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Abstract: Fragile X syndrome (FXS) is the most common monogenic form of autism spectrum disorder
(ASD). FXS with ASD results from the loss of fragile X mental retardation (fmr) gene products,
including fragile X mental retardation protein (FMRP), which triggers a variety of physiological
and behavioral abnormalities. This disorder is also correlated with clock components underlying
behavioral circadian rhythms and, thus, a mutation of the fmr gene can result in disturbed sleep
patterns and altered circadian rhythms. As a result, FXS with ASD individuals may experience
dysregulation of melatonin synthesis and alterations in melatonin-dependent signaling pathways
that can impair vigilance, learning, and memory abilities, and may be linked to autistic behaviors such
as abnormal anxiety responses. Although a wide variety of possible causes, symptoms, and clinical
features of ASD have been studied, the correlation between altered circadian rhythms and FXS with
ASD has yet to be extensively investigated. Recent studies have highlighted the impact of melatonin
on the nervous, immune, and metabolic systems and, even though the utilization of melatonin for
sleep dysfunctions in ASD has been considered in clinical research, future studies should investigate
its neuroprotective role during the developmental period in individuals with ASD. Thus, the present
review focuses on the regulatory circuits involved in the dysregulation of melatonin and disruptions
in the circadian system in individuals with FXS with ASD. Additionally, the neuroprotective effects of
melatonin intervention therapies, including improvements in neuroplasticity and physical capabilities,
are discussed and the molecular mechanisms underlying this disorder are reviewed. The authors
suggest that melatonin may be a useful treatment for FXS with ASD in terms of alleviating the adverse
effects of variations in the circadian rhythm.
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1. Introduction

The terms “autism spectrum disorder (ASD)” and “autism” are commonly used to describe
a group of neurodevelopmental disorders that are characterized by social deficits, communication
difficulties, stereotyped or repetitive behaviors, and cognitive delays. In general, individuals with
autism exhibit an extensive variety of symptoms rather than identical characteristics and, thus, the
newer term “ASD” has been used to describe a single diagnostic category of autism that links various
conditions. ASD may be caused by several factors and, of these factors, fragile X syndrome (FXS)
is thought to be the most prevalent form of the disorder [1]. This syndrome is a type of inherited
intellectual disability caused by a mutation of the fragile X mental retardation 1 (fmr1) gene on the X
chromosome. A CCG expansion repeat in the fmr1 gene at the fragile X instability site FRAXA (Xq27.3)
may result in FXS [2], and it has been reported that expanded GCC repeats in the fmr2 gene at the
FRAXE site (Xq28) can also trigger FXS but to a less severe degree than that of the fmr1 mutation [3,4].
These mutations lead to a loss of the fragile X mental retardation protein (FMRP) which, in turn,
triggers clinical abnormalities that include learning disorders, attention-deficit disorder, hyperactivity
disorder, anxiety, epilepsy, sleep disturbances, and alterations in circadian behaviors [5–8]. In molecular
studies, the absence of the fmr1 gene and the fragile X-related gene 2 (fxr2), which is an autosomal
homolog of the fmr1 gene, alters the expression of clock gene-related components and changes the
circadian rhythm [9,10]. Additionally, clinical studies have found that the sleep-related and behavioral
alterations in FXS patients are associated with mutations in these two genes.

In general, sleep disorders are a problem for children with ASD and have been reported
in up to 77% of children with FXS [11–13]. Furthermore, the occurrence of sleep disorders in
individuals with FXS is associated with impaired vigilance, deficits in learning and memory, and
autistic behavior with abnormal anxiety responses [14–16]. Children with ASD and FXS have
low melatonin levels and dysregulated circadian rhythms [8,17–20]. Melatonin is an endogenous
neurohormone that is predominantly synthesized in the pineal gland [21] and its major role involves
regulating the circadian rhythm, which is related to the biological functions of the core body [22,23].
Many of the neurobiological effects of melatonin are mediated by melatonin receptors and involve
neuronal plasticity [24,25], while melatonin receptor-independent pathways are unaffected by
morphophysiological barriers, including the blood-brain barrier [26,27]. In clinical psychology
fields, melatonin is commonly used to treat insomnia but has also been applied to children with
autism [28]. Similarly, experimental studies have reported that melatonin treatment attenuates sleep
disorders without causing side effects [29]. Thus, the present review discusses the effects of circadian
dysregulation on a variety of physical and behavioral abnormalities with a focus on individuals with
FXS with ASD, which is the most common monogenic type of autism and is associated with circadian
dysregulation via alterations in fmr genes.

