYDVPDYA was used for the generation of antiserum targeting the HA-tag. The respective peptides 
were purified by HPLC, coupled to keyhole limpet haemocyanin and conjugates were mixed 1:1 with Freund´s 
adjuvant and injected into groups of two to four rabbits for anti-pT361 antibody production (5037, 5038) and 
for anti-HA-tag antibody production (2238, 2239, 2240, 2241). The rabbits were injected at 4-week intervals 
and serum was obtained 2 weeks after immunizations, beginning with the second injection. Specificity of the 
antisera was tested using dot blot analysis. For subsequent analysis, antibodies were affinity-purified against 
their immunizing peptide using a SulfoLink kit (Thermo Scientific, Rockford, IL). In addition, anti-pS363 anti-
body (A0420) was obtained from Assaybiotech (Fremont, CA, US) and anti-GFP (132002) was purchased from 
Synaptic Systems (Goettingen, Germany). Anti-GRK2 (sc-562), anti-GRK3 (sc-563), anti-GRK5 (sc-518005) 
and anti-GRK6 (sc-566) antibodies were obtained from Santa Cruz Biotechnology (Heidelberg, Germany). The 
anti-HA IgG CF™488 A antibody (SAB4600054) was purchased from Sigma-Aldrich (Steinheim, Germany). 
Anti-rabbit Alexa488-coupled antibody (A11008) was obtained from Invitrogen (Darmstadt, Germany) and 
anti-rabbit IgG HRP-coupled (7074) antibody was purchased from Cell Signaling (Massachusetts, US).

Drugs.  SNC80 (ab120684) was obtained from Abcam (Cambridge, UK). DADLE (E7131), fentanyl 
(F3886), [Met]-enkephalin (M6638), morphin-6-glucuronide (M3528), naloxone (N7758), deltorphin II 
(T0675), [Leu]-enkephalin (L91333) and phorbol-12-myristat-13-acetat (PMA) (P8139) were purchased 
from Sigma-Aldrich (Steinheim, Germany). DPDPE (1431), naltrindole (0740), naltribene (0892), naltrex-
one (0677), AR-M1000390 (4335) and forskolin (1099) were obtained from Tocris (Wiesbaden-Nordenstadt, 
Germany). Norbuprenorphine (BUP-982-FB) and buprenorphine (BUP-399-HC) were purchased from Lipomed 
(Arlesheim, Switzerland). ADL5859 (Axon1751) was obtained from Axonmedchem (Groningen, Netherlands). 
Levomethadone (00424906) was purchased from Sanofi-Aventis (Frankfurt, Germany). Morphine (26-6) was 
obtained from Merck Pharma (Darmstadt, Germany). Lambda-phosphatase (P0753S) and deltorphin I (sc-
396073) were purchased from Santa Cruz (Heidelberg, Germany). Compound 101 (HB2840) was obtained from 
Hello Bio (Bristol, UK).

Cell culture and transfection.  Human embryonic kidney 293 (HEK293) cells were obtained from DSMZ 
(Braunschweig, Germany) and AtT20-D16v-F2 (AtT20) cells were purchased from American Type Tissue Culture 
Collection (Manassas, VA). Both cell types were cultured in Dulbecco’s modified Eagle’s medium (DMEM), sup-
plemented with 10% fetal bovine serum, 2 mM L-glutamine and 100 U/ml penicillin/streptomycin at 37 °C and 
5% CO2. HEK293 cells and AtT20 cells were stably transfected with HA-tagged DOP receptor or mutant receptor 
using TurboFect (Thermo Fisher Scientific; Schwerte, Germany). Stable transfected cells were selected in medium 
supplemented with 400 µg/ml geneticin. To increase the number of stably expressing DOP receptor or receptor 
mutants in HEK293 cells or AtT20 cells, fluorescence-activated cell sorting was used as described previously92,93.

Small interfering RNA (siRNA) silencing of gene expression.  Chemically synthesized double-stranded 
siRNA duplexes (with 3′-dTdT overhangs) for GRK2 (5′-AAGAAAUUCAUUGAGAGCGAU-3′), GRK3 
(5′-AAGCAAGCUGUAGAACACGUA-3′), GRK5 (5′-AAGCAGTATCGAGTGCTAGGA-3′) and 
GRK6 (5′-AACACCUUCAGGCAAUACCGA-3′) were obtained from Qiagen (Hilden, Germany), PP1α 
(5′-AAGAGACGCUACAACAUCAAA-3′), PP1β (5′-UACGAGGAUGUCGUCCAGGAA-3′) and PP1γ 
(5′-AACAUCGACAGCAUUAUCCAA-3′) were purchased from Eurofins Genomics (Ebersberg, Germany) and 
a non-silencing RNA duplex (5′-GCUUAGGAGCAUUAGUAAA-3′ and 3′-UUUACUAAUGCUCCUAAGC-5′) 
were obtained from GE Dharmacon (Lafayette, Colorado, US). HEK293 cells stably expressing HA-hDOP were 
transfected for 3 days with 150 nM siRNA for single transfection or with 100 nM of each siRNA for double trans-
fection using HiPerFect. All experiments showed target protein levels reduced by ≥80%.
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Western blot analysis.  Stably HA-hDOP receptor transfected HEK293-cells were plated onto 
poly-L-lysine-coated 60-mm dishes and grown for 48 h to 80% confluency. Cells were lysed with detergent 
buffer (50 mM Tris-HCl, pH 7.4; 150 mM NaCl; 5 mM EDTA; 10 mM NaF; 10 mM disodium pyrophosphate; 1% 
Nonidet P-40; 0.5% sodium deoxycholate; 0.1% SDS) in the presence of protease and phosphatase inhibitors after 
treatment with agonists, directly. Where indicated, cells were preincubated with antagonists or GRK2/3 inhibitor 
compound 101 for 30 min before agonist exposure. Cells were centrifuged for 30 min at 4 °C followed by receptor 
enrichment using wheatgerm-lectin-agarose beads. Samples were inverted for 2 h at 4 °C. Where indicated, DOP 
receptor was dephosphorylated using lambda protein phosphatase (Santa Cruz; Heidelberg, Germany) for 1 h 
at 30 °C. After washing three times, proteins were eluted using SDS sample buffer for 30 min at 50 °C. Proteins 
were separated on 7.5% or 12% SDS-polyacrylamide gels. After electroblotting, membranes were incubated with 
either 0.1 µg/ml anti-pT361 (5038) or anti-pS363 antibodies over night at 4 °C. Subsequently, blots were washed 
followed by detection using enhanced chemiluminescence detection (ECL) (Thermo Fisher Scientific; Schwerte, 
Germany) of bound antibodies. Blots were thereafter stripped and reprobed with the anti-HA antibody (2238) to 
ensure equal loading of the gels.