Oxidative stress induces brain dysfunction and increases the expression levels of oxidative
biomarkers in the ASD brain [30]. For example, a number of lipofuscin-containing neurons are
present in language-related cortices in ASD-affected brains as a result of oxidative stress and there are
decreased levels of cellular antioxidants and altered redox metabolism in individuals with ASD [31–33].
Functionally, oxidative stress can produce superoxides that damage oxidative proteins and DNA; these
changes are thought to contribute to the development of physiological abnormalities and psychiatric
disorders in individuals with ASD. Markers of oxidative stress are associated with various neurological
diseases, aging, and cases of FXS with ASD [34], and individuals with FXS with ASD exhibit higher
levels of oxidative stress. Moreover, there is a close relationship between reactive oxygen species
(ROS) and FMRP deficiencies [35]. In an fmr1 knockout (KO) mouse model, which is a validated
model of FXS, the antioxidant system is altered and leads to brain damage and neuronal cell death [36].
Moreover, elevated levels of intracellular ROS have been implicated in the occurrence of oxidative
stress and subsequent apoptotic cell death that causes brain damage [37,38] and these oxidant factors
can lead to neurotoxicity and neurodegeneration [39–41]. Thus, the prevention of oxidative stress
by melatonin-based interventions has emerged as a novel therapeutic approach for individuals with
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various neurodevelopmental disorders, including autism [42,43]. Several studies have suggested that
melatonin is a very powerful free radical scavenger and antioxidant [44] and recent studies have
reported that melatonin has neuroprotective effects in animal models of neurological diseases [45–47].

FMRP deficiency may cause not only degeneration of dendrites and synapses [48], but also ROS
overproduction [35]. Recently, the antioxidant effects of melatonin-induced neural plasticity have been
investigated and other studies have reported the effects of melatonin on neuroplasticity and brain
remodeling [49]. According to former researchers, melatonin seems to more effectively prevent lipid
peroxidation in vivo [50], indicating that an even higher concentration of melatonin is thought to be
required to exert its antioxidative role in vitro conditions compared to in vivo. The present review will
discuss the effects of melatonin on neural regeneration and the physical capability of individuals with
FXS with ASD. It is proposed here that melatonin may be a novel therapeutic candidate for FXS with
ASD that may not have adverse effects resulting from variations in the circadian rhythm.

2. Autism Spectrum Disorder (ASD)

2.1. Classification of ASD

In terms of social interaction and communication, ASD is the one of the most frequently studied
developmental disabilities. Children with autism commonly exhibit stereotyped behaviors within
the framework of restricted and repetitive interests. Although a number of studies have attempted
to elucidate the causes of autism, an exact etiology has yet to be clearly defined. Additionally,
because autism is associated with several complex conditions that involve genetic predispositions and
environmental triggers, a clear treatment strategy has not been suggested either. The ASD diagnosis
was proposed in the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5;
American Psychiatric Association 2013 [51]) because children with autism do not show a uniform set
of symptoms but, rather, a unique constellation of features particular to each individual. Therefore, the
older term “autism”, which depicts a specific category of diagnoses, is being replaced by the newer term
“ASD”, which better describes a postulated spectrum disorder that encompasses multiple conditions.

2.2. Causes of ASD

2.2.1. Genetic Risk Factors

A variety of studies have consistently reported that ASD appears to be caused by hundreds of
genetic variants. Thus, it is clear that there is a strong genetic risk associated with ASD and, furthermore,
the genes linked with the monogenic types of ASD are involved in common signal transduction
pathways related to synaptic development and neuronal plasticity. The synaptic deficits observed
in ASD are induced by genetic disruptions of protein synthesis or alterations in synaptic scaffold
proteins. The monogenic forms of ASD include FXS (loss of FMRP), Tuberous Sclerosis Complex
(mutation of either TSC1 or TSC2), Angelman Syndrome (loss of Ube3a-dependent ubiquitination), and
Phelan-McDermid syndrome (disruption of the Shank3 scaffold protein). These genetic disruptions
have been utilized to develop animal models of ASD for the investigation and identification of
promising candidates for ASD treatment.