In vivo phosphorylation studies.  First, the ability of different DOP receptor agonists to induce recep-
tor phosphorylation in vivo was investigated. DOP-eGFP mice (n = 3 per compound) were given injections of 
DOP receptor agonists SNC80 (10 mg/kg, i.p.), ADL5859 (100 mg/kg, p.o.), AR-M1000390 (60 mg/kg, p.o.), 
DOP receptor antagonist naltrexone (10 mg/kg, i.p.), or vehicle. 15 minutes after treatment mice were sacri-
ficed. Immediately brains were dissected out, frozen on dry ice and stored at -80 °C until biochemical analysis. 
Second, a dose-response study for SNC80 to induce DOP receptor phosphorylation was performed. Increasing 
doses of SNC80 (0.3, 1, 3, 10 mg/kg) (n = 3 per dose) were injected i.p. for 15 min. Brains were dissected out and 
transferred into ice-cold detergent buffer (50 mM Tris-HCL, pH 7.4; 150 mM NaCl; 5 mM EDTA; 10 mM NaF; 
10 mM disodium pyrophosphate; 1% Nonidet P-40; 0.5% sodium deoxycholate; 0.1% SDS; containing protease 
and phosphatase inhibitors). After sample homogenization using a MINILYS workplace homogenizer (Peqlab; 
Erlangen, Germany), brains were lysed for 1 h at 4 °C followed by centrifugation at 16000 × g for 30 min at 4 °C. 
Supernatants were immunoprecipitated with anti-GFP beads (NanoTag; Goettingen, Germany) for 2 h at 4 °C. 
Protein concentration was determined using a Bradford Assay Kit (Thermo Fisher Scientific, Schwerte, Germany) 
and proteins were eluted from the beads with SDS-sample buffer for 30 min at 50 °C. Subsequently, proteins were 
separated on 7.5% SDS-polyacrylamide gels and after electroblotting membranes were incubated with anti-pT361 
(5038) or anti-pS363 antibodies at a concentration of 0.1 µg/ml. After ECL detection of bound antibodies, blots 
were stripped and reprobed with the anti-GFP antibody (Synaptic Systems; Goettingen, Germany) to confirm 
equal loading of the gels.

Analysis of DOP receptor internalization.  HEK293-cells stably expressing HA-tagged DOP or receptor 
mutants were plated onto poly-L-lysine-coated coverslips and grown for 24 h. Next, cells were incubated with 
rabbit anti-HA antibody (2238) in serum-free medium for 2 h at 4 °C. Cells were fixed with 4% paraformaldehyde 
and 0.2% picric acid in phosphate buffer (pH 6.9) for 30 min at room temperature after agonist or antagonist 
exposure for 30 min at 37 °C. Subsequently, cells were washed three times with phosphate buffer (22.6 ml/L 1 M 
NaH2PO4•H2O; 77.4 ml/L 1 M Na2HPO4•H2O; 0.1% Triton X-100, pH 7.4) and permeabilized. After incuba-
tion with an Alexa488-coupled goat anti-rabbit antibody (Invitrogen; Darmstadt, Germany), cells were mounted 
and receptor internalization was examined using a Zeiss LSM510 META laser scanning confocal microscope 
(Jena, Germany). For quantitative internalization assays, stably HA-hDOP receptor transfected HEK293-cells 
were plated onto 24-well plates and grown overnight. After preincubation with anti-HA antibody (2238) for 2 h at 
4 °C, cells were exposed to agonists or antagonists for 30 min at 37 °C and subsequently fixed for 30 min at room 
temperature. Cells were washed several times with PBS and incubated with a peroxidase-conjugated secondary 
antibody (Santa Cruz; Heidelberg, Germany). After additional washing steps, the HRP-substrate ABTS was added 
and optical density was measured at 405 nm using an iMark™ Microplate Absorbance Reader (BioRad, Munich, 
Germany).

Membrane potential assay.  Membrane potential change was measured as previously described94. Stably 
HA-hDOP receptor expressing AtT20 cells were plated into 96-well plates. After 48 h, cells were washed with 
Hank´s balanced salt solution (HBSS), buffered with 20 mM HEPES pH 7.4, containing 1.3 mM CaCl2; 5.4 mM 
KCl; 0.4 mM K2HPO4; 0.5 mM MgCl2; 0.4 mM MgSO4; 136.9 mM NaCl; 0.3 mM Na2HPO4; 4.2 mM NaHCO3; 
5.5 mM glucose. Afterwards, cells were incubated with membrane potential dye (FLIPR Membrane Potential kit 
BLUE, Molecular Devices, Biberach, Germany) for 45 min at 37 °C. The final injection volume of compounds or 
vehicle was 20 µl and the initial volume in the wells was 180 µl (90 µl buffer and 90 µl dye). Finally, 20 µl of com-
pound was added to the cells (final volume in the well was 200 µl resulting in a 1:10 dilution of the compound). 
The compounds were prepared at 10x concentrations. Compounds or buffer were injected after 60 seconds base-
line measurement. Right after injection of compounds or vehicle membrane potential change was measured at 
37 °C using a FlexStation 3 microplate reader (Molecular Devices; Biberach, Germany). The buffer-only trace for 
each corresponding data point was subtracted from the data after normalization to the baseline.

Data analysis.  Protein bands detected on Western blots were quantified using ImageJ 1.47 v software 
(National Institute of Health, Bethesda, MD, USA). Data (Western blots and ELISA) were analyzed using 
GraphPad Prism 5 software (La Jolla, CA, USA). Statistical analysis was carried out with one-way ANOVA fol-
lowed by Bonferroni correction. P values < 0.05 were considered statistically significant. Dose response curves 
were analyzed and compiled with OriginPro.
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Results
Characterization of phosphosite-specific antibodies to analyze agonist-induced phosphoryla-
tion of T361 and S363 in the carboxyl-terminal tail of DOP receptor.  There are several potential 
phosphate acceptor sites in the intracellular loops and within the carboxyl-terminal tail of human DOP receptor 
(Fig. 1A). To examine the temporal and spatial dynamics of DOP receptor phosphorylation in its carboxyl-ter-
minal tail, we generated a polyclonal phosphosite-specific antibody for the carboxyl-terminal residue T361, and 
we used the commercially available anti-S363 antibody (Fig. 1A). In addition, we generated an anti-HA antibody 
which binds to an amino-terminally fused hemagglutinin epitope tag (HA-tag) in order to detect HA-DOP recep-
tor independent of phosphorylation status (Fig. 1A). First, antisera were affinity purified against their immu-
nizing peptides and specificity was then verified with corresponding synthetic peptides using dot-blot assays. 
All antibodies, which clearly detected their respective peptide were further characterized using Western blot 
analysis. The anti-pT361 [5038] and anti-pS363 antibodies specifically detected the respective T361- or S363-
phosphorylated form of DOP receptor after DADLE stimulation of HEK293 cells stably transfected with human 
HA-DOP receptor (Fig. 1B). Both phosphosite-specific antibodies were no longer able to detect their cognate 
forms of phosphorylated DOP receptor after treatment with lambda phosphatase (Fig. 1B), but the receptor 
protein was still detectable using the anti-HA antibody [2248] (Fig. 1B). Different DOP receptor mutants were 
generated for further characterization of the phosphosite-specific antibodies (Fig. 1C). As expected, no phos-
phorylation signal for pT361 and pS363 was detectable after DPDPE stimulation in the T361A/S363A mutant as 
well as after global mutation of all serine and threonine residues present in the carboxyl-terminal tail (7S/T-A) 
(Fig. 1D). Also, internalization after DPDPE incubation was reduced in the T361A/S363A mutant (Fig. 1E,F). A 
stronger inhibition of DOP receptor internalization was detectable in the 7S/TA mutant (Fig. 1E,F). These results 
show that the phosphosite-specific antibodies directed against T361 and S363 in the carboxyl-terminal tail clearly 
recognize only the respective phosphorylated form of DOP receptor and that the mutation of only T361 and S363 
is sufficient to diminish DOP receptor internalization.

D OP   r e c e p t o r  p h o s p h o r y l a t i o n  a n d  i n t e r n a l i z a t i o n  o cc u r  i n  a  t i m e -  a n d 
concentration-dependent manner with S363 as primary phosphorylation site.  We then exam-
ined the DPDPE-induced DOP receptor internalization using fluorescence microscopy and for quantification we 
used a cell-surface enzyme-linked immunosorbent assay (ELISA). DOP receptor internalization was initiated 
after treatment with 10 nM DPDPE and reached a maximum after incubation with 10 µM DPDPE (Fig. 2A,B). 
We then examined the time-course of DPDPE-induced T361 and S363 phosphorylation and receptor internali-
zation. After DPDPE stimulation, a robust phosphorylation at S363 was detectable within 2 min, which remained 
at high levels throughout the 30 min treatment period. T361 phosphorylation was first detectable after 5 min 
following DPDPE incubation and increased throughout the 30 min treatment period (Fig. 2C). To determine the 
DOP receptor phosphorylation time-course in more detail, agonist was added to the cells at room temperature 
(RT) for shorter time periods. Under these conditions, S363 phosphorylation occurred within 40 s, whereas T361 
phosphorylation became first detectable after 10 min, suggesting that S363 is the primary site of phosphorylation, 
followed by T361 (Fig. 2D).

Internalization of DOP receptor was first detectable after 5 min DPDPE treatment and reached a maxi-
mum after 20 min (Fig. 2E,F). DPDPE-induced DOP receptor phosphorylation and internalization occur in a 
time-dependent manner with S363 as primary phosphorylation site followed by T361. Also, receptor internaliza-
tion takes place in a concentration-dependent manner.

DOP receptor phosphorylation is mediated by GRK2 and GRK3.  Phosphorylation of GPCRs 
can be mediated by different types of kinases, G protein-coupled receptor kinases (GRKs) and second 
messenger-activated kinases (e.g. PKA, PKC). To examine if DOP receptor phosphorylation could also be medi-
ated heterologously by PKA or PKC, we therefore incubated cells with phorbol-12-myristat-13-acetat (PMA) 
or forskolin. Neither forskolin nor PMA induced any detectable phosphorylation at T361 or S363 (Fig. 3A). 
To evaluate which GRK isoforms are mediating the DPDPE-induced DOP receptor phosphorylation, we used 
the chemical GRK2/3 selective inhibitor compound 101 (cmpd101) as well as siRNA knockdown experiments. 
DPDPE-induced phosphorylation at T361 and S363 is reduced in a concentration-dependent manner after inhi-
bition of GRK2/3 activation using compound 101 (Fig. 3B). Treatment with specific GRK2 or GRK3 siRNA 
sequences also led to a significant reduction of DPDPE-induced phosphorylation at T361 and S363 (Fig. 3C). It 
is possible that the loss of either GRK2 or GRK3 could be compensated for by the remaining isoform, because 
of the close relationship between the two GRK isoforms. Therefore, we evaluated the inhibitory effect of siRNA 
knockdown of both GRK2 and GRK3 on DOP receptor phosphorylation. A combination of siRNA knockdown 
of both GRK isoforms produced a stronger inhibition of T361 and S363 phosphorylation, indicating that GRK2 
and GRK3 function as a redundant system for DPDPE-induced DOP receptor phosphorylation (Fig. 3C). To rule 
out that also GRK5 and GRK6 were involved in DPDPE-induced DOP receptor phosphorylation, we performed 
the same siRNA knockdown experiments for the two GRK isoforms. As expected, knockdown of GRK5, GRK6 
or a combination of both, could not reduce the DPDPE-induced phosphorylation signal neither at T361 nor at 
S363 (Fig. 3D). These results suggest that GRK2 and GRK3 are responsible for DPDPE-induced DOP receptor 
phosphorylation at T361 and S363.