2.2.2. Environmental Conditions: Pre-, Peri-, and Neonatal Risk Factors of ASD

Several pre-, peri-, and neonatal complications have been identified as potential risk factors for
ASD, including gestational diabetes mellitus, vaginal bleeding in the first trimester, the precipitation of
medicine during pregnancy, viral and fungal infections, and meconium in the amniotic fluid. None of
these factors have a conclusive cause-and-effect relationship with ASD but are more frequently present
in children with ASD than in typically developing children. These types of environmental conditions
can be divided into three categories of risk factors: prenatal, perinatal, and neonatal. Six prenatal
factors have been consistently related to ASD: advanced maternal and paternal ages, primiparous
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women, bleeding, medication, and diabetes; four perinatal factors have been consistently related to
ASD: induced labor, preterm birth, breech presentation, and cesarean section; and a variety of neonatal
factors have been related to ASD: low birthweight and size, and poor conditions at birth including
hypoxia, hyperbilirubinemia, encephalopathy, and birth defects.

3. Fragile X Syndrome (FXS)

3.1. Mechanism Underlying the Incidence of FXS

FXS is the most common genetic cause of autism [52] as it affects approximately 1 in 3600 males
and 1 in 4000–6000 females [53]. FXS is caused by a mutation of the fmr1 gene at Xq27.3 on the X
chromosome [2]. The mutation of the fmr1 gene is induced by methylation at the frm1 promoter region
and is associated with the expansion of the CGG triplet sequence in the 5′-untranslated region (UTR).
As a result, FMRP levels are lower or absent (Figure 1). Depending on the triplet repeat mutation of
the fmr1 gene, the fmr1 alleles are classified as normal, pre-mutation, and full mutation. In typical
alleles, the fmr1 gene contains 5–54 CGG repeats (most commonly 30 repeats) while the pre-mutation
alleles range from 55 to 200 CGG repeats. Additionally, pre-mutation fmr1 alleles are unstable and can
become fully mutated alleles via maternal transmission [54,55].
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Figure 1. Mechanism of fragile X syndrome (FXS) incidence. Diagram of transcription and translation
of the fmr1 gene [2,54,55]. FXS resulted from the expansion of a CGG trinucleotide repeat in the
5′-untranslated region of the fmr1 gene. Dendritic spine morphology between fmr1 knockout (KO)
and wild type mouse [56]. Overabundance of immature dendritic spine (bulbous head and a thin
neck) is expressed in fmr1 KO mouse [57–59]. fmr, fragile X mental retardation; FMRP, fragile X mental
retardation protein. Scale bars = 10 µm.

3.2. Sleep Problems in Individuals with FXS with ASD

ASD refers to a constellation of neurodevelopmental disorders that manifest with particular
behavioral characteristics. Some studies have reported that severe sleep problems are more frequent in
children with autism than in typically developing children [60–62] and that ASD children with sleep
problems tend to exhibit overactive and stereotypical behaviors. Other studies have suggested that the
abnormal regulation of melatonin may be related to sleep disorders in ASD because the sleep-wake
cycle is related to circadian rhythms, which are modulated by melatonin. Abnormalities in the
production of melatonin might be the cause of sleep disturbances because consecutive sleep disorder
has been attributed to the dysregulation of melatonin synthesis, sensitization to environmental stimuli,
and behavioral insomnia syndromes. Several sleep studies have suggested that there is a correlation
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between sleep problems and the physiological roles of melatonin but the relationship between
melatonin levels in the blood and melatonin synthesis in pinealocytes has yet to be clearly established.