DOP receptor agonists induce varying levels of receptor phosphorylation and internaliza-
tion.  We next surveyed a large selection of chemically diverse selective DOP receptor ligands and clinically 
used opioids for their ability to induce DOP receptor phosphorylation and internalization. We consistently 
observed that endocytotic activity of these selective DOP receptor agonists and common opioids correlated 
with their ability to induce receptor phosphorylation at T361 and S363 (Fig. 4). Robust phosphorylation and 
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Figure 1.  Characterization of phosphosite-specific DOP receptor antibodies using λ-phosphatase and 
receptor mutants. (A) Schematic representation of the human DOP receptor (hDOP). Potential intracellular 
phosphorylation sites are depicted in gray. T361 was targeted for the generation of the phosphosite-specific 
anti-pT361 antibody and anti-pS363 antibody was acquired commercially. (B) Characterization of phosphosite-
specific antibodies directed against T361 and S363 using λ-phosphatase. Stably HA-tagged hDOP-receptor 
expressing HEK293 cells were either not treated (−) or treated (+) with 10 µM DADLE for 10 min. Lysates 
were then either not incubated (−) or incubated (+) with λ-phosphatase and immunoblotted with the 
phosphosite-specific antibodies anti-pT361 {5038} or anti-pS363. Blots were stripped and reprobed with 
the anti-HA antibody {2238} as a loading control. Blots are representative, n = 3. Molecular mass markers 
(kDA) are indicated, left. (C) Sequence of the carboxyl-terminal tail of hDOP receptor showing all potential 
phosphorylation sites. Serine (S) and threonine (T) residues indicated were exchanged to alanine. (D) HEK293 
cells stably expressing HA-hDOP receptor, T361A/S363A or 7 S/TA were not treated (−) or treated (+) with 
1 µM DPDPE for 10 min and lysates were immunoblotted with the antibodies to pT361 or pS363. Blots were 
stripped and reprobed with the anti-HA antibody. Blots are representative, n = 5. (E) Cells described in (D) 
were preincubated with antibody to HA-tag and subsequently exposed to 10 µM DPDPE or vehicle for 30 min at 
37 °C. Cells were fixed, permeabilized, immunofluorescently stained and examined using confocal microscopy. 
Images are representative from one of three independent experiments. Scale bar, 20 µm. (F) Receptor 
internalization was quantified by ELISA. Cells described in (D) were preincubated with antibody to HA-tag and 
stimulated with 10 µM DPDPE or vehicle at 37 °C for 30 min. Cells were fixed and labeled with a peroxidase-
conjugated secondary antibody. Receptor internalization was measured by enzyme-linked immunosorbent 
assay and quantified as the percentage of internalized receptors in DPDPE-treated cells. Data are mean ± 
SEM of five independent experiments performed in quadruplicate. Results were analyzed by one-way ANOVA 
followed by Bonferroni’s post-hoc test (*p < 0.05).
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receptor internalization were detectable after treatment with DPDPE, DADLE, SNC80, ADL5859, AR-M1000390, 
deltorphin I, deltorphin II, [Met]-enkephalin, [Leu]-enkephalin and norbuprenorphine (Fig. 4). Fentanyl and 
(−)-methadone as well as morphine-6-glucuronide, an active metabolite of morphine, induced phosphorylation 
only at S363, whereas morphine and buprenorphine failed to induced DOP receptor phosphorylation (Fig. 4). The 
DOP-selective agonists ADL5859 and AR-M1000390 had been previously described as non- or weakly internaliz-
ing agonists79,95. A significantly higher concentration (10 µM) was used for all compounds in order to distinguish 
between DOP agonists which induces a strong, partial or no internalization. These results confirm the consensus 
model that GPCR phosphorylation is highly correlated with, and a prerequisite for, subsequent internalization. 

Figure 2.  Time course of DPDPE-induced DOP receptor phosphorylation, concentration-dependent DOP 
receptor phosphorylation and internalization. (A) HEK293 cells stably expressing HA-tagged hDOP receptor 
were preincubated with anti-HA antibody and stimulated with the indicated DPDPE concentrations for 30 min 
at 37 °C. After stimulation, cells were fixed, permeabilized, immunofluorescently stained and examined using 
confocal microscopy. Images are representative from one of three independent experiments. Scale bar, 20 µm. 
(B) Cells described in (A) were preincubated with anti-HA antibody and stimulated with the indicated DPDPE 
concentrations for 30 min at 37 °C. After fixation, cells were labeled with a peroxidase-conjugated secondary 
antibody and receptor internalization was measured by enzyme-linked immunosorbent assay. Receptor 
internalization was measured by ELISA and quantified as the percentage of internalized receptors compared 
to untreated cells. Data are means ± SEM of four independent experiments performed in quadruplicate. 
(C,D) Cells described in (A) were exposed to 1 µM DPDPE for the indicated times and temperatures (C) at 
37 °C, (D) at 22 °C (room temperature, RT) and lysates were immunoblotted with anti-pT361 or anti-pS363 
antibodies. Blots are representative of n = 4 (C) or n = 5 (D) independent experiments. (E) Cells described in 
(A) were preincubated with anti-HA antibody and thereafter stimulated with 1 µM DPDPE for the indicated 
durations at 37 °C. Cells were fixed, permeabilized, immunofluorescently stained and examined using confocal 
microscopy. Images are representative from one of three independent experiments. Scale bar, 20 µm. (F) Cells 
described in (A) were preincubated with anti-HA antibody and stimulated with 10 µM DPDPE for the indicated 
durations at 37 °C. Cells were fixed and labeled with peroxidase-conjugated secondary antibody. Receptor 
internalization was measured by ELISA and quantified as the percentage of internalized receptors in agonist-
treated cells compared to untreated cells. Data are mean ± SEM of five independent experiments performed in 
quadruplicate.
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Correlation analysis between G protein-dependent (GIRK activation) and arrestin-dependent (internalization) 
effects of the tested compounds revealed positive linear correlation (r = 0.8551; Fig. 4D), suggesting that DOP 
receptor agonists do not display any bias in intracellular coupling.

Chemically diverse DOP receptor agonists show varying efficacies in GIRK channel activation 
(G protein-dependent signaling).  A previously described fluorescence-based membrane potential assay, 
that detects Gβγ-mediated activation of inwardly rectifying potassium (GIRK) channels was used to examine G 
protein signaling of DOP receptor at high temporal resolution94. We studied the ability of different DOP recep-
tor ligands to activate GIRK channels (Fig. 5, Table 1). Notably, deltorphin II (EC50 of 0.11 ± 0.09 nM) and 
DADLE (EC50 of 0.16 ± 0.04 nM) were the most potent agonists tested and compared to DPDPE (EC50 of 0.39 
± 0.14 nM) (Table 1). Deltorphin I exhibited a similar dose-response curve with EC50 values of 0.36 ± 0.16 nM 
(Fig. 5A, Table 1). [Met]-enkephalin and [Leu]-enkephalin are similarly potent agonists with EC50 values of 0.78 
± 0.08 nM and 0.77 ± 0.15 nM (Table 1), as well as SNC80, buprenorphine and norbuprenorphine with EC50 
values of 5.62 ± 1.76 nM, 3.36 ± 2.13 nM and 10.67 ± 1.46 nM, respectively (Fig. 5B, Table 1). ADL5859 and 
AR-M1000390 exhibited partial agonist activity with EC50 values of 57.02 ± 10.94 nM and 36.45 ± 10.14 nM 
(Fig. 5C,D). Morphine and fentanyl showed only a weak activity with a remarkably reduced maximal effect com-
pared to DPDPE (Fig. 5E,F; Table 1). Together with our results from phosphorylation and internalization studies, 
these observations suggest that DOP agonists range from partial to full agonism without intracellular signaling 
bias (Fig. 4D).