3.3. Correlation between FXS with ASD and Circadian Rhythms

The estimated prevalence of sleep problems in individuals with FXS with ASD is approximately
80% higher than that of the general population [63] and can lead to circadian variations and altered
glucose homeostasis in this population [64]. In experimental studies, mice lacking fmr1 exhibit
abnormal circadian behavioral rhythms such as a loss of rhythmic activity in a light:dark (L/D)
cycle and a shorter free running period in constant darkness (DD) [9,10]. Additionally, the altered
expression of the clock component has been observed in FXS animal models. The overexpression
of FMRP via transfection assays increases PER1- and PER2-mediated BMAL1 (Brain muscle aryl
hydrocarbon receptor nuclear translocator-like protein 1)–NPAS2 (Neuronal Per-Arnt-Sim domain
protein 2) transcriptional activity [9], which suggests that FMRP is an essential component involved in
the regulation of rhythmic circadian behaviors. Accordingly, Drosophila lacking the fmr1 gene exhibit
altered circadian rhythms [10]. Taken together, these results indicate that fragile X-related proteins
might be associated with the induction of abnormal sleep patterns in FXS due to alterations in circadian
genes; they may also play a critical role in the regulation of circadian output pathways.

3.4. Neurodevelopmental Abnormalities in FXS with ASD

Morphological analyses have consistently identified neuronal abnormalities and immature
dendritic spines in most fmr1 KO mice. Spines on neuronal dendrites with membranous protrusions
have a bulbous head and a thin neck and most of these spines are associated with synaptic
strength and/or the transfer of electrical signals to the axon terminal [65]. Dendritic spines release
various receptor-related neurotransmitters and neurotrophic factors that enable synaptic transmission.
Morphologically immature dendritic spines have been observed in fmr1 KO mice that may lack the
expression of FMRP proteins [56]. FXS patients with abnormal dendritic spine structures tend to
exhibit an intellectual disability [66] and these individuals also have morphologically distinct dendritic
spines such that they are longer or shorter, thinner, and fewer than those in typically developing
individuals. This type of dendritic spine dysmorphogenesis is related to intellectual disabilities [67,68],
and the observation of abnormal spine morphologies in FXS mice implies that their characteristics
during early development can be identified [69]. In FXS, structural and functional abnormalities in
dendritic spines are induced by the silencing of the fmr1 gene, and the resultant absence of FMRP
may alter the morphology and synaptic number of dendritic spines [58,70] (Figure 1). The specific
role of FMRP synthesized near synapses is associated with the regulation of synaptic structure and
function [59]. FMRP, which is an mRNA binding protein, stimulates the synthesis of synaptic proteins
by influencing synaptic plasticity. Thus, the loss of FMRP in FXS due to fmr1 gene silencing may imply
the presence of neurodevelopmental abnormalities.

4. Melatonin in FXS with ASD

4.1. Melatonin Signaling Pathways under Normal Condition

Melatonin is a circadian synchronizer that is predominantly synthesized in the pineal gland at
night. A major role of melatonin involves the regulation of biological signals associated with the
L/D cycle. Many studies have demonstrated the beneficial effects of melatonin, its antioxidative and
neuroprotective effects, and its involvement in neuronal plasticity and network remodeling. Melatonin
synthesis begins during periods of darkness via the serotonin/N-acetyl serotonin (NAS)/melatonin
pathway. First, the amino acid tryptophan is uptaken into the pineal gland, then tryptophan is
converted into serotonin, which is converted into NAS by N-acetyltransferase (AANAT), and, finally,
NAS is converted into melatonin by acetylserotonin N-methyltransferase (ASMT [71]).
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4.2. Dysregulation of the Melatonin Pathway in FXS with ASD

Clinical studies have reported decreased levels of melatonin in the blood of individuals with
FXS and ASD [19,20]. However, other studies have reported the overproduction of melatonin, which
may occur to compensate pineal gland overstimulation following increased sympathetic nervous
system activity [63], such as occurs with FXS [72]. Melatonin deficiencies are caused by dysfunction
in its synthesis and are reflected in altered circadian rhythms (Figure 2). Sleep disturbances may be
caused by significantly lower levels of melatonin as well as by significant decreases in AANAT, which
is responsible for converting serotonin into NAS. Because melatonin has anxiolytic effects, ASD in
conjunction with an impaired serotonin/NAS/melatonin pathway may result in circadian problems.
Recent studies have reported that disruptions of the serotonin/NAS/melatonin pathway are highly
sensitive and may be a useful biomarker for ASD [73,74].