DPDPE-induced phosphorylation and internalization is inhibited by the DOP receptor antag-
onist.  Both, the non-selective opioid receptor antagonist naloxone and naltrexone and the selective DOP 
receptor antagonists naltrindole96–98 and naltriben99–101 block DPDPE-induced phosphorylation at T361 and 
S363 as well as receptor internalization (Fig. 6A–C). Moreover, addition of naltrindole induced a reversal of the 
DPDPE-induced hyperpolarization towards baseline level in the GIRK channel activation assay (Fig. 6D).

Agonist-selective DOP receptor phosphorylation is also observed in vivo in mouse brain.  The 
fact that corresponding mouse DOP receptor phosphorylation sites are located at equivalent positions 

Figure 3.  DPDPE-induced DOP receptor phosphorylation is mediated by GRK2 and GRK3. (A) HEK293 
cells stably expressing HA-hDOP receptor were stimulated with 1 µM DPDPE, 1 µM PMA or 10 µM forskolin 
for 10 min at 37 °C. Cell lysates were immunoblotted with anti-pT361 or anti-pS363 antibodies. Blots were 
stripped and reprobed with the anti-HA antibody as loading control. Blots are representative, n = 4. (B) 
Cells described in (A) were preincubated with either vehicle (DMSO; -) or compound (cmpd) 101 at the 
indicated concentrations for 30 min at 37 °C, then treated with buffer or 1 µM DPDPE for 10 min at 37 °C. 
Lysates were immunoblotted as described in (A). Blots are representative, n = 3. (C,D) Cells described in (A) 
were transfected with siRNA targeted either to (C) GRK2, GRK3, or GRK2 and GRK3 (GRK2/3), (D) GRK5, 
GRK6, or GRK5 and GRK6 (GRK5/GRK6), or non-silencing siRNA control (SCR) for 72 h, then stimulated 
with1 µM DPDPE for 10 min at 37 °C. Lysates were immunoblotted as described in (A). Knock down of GRKs 
was confirmed by Western blot (bottom panels in C and D). Densitometry readings, above the blots, were 
normalized to SCR (control) transfected cells, which were set to 100%. Data are means ± SEM from three to five 
independent experiments. *p < 0.05 vs. SCR control by one-way ANOVA with Bonferroni’s post-hoc test.
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Figure 4.  Agonist-induced DOP receptor phosphorylation and internalization. (A,B top) Stably HA-tagged 
hDOP receptor-expressing HEK293 cells were preincubated with anti-HA antibody, followed by stimulation 
with 10 µM DPDPE, DADLE, SNC80, ADL5859, AR-M1000390, deltorphin I, deltorphin II, [Met]-enkephalin, 
[Leu]-enkephalin, fentanyl, (−)-methadone, morphine, morphine-6-glucuronide (M6G), buprenorphine 
(BUP), norbuprenorphine (norBUP) or vehicle for 30 min at 37 °C. Cells were fixed, permeabilized, 
immunofluorescently stained, and subsequently examined using confocal microscopy. Images are 
representative, n = 3. Scale bar, 20 µm. (A,B bottom) HEK293 cells stably expressing HA-hDOP receptor were 
stimulated with the compounds listed in (A) or vehicle at concentrations ranging from 10-9 to 10-5 M for 10 min 
at 37 °C. Lysates were immunoblotted with antibodies to pT361 or pS363. Blots were stripped and reprobed 
with the anti-HA antibody. Blots are representative, n = 3-5. (C) Cells described in (A) were preincubated 
with anti-HA antibody and stimulated with vehicle or 10 µM of compounds listed in (A) for 30 min at 37 °C. 
Cells were fixed and labeled with a peroxidase-conjugated secondary antibody. Receptor internalization was 
measured by ELISA and quantified as the percentage of internalized receptors in agonist-treated cells compared 
to untreated cells. Data are means ± SEM of five independent experiments performed in quadruplicate. Results 
were analyzed by one-way ANOVA followed by Bonferroni’s post-hoc test (*p < 0.05). (D) Correlation between 
G protein-mediated (GIRK channel activation, Emax) and arrestin-mediated (internalization, % of untreated 
control cells) agonist effects in HA-hDOP receptor-transfected HEK293 cells (internalization) or AtT-20 cells 
(GIRK channel activation). Solid line, linear regression analysis revealed a correlation coefficient r = 0.8551.
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compared to the human DOP receptor (Fig. 7A) enabled us to use the phosphosite-specific antibodies to 
analyze agonist-induced phosphorylation in vivo in more detail. DOP-eGFP mice were treated with different 
types of systemically active DOP receptor ligands. The selective DOP full agonist SNC80 induced a strong and 
concentration-dependent phosphorylation at T361 and S363 which could be blocked by naltrexone (Fig. 7B–D), 
similar to observations made in vitro for this combination of compounds (Suppl. Fig. 1). A weaker increase of in 
vivo DOP phosphorylation signal was detectable after administration of ADL5859 and AR-M1000390 in compar-
ison to saline treatment (Fig. 7B). However, the ADL5859 and AR-M1000390 doses used were much higher than 
behaviorally necessary (effective dose in most behavior assays: 10 mg/kg AR-M1000390 and ADL585995,102,103) 
(Fig. 7B), albeit inducing weaker receptor phosphorylation than SNC80. Therefore, we selected SNC80 for 
dose-response in vivo experiments (Fig. 7C). These results indicate that DOP receptor phosphorylation occurs 
after stimulation by selective agonists in a concentration-dependent manner in vivo. We also observed significant 
constitutive phosphorylation of T361 (unstimulated controls in Fig. 7B–D) that could be related to the previously 
reported high constitutive activity of DOP receptors104.

Figure 5.  G protein signaling of diverse DOP receptor agonists. AtT-20 cells stably expressing HA-hDOP 
receptors were stimulated with vehicle, or DPDPE, deltorphin I (A), SNC80 (B), ADL5859 (C), AR-M1000390 
(D), fentanyl (E) or morphine (F) at a concentration range of 10−6 to 10−13 M and GIRK channel activation was 
measured in a membrane potential assay. Dose response curves were calculated with OriginPro using sigmoidal 
non-linear fitting for data from three independent experiments performed in duplicate (mean ± SEM). Vehicle-
induced changes in fluorescence signal (background) were subtracted from signals obtained using agonist-
containing solutions. The DPDPE graph is the same in every panel and serve as a comparator. RFU, relative 
fluorescence units.

EC50 (nM) Emax

Emax in 
% of 
DPDPE

DPDPE 0.39 ± 0.14 25.14 ± 0.35 100%

DADLE 0.16 ± 0.04 23.34 ± 1.70 92.8%

Deltorphin I .36 ± 0.16 21.86 ± 0.50 87.0%

Deltorphin II 0.11 ± 0.09 19.43 ± 0.53 77.3%

[Met]-enkephalin 0.78 ± 0.08 25.03 ± 0.78 99.6%

[Leu]-enkephalin 0.77 ± 0.15 20.88 ± 0.70 83.1%

SNC-80 5.62 ± 1.76 25.72 ± 1.41 102.3%

ADL5859 57.02 ± 10.94 21.23 ± 0.39 84.4%

AR-M1000390 36.45 ± 10.14 19.77 ± 0.78 78.6%

Buprenorphine n.d. 11.5 ± 1.6 42.3%

Norbuprenorphine 43.8 ± 20.7 15.3 ± 1.50 56.3%

Morphine 49.97 ± 27.70 10.27 ± 1.16 40.9%

Fentanyl 385.44 ± 198.28 8.49 ± 1.92 33.8%

M6G 1200.05 ± 400.70 13.73 ± 0.86 54.6%

Table 1.  G protein signaling of diverse DOP receptor agonists. n.d. not detectable.
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DOP receptor dephosphorylation occurs in a time-dependent manner with S363 as primary 
dephosphorylation site.  Phosphorylation at S363, the primary phosphorylation site, occurred during 
the first minute whereas a phosphorylation signal at T361 was first detectable after prolonged stimulation with 
DPDPE (10 min). Therefore, we examined DOP receptor dephosphorylation, using three different buffer, in 
order to investigate if distinct temporal dynamics exist between both phosphorylation sites. Washout with citric 
acid buffer removes high-affnity agonsits and disrupt receptor-ligand-binding more efficiently than phosphate 
buffer105. Naltrindole was added to citric acid buffer to further facilitate displacement of DPDPE from the recep-
tor and thus terminate agonist stimulation. Cells were washed with citric acid after DPDPE stimulation and then 
incubated in agonist-free medium with or without naltrindole to differentiate the dephosphorylation time in 
more detail. Dephosphorylation of T361 and S363 occurred more quickly after washout with citric acid buffer 
and naltrindole. Interestingly, no differences were observed in dephosphorylation time between T361 and S363 
(Fig. 8). These results indicate that there is no primary site of dephosphorylation.

Dephosphorylation of DOP receptor is mediated by PP1.  Classified by their catalytic subunits, seven 
families of serine/threonine-specific protein phosphatases, PP1-PP7, have been identified106–108. Calyculin A is an 
inhibitor of PP1 and PP2 activity to a similar extent108–110. In contrast, okadaic acid can block the activity of PP2, 

Figure 6.  Antagonist-selective inhibition of DPDPE-induced DOP receptor phosphorylation, internalization 
and G protein signaling. (A) Stably HA-hDOP receptor-expressing HEK293 cells were either not preincubated 
(−) or preincubated (+) with 5 µM naloxone, naltrindole, naltriben or naltrexone for 30 min at 37 °C, 
then stimulated with vehicle (water, -) or with 1 µM DPDPE (+) for 10 min at 37 °C. Cell lysates were then 
immunoblotted with antibodies to pT361 or pS363. Blots were stripped and reprobed with the anti-HA 
antibody. Blots are representative, n = 4. (B) Cells described in (A) were preincubated with anti-HA antibody 
and then treated with vehicle (DMSO), 5 µM naloxone, naltrindole or naltriben and with or without 1 µM 
DPDPE for 10 min at 37 °C. After fixation, cells were permeabilized, immunofluorescently stained and 
examined using confocal microscopy. Images are representative, n = 3. Scale bar, 20 µm. (C) Cells described in 
(A) were preincubated with anti-HA antibody and stimulated with vehicle (DMSO), 5 µM naloxone, naltrindole 
or naltriben and with or without 1 µM DPDPE for 10 min at 37 °C. Cells were then fixed and labeled with a 
peroxidase-conjugated secondary antibody. Receptor internalization was measured by ELISA and quantified 
as percentage of internalized receptors in agonist-treated cells. Data are means ± SEM from five independent 
experiments performed in quadruplicate. *p < 0.05 vs. DPDPE by one-way ANOVA with Bonferroni post-hoc 
test. (D) Reversal of DPDPE-induced hyperpolarization by naltrindole using a fluorescence-based membrane 
potential assay. After baseline recording for 60 sec, HA-hDOP receptor -expressing AtT-20 cells were exposed 
to 1 µM DPDPE and 240 sec later, 10 µM naltrindol was added, yielding a final molar DPDPE/antagonist ratio of 
1:10. Shown are the normalized traces obtained from the average of four individual experiments performed in 
triplicates.
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PP4, and PP5, but has little effect on PP1 activity108–114. Both inhibitors are not able to reduce the activity of PP3. 
When cells stably expressing DOP receptor were exposed to escalating concentrations of calyculin A or okadaic 
acid, DOP receptor dephosphorylation was inhibited in a concentration-dependent manner only by calyculin A 
(Fig. 9A,B). Thus, the present results strongly suggest that PP1 activity is required for DOP receptor dephospho-
rylation at T361 and S363.

We next performed siRNA knockdown experiments to confirm these results and to evaluate the contribution 
of the catalytic subunits PP1α, PP1β and PP1γ to DOP receptor dephosphorylation. Simultaneous knockdown of 
all three PP1 catalytical subunits nearly completely blocked DOP receptor dephosphorylation in DPDPE-treated 
cells (Fig. 10A). Only inhibition of PP1α and PP1β expression resulted in a robust reduction of dephospho-
rylation at T361 and S363 (Fig. 10B). In contrast, PP1γ siRNA knockdown did not attenuate T361 and S363 
dephosphorylation (Fig. 10B). Moreover, inhibition of PP2α and PP2β had no effect on DOP receptor dephos-
phorylation (data not shown). These results confirmed that PP1 activity was required for efficient DOP receptor 
dephosphorylation, most likely mediated by PP1α and/or PP1β.