4.3. Correlation between Melatonin with Neurodevelopmental Abnormalities in FXS with ASD

In individuals with FXS, deficits in neuronal plasticity lead to problems in learning, memory, and
cognition. Recent studies have reported that FMRP modulates the number, function, and maturation of
synapses and is associated with protein synthesis-dependent synaptic plasticity [71]. Because FMRP is
an influential regulator of protein synthesis in dendrites, the synaptic changes associated with synaptic
plasticity can be observed in FXS [75] (Figure 2). In particular, FMRP is localized in neuronal dendrites
and synapses where it is thought to play a role in the regulation of local protein synthesis, such as
for metabotropic glutamate receptors (mGluRs) via mRNA trafficking; thus, FMRP regulates mGluR
activity as a shuttle of its mRNA [74,75]. On the other hand, decreases in FMRP expression influence
long-term synaptic enhancement and are highly correlated with developmental disorders.

The activation of mGluRs induces the postsynaptic internalization of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPA) receptors, which is modulated by the rapid
translation of proteins involved in long-term depression (LTD) [76]. Lasting patterned stimuli
affect neuronal synaptic plasticity achieved by both long-term potentiation (LTP) and LTD and these
long-lasting enhancements tend to improve learning and memory. LTP alters synaptic connectivity by
changing the morphology of postsynaptic neurons, while LTD lowers postsynaptic receptor density
and leads to the elimination of old memories, which allows for the formation of new connections via
the LTP process. Both of these dynamic processes are necessary to maintain the efficient development
of synaptic networks and allow for the continuous receipt of new information by eliminating older less
important memories. However, excess LTD proteins have been reported in mouse models of FXS, which
is important because FMRP acts as an inhibitor of the translation of LTP proteins. Because the activation
of mGluRs triggers the over-synthesis of LTD proteins due to a lack of FMRP, neuronal synapses with
elongated and weak spine morphologies are expressed in the hippocampus and cerebellum [77].
Taken together, these findings indicate that abnormal neuronal synaptic structures negatively impact
synaptic plasticity. Thus, it is possible that the inhibition of mGluRs contributes to the suppression of
mGluR/LTD signaling rather than FMRP.

Experimental studies have observed excessive mGluR activation in fmr1 KO mice [78].
Under normal conditions, FMRP is thought to be a translational repressor and to negatively regulate
mGluR [79] because it is an RNA-binding protein involved in the transcriptional regulation and
transport of specific mRNAs [80]. Additionally, FMRP can be highly localized in the cytoplasm of
neurons and dendritic spines and acts to regulate the translation of ribosomes [81]. However, under
dysfunctional FMRP conditions, mGluR activity is altered by disruptions in intracellular signaling and,
subsequently, the absence of FMRP accelerates excessive mGluR5 signaling [82]. In turn, excessive
mGluR5 may inhibit melatonin synthesis, as reported previously [83]. Recent studies have proposed
the existence of abnormalities in melatonin secretion and circadian patterns in individuals with FXS
with ASD that are likely to be due to excessive signaling via mGluRs. These receptors are a type of
G-protein coupled receptor (GPCR) that can be classified into three groups (Groups I, II, and III) based
on receptor structure and physiological activity [83]. mGluR Group I, which includes mGluR1 and
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mGluR5, is coupled to the Gq-protein subtype that activates phospholipase C [84]. mGluR Group
II includes mGluR2 and mGLuR3, while Group III includes mGluRs 4, 6, 7, and 8; these groups are
negatively linked with the Gi- and Go-protein subtypes, which inhibit adenylyl cyclase and suppress
the formation of cyclic adenosine monophosphate (cAMP) [85].