Figure 7.  Agonist-induced DOP receptor phosphorylation in mouse brain. (A) Schematic representation of 
the human (h) and mouse (m) DOP receptor C-terminal tail. All potential phosphate acceptor sites are depicted 
in gray. (B) After injection of 0.9% NaCl (i.p.), 10 mg/kg SNC80 (i.p.), 100 mg/kg ADL5859 (p.o.) or 60 mg/kg 
AR-M1000390 (p.o.) for 15 min, DOP-eGFP knock-in mice. were euthanized and brains were removed. DOP 
receptor was immunoprecipitated with anti-GFP protein agarose beads and immunoblotted with antibodies 
to pT361 or pS363. Blots were stripped and reprobed for GFP. Blots are representative, n = 3. (C) As in (B), but 
mice were treated with SNC80 (i.p.) at the indicated doses for 15 min. Blots are representative, n = 3. (D) As in 
(B), but mice were treated with 10 mg/kg naltrexone or SNC80 alone or pretreated with naltrexone for 15 min 
followed by SNC80 (10 mg/kg, i.p.). Blots are representative, n = 3. Positions of molecular mass markers are 
indicated on the left (in kDa).

Figure 8.  Time-course of DOP receptor dephosphorylation. (A–C) Stably HA-hDOP receptor expressing 
HEK293 cells were treated with 1 µM DPDPE for 10 min at 37 °C, three times washed with(A) PBS, (B) citrate 
buffer or (C) citrate buffer containing naltrindole and then incubated in the absence of DPDPE in serum-free 
medium for the indicated times at 37 °C. Lysates were immunoblotted with antibody to pT361 or pS363. Blots 
were stripped and reprobed with the anti-HA antibody. Blots are representative, n = 3.
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Discussion
In the present study, we used phosphosite-specific antibodies for DOP to analyze distinct phosphorylation pat-
terns induced by a large variety of selective DOP agonist and opioids, both in vitro and in vivo. Moreover, we 
detected hierarchical and temporally controlled receptor multisite phosphorylation and dephosphorylation. 
Appropriate signaling by GPCRs is dependent on the specific activation of canonical regulatory kinases and phos-
phatases that together create the overall signaling output. Agonist binding to the receptor triggers activation and 
signaling through its associated heterotrimeric G protein which involves GRKs or second messenger-dependent 
protein kinases, such as PKC or PKA. GRK-imprinted phosphorylation barcodes increase the affinity for 
β-arrestin binding, which uncouple the receptor from its G protein, regulate receptor internalization and sub-
sequent desensitization while simultaneously initiating β-arrestin-dependent signaling. Internalized GPCRs are 
either sorted to lysosomes for degradation or recycle back to the plasma membrane for reinsertion. Return of 
GPCRs to their resting state requires dissociation of agonist and β-arrestins but also dephosphorylation of the 
receptor.

Agonist-induced phosphorylation usually involves a specific pattern of serine and threonine residues and is 
considered the first step in receptor regulation. Receptor phosphorylation was studied in great detail for several 
GPCRs, most notably the β2-adrenoceptor (β2-AR), MOP and NOP receptor as well as somatostatin sst2, sst3 
and sst5 receptor subtypes71–73,92,93,115–124. A primary phosphate-acceptor site has been identified for each GPCR, 
and phosphorylation often correlates with receptor internalization levels. The prevailing hypothesis that complete 
GPCR phosphorylation is required for maximal internalization is supported by these observations and a hall-
mark of full agonists. In case of DOP receptor, mutagenesis studies have localized multiple serine and threonine 
residues located in the carboxyl-terminal domain as major phosphorylation sites74–76. Using phosphosite-specific 
antibodies, we found that DOP receptor phosphorylation proceeds in a temporal hierarchy, with S363 as primary 
phosphorylation site followed by T361 phosphorylation. Stimulation with DPDPE induced maximal receptor 
internalization with a similar kinetic as seen for MOP receptor72,121. Mutation of T358, T361 and S363 has no 
influence on the capacity to recruit β-arrestins84 but reduced receptor internalization which was abolished when 
all serine and threonine residues in the C-terminal tail were mutated to alanine. Earlier studies have shown, that 
T358 and S363 are substrates for GRK274,78. The data presented here are in line with these previous findings and 
also demonstrate that T361 is phosphorylated by GRK2/3 after DPDPE stimulation in vitro. In addition, DOP 
receptor can also undergo heterologous site-specific PKC-dependent phosphorylation at S34485. Accordingly, we 
did not observe any impact on T361 or S363 phosphorylation level either after PKC- or PKA-activation.

Figure 9.  Inhibition of DOP receptor dephosphorylation by calyculin A but not okadaic acid. (A,B) HEK293 
cells stably expressing HA-hDOP receptor were either preincubated with the indicated concentrations of (A) 
calyculin A or (B) okadaic acid for 30 min at 37 °C and then stimulated with 1 µM DPDPE for 10 min at 37 °C. 
Subsequently, cells were washed three times with ice cold citrate buffer and then incubated in serum-free 
medium in the absence of DPDPE for 0, 20 or 40 min in the presence of the above indicated concentrations 
of (A) calyculin A or (B) okadaic acid at 37 °C. Lysates were immunoblotted with antibody to pT361 or 
pS363. Blots were stripped and reprobed with the anti-HA antibody. Densitometry readings, above the blots, 
were normalized to those in DPDPE-stimulated cells (0 nM and 0 min), which were set to 100%. Data are 
mean ± SEM from three independent experiments. *p < 0.05 vs. DPDPE controls by one-way ANOVA with 
Bonferroni’s post-hoc test.
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Like MOP receptor agonists71–73, most DOP receptor agonists stimulated receptor phosphorylation to a degree 
that correlated with the level of internalization. The enkephalin analogs DPDPE and DADLE are highly selective 
DOP receptor agonists125,126. Both compounds induced robust activation of GIRK channels, phosphorylation and 
receptor internalization equally to the natural DOP receptor agonists, the enkephalins and deltorphins. SNC80 
is a full agonist in G protein-dependent cAMP assays with high DOP receptor selectivity and antinociceptive, 
antidepressant and anxiolytic properties, but also producing convulsions36,37,40,55,127–130. We found that SNC80 also 
induced robust GIRK channel activation and showed strong DOP receptor phosphorylation. Our data confirmed 
previous studies which also showed DOP internalization after SNC80 exposure79,128,130. The SNC80 derivative 
AR-M1000390 and the spirocyclic agonist ADL5859 were previously described as potent, highly selective and 
orally available DOP receptor agonists41,131. Both compounds reduced inflammatory and neuropathic pain and 
were devoid of proconvulsive activity79,95,131,132. We found that ADL5859 and AR-M1000390 induced GIRK chan-
nel activation with similar potency and produced significant DOP receptor phosphorylation and internalization 
at saturating concentrations in vitro. However, in DOP-eGFP knock-in mice both compounds were not able to 
induce DOP receptor internalization in vivo79,95,102. It should be mentioned that we used unphysiologically high 
concentrations of both compounds to see whether they can elicit any DOP receptor phosphorylation or internal-
ization. Therefore, our in vitro observations are not comparable to the in vivo situation. However, it was at least 
demonstrated for ADL5859 and AR-M1000390 that substantial DOP receptor internalization can occur at very 
high concentrations in vitro79. In contrast, fentanyl and (−)-methadone failed to induce any robust activation of 
GIRK channels but produced phosphorylation at DOP receptors only at S363, but not at T361, followed by weak 
receptor internalization. Morphine failed to induce any phosphorylation at DOP receptor and induced only a 
weak activation in G protein-mediated GIRK assays. Previous studies had shown that DOP receptor was not 
internalized after morphine exposure, which is consistent with the present findings81,133. Glucuronate conjuga-
tion at the 6-position in morphine is known to enhance DOP receptor binding134. Conversely, we found DOP 

Figure 10.  DOP receptor dephosphorylation is mediated by PP1. (A–C) HEK293 cells stably expressing HA-
hDOP receptor were transfected with siRNA targeting either (A) a combination of PP1α, PP1β and PP1γ (PP1-
Mix), or (B) PP1α, PP1β, or PP1γ, or non-silencing siRNA control (SCR) for 72 h. After stimulation with 1 µM 
DPDPE for 10 min at 37 °C, cells were washed three times with cold citrate buffer and then incubated in serum-
free medium in the absence of DPDPE for indicated times at 37 °C. Lysates were immunoblotted with antibody 
to pT361 or pS363. Blots were stripped and reprobed with the anti-HA antibody. Knock down of protein 
expression by siRNA was confirmed by Western blot blot (bottom panels in A,B). Densitometry readings, above 
the blots, were normalized to those in SCR-transfected cells, which were set to 100%. Data are mean ± SEM 
from three to four independent experiments. *p < 0.05 vs. SCR by one-way ANOVA with Bonferroni’s post-hoc 
test.
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receptor phosphorylation after morphine-6-glucuronide exposure followed by weak receptor internalization. 
Buprenorphine has a high binding affinity to DOP receptor135 but no receptor phosphorylation and internali-
zation was detectable in our hands, whereas norbuprenorphine, the major active metabolite of buprenorphine, 
induced DOP receptor phosphorylation and receptor internalization. Together our data show a strong correlation 
between GIRK channel activation, phosphorylation and DOP receptor internalization (Fig. 4D). These correla-
tion is also supported by a previous study which showed, that DOP receptor stimulation, GIRK channel undergo 
arrestin-dependent internalization136.

Localization of DOP receptor has been studied using electron microscopy, immunohistochemical detection 
and in situ hybridization19–21,137–141. Here, fine-tuning of in vivo phosphorylation of DOP receptor in brain was 
analyzed for the first time using Western blot. The same techniques were used in recent studies to analyze phos-
phorylation at MOP and NOP receptors72,93,120,121. Both residues, T361 and S363, are phosphorylated in vivo 
in a dose-dependent manner after agonist injection. Interestingly, T361 is also constitutively phosphorylated 
which may reflect high constitutive activity of DOP receptors that had been reported before104. In comparison 
to animals injected with saline, in vivo phosphorylation in mouse brains was only weakly increased by ADL5859 
and AR-M1000390, which may explain the lack of internalization as well as the absence of proconvulsive activity 
observed previously129.

So far, the molecular mechanisms of DOP receptor dephosphorylation have never been investigated. Here 
we used phosphosite-specific antibodies in combination with siRNA knock-down screening to identify phos-
phatases involved in DOP receptor dephosphorylation. We identified PP1α and PP1β as phosphatases which 
catalyzed T361 and S363 dephosphorylation after agonist removal. Inhibition of PP1α or PP1β expression 
resulted in increased DPDPE-driven receptor phosphorylation at both residues. Dephosphorylation of T361 
occurs slower than dephosphorylation at S363. In comparison, dephosphorylation of DOP receptor occurs at a 
much slower rate than that observed for MOP receptor and sst572,124. Dephosphorylation of MOP receptor and 
sst5 involves PP1γ, dephosphorylation of sst2 requires PP1β activity and dephosphorylation of sst3 involves PP1α 
and PP1β72,92,124,142. Our findings indicate that PP1γ mediated dephosphorylation is linked to GPCRs that recy-
cle rapidly to the plasma membrane. PP1 consists of one catalytic subunit and one or more regulatory subunits. 
The substrate specificity and subcellular localization of PP1s is determined by the regulatory subunit, of which 
more than 40 exist106. However, it remains unclear which mechanisms regulate phosphatase specificity at GPCRs. 
It is conceivable that carboxyl-terminal phosphorylation sites, specific sequences in the intracellular loops or 
β-arrestin trafficking patterns may all contribute to selection of phosphatases.

In conclusion, we identified for the first time a specific and hierarchical agonist-induced phosphorylation 
pattern in the carboxyl-terminal domain of DOP receptor in vitro and in vivo. The phosphorylation pattern cor-
relates with receptor internalization and conceivably provides evidence for a general biochemical mechanism by 
which the different functional effects of DOP receptor agonists are achieved. Further, differential agonist-induced 
multi-site phosphorylation patterns suggest that chemically diverse agonists induce distinct receptor confor-
mations that could explain differences in DOP receptor agonist efficacy. This study provides important tools to 
characterize agonist-dependent regulation of DOP receptor signaling at the cellular and intact animal leyel, which 
will facilitate the development of DOP receptor agonists for selected therapeutic indications.
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