Norepinephrine (NE)-dependent melatonin synthesis, which plays a role in the regulation of
circadian rhythms and alleviates epilepsy, is suppressed by the release of glutamate [86]. mGluR Group
II, particularly mGluR3, negatively regulates melatonin synthesis in pinealocytes [87] and it is known
that mGluR3 and mGluR5 are expressed in pinealocytes and are involved in the negative regulation
of melatonin synthesis via the inhibition of cAMP cascade. Similarly, Group II agonists suppress
melatonin synthesis and prevent AANAT activity in the rat pineal gland [88]. Thus, irregularities in
the synthesis of melatonin in FXS may be linked to the absence of fmr1, which regulates the expression
of FMRP and glutamate receptors.
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Figure 2. Melatonin intervention perspectives in FXS with autism spectrum disorder (ASD). Abnormal
melatonin synthesis and clock-related gene mutation can result in circadian system alteration in
FXS with ASD (indicated by the white upper triangular portion in the figure above). Loss of FMRP
is associated with dysregulation of synaptic protein synthesis resulting in impairment of synaptic
plasticity (indicated by the lower left triangular portion) and clinical symptoms (indicated by the lower
right triangular portion). mGluR, metabotropic glutamate receptor; LTD, long-term depression.

5. Melatonin as an Interventional Therapeutic Approach for FXS with ASD: Clinical Assessments

5.1. Effect of Melatonin as a Treatment for Sleep Disorder in FXS with ASD

Sleep disorders are common in patients with neurological diseases [89–91]. Additionally, the
modulating properties of melatonin in terms of sleep patterns and circadian rhythms are associated
with the development of ASD [92,93]. Individuals with ASD appear to be susceptible to sleep disorders
and survey research has indicated that the prevalence rate of sleep issues can be as high as 89% in
children with ASD and as high as 77% in children with FXS with ASD [63]. Melatonin supplements
regulate the sleep-wake cycle and have been shown to alleviate sleep problems in clinical research
studies. Recent studies have shown that levels of melatonin or melatonin metabolites are significantly
lower in children with ASD than in typically developing children [17,19]. Melatonin is an endogenous
neurohormone produced in pinealocytes, which are neuroendocrine cells, and is widely used in clinics
to treat insomnia in children because it is inexpensive, efficient for treating sleep problems, and has
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no side effects [94]. For example, a study investigating the efficacy of melatonin in 107 children with
autism (age range: 2–18 years old) found that 25% of the treated children no longer reported sleep
problems and that 60% of the treated children reported improvements in sleep [95]. It has also been
shown that autistic children have lower melatonin levels than typically developing children [96].

5.2. Effects of Melatonin on Cognitive and Learning Disabilities in FXS with ASD

Chronic sleep disorders are typically associated with learning and behavior issues in ASD
individuals, and the functional consequences of abnormal melatonin levels in individuals with FXS
may also include learning and memory problems. In fmr1 KO mice, abnormality of dendritic spines can
be seen [97], which is known to be harmful to memory function [98]. However, several studies have
reported that melatonin facilitates synaptic plasticity and enhances the mechanisms underlying learning
and memory [24,99,100]. Taken together, these findings suggest that there is a correlation between the
loss of neuroplasticity and the malfunctioning of, or irregularities in, melatonin production in FXS.

Low melatonin levels are associated with altered activity in the GABAergic system [13].
γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system
(CNS) and, accordingly, induces the relaxation of the brain and sleep. Melatonin stimulates GABAergic
activity in the brain and, thus, abnormal melatonin levels influence the onset and length of sleep [101].
Similarly, alterations in the circadian clock mechanism due to abnormal melatonin synthesis can affect
the sleep-wake cycle. Recently, studies using animal models of autism have indicated that clock
and clock-related genes may interact in the ASD phenotype and studies using fmr1 KO mice have
implicated clock proteins in sleep alterations in FXS. Furthermore, melatonin is helpful for treating
sleep problems in cases of autism with oxidative stress and the physical alterations of axons and
dendritic spines [92,102].

5.3. Neuroprotective Effects of Melatonin on Seizures in FXS with ASD

Individuals with FXS have a higher risk of neurological diseases, such as seizures, which are an
important characteristic of autism and significantly associated with FXS. Clinical survey data have
revealed that epilepsy occurs in 10–20% of children with FXS [103]. However, a recent study found
that melatonin, which is used to treat sleep disorders and does not cause side effects, can effectively
regulate severe epilepsy [104] as well as suppress its incidence.

Epilepsy is a neurological disease that is accompanied by biochemical responses resulting
from brain injuries and chemical imbalances. In particular, free radicals are linked to seizure
initiation [105]. The excessive production of free radicals contributes to brain damage in patients
with neuropathological conditions such as stroke, Alzheimer’s disease, and Parkinson’s disease [106].
Oxidative stress occurs in mitochondria following seizures, which constitute a primary cause of
oxidative stress that is critical to neuronal cell fates. Recently, melatonin was discussed in relation
to epileptic seizures [107–109] because this neurohormone is known to act as an antioxidant and
free radical scavenger. A large study reported that melatonin may be a promising anticonvulsant
candidate due to its capability to induce antiepileptic activity, and a clinical study showed that low
baseline levels of melatonin are observed in patients who suffer from epilepsy but that these levels
dramatically increase after a seizure. Although these findings indicate that melatonin may play a
role in the regulation of seizures, other studies have reported that melatonin might actually increase
the risk of seizure. The latter findings are supported by evidence showing that melatonin may affect
hippocampal excitability and can increase one’s susceptibility for seizures by lowering the seizure
threshold [110]. Thus, the role of melatonin in epilepsy remains under debate.

5.4. Synergistic Effects of Melatonin on Synaptic Plasticity in FXS with ASD

Recently, it was reported that melatonin acts as a neuroprotective agent against neurological
injuries [111–114]. The neuroprotective effects of melatonin have been demonstrated by in vivo
studies that co-administered injections of melatonin and dexamethasone, the latter of which is
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known to be neurotoxic to cells in the hippocampus. The animals that received these injections
exhibited decreased numbers of abnormal hippocampal cells and different histological properties
compared to the vehicle group. Melatonin is an endogenous neurohormone that regulates several
biological functions but exogenous melatonin has also been shown to prevent neuronal cell death
and improve cognitive dysfunction [115]. The neuroprotective effects of melatonin have also been
demonstrated in cases of acute global cerebral ischemia and hypoxic ischemia [116]. Most cerebral
ischemic models produce a significant loss of neurons in the hippocampal CA1 to CA4 regions.
In the case of children who experienced perinatal hypoxic ischemia, the resulting brain injuries were
directly caused by neuronal cell death and then indirectly by chronic neuropathic conditions such as
cerebral palsy, intellectual disabilities, and epilepsy [117]. On the other hand, brain damage due to
cerebral ischemia is primarily induced by reductions in the blood supply and treatment may include
oxygen supplementation. When the blood supply becomes blocked, the cellular metabolic system
converts to anaerobic metabolism and, consequently, depletions in adenosine triphosphate (ATP), the
accumulation of lactic acid, and the cellular input of calcium may occur.

However, melatonin treatment can protect the brain from damage and delay neuronal cell death.
During reperfusion after cerebral artery occlusion, the overproduction of free radicals triggers the
activation of oxidative stress but melatonin may suppress this type of brain damage. Because melatonin
contributes to various forms of neuroplasticity, including learning, memory, and recovery from brain
damage, the manner in which this hormone acts as a neuroplastic agent after autism should be
elucidated. Interestingly, the delayed stabilization and abnormal morphological features of dendritic
spines are the main characteristics of FXS, and these are related to impaired synaptic signaling and
connections. Disruptions in the pruning of excitatory synapses and hyperconnectivity have been
observed in FXS patients and the fmr1 KO mouse model due to loss of postsynaptic FMRP [118].
Deficits in FMRP in conjunction with incomplete pruning induces cell-to-cell hyperconnections in
synapses. Moreover, the connection pruning process that occurs during early development is essential
for the formation of normal neuronal circuits. In contrast, in FXS, FMRP dysfunction results in
hyperconnectivity and an excessive number of synapses that lead to autistic features. Melatonin has
been associated with neurogenesis and microtubule polymerization in dendrites and, thus, melatonin
may stimulate dendrite maturation and affect neuroregeneration.

6. Conclusions

Molecular biological research on autism has produced a significant number of therapeutic
candidates, including melatonin. The present review aimed to highlight the neurological effects
of melatonin in FXS with ASD, and investigate prevention strategies as well as therapeutic approaches
for the management of FXS. The clinical application of melatonin-based therapies is expected to have
high efficacy and to suppress the onset of diseases. However, additional studies should be conducted
to determine the mechanisms underlying the beneficial effects of melatonin on autism and FXS.
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