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Helicobacter pylori is a gram-negative bacterium that colonizes the human gastric mucosa
and can lead to gastric inflammation, ulcers, and stomach cancer. Due to the increase in
H. pylori antimicrobial resistance newmethods to identify the molecular mechanisms of H.
pylori-induced pathology are urgently needed. Here we utilized a computational biology
approach, harnessing genome-wide association and gene expression studies to identify
genes and pathways determining disease development. We mined gene expression data
related to H. pylori-infection and its complications from publicly available databases to
identify four human datasets as discovery datasets and used two different multi-cohort
analysis pipelines to define a H. pylori-induced gene signature. An initial Helicobacter-
signature was curated using the MetaIntegrator pipeline and validated in cell line model
datasets. With this approach we identified cell line models that best match gene regulation
in human pathology. A second analysis pipeline through NetworkAnalyst was used to
refine our initial signature. This approach defined a 55-gene signature that is stably
deregulated in disease conditions. The 55-gene signature was validated in datasets from
human gastric adenocarcinomas and could separate tumor from normal tissue. As only a
small number of H. pylori patients develop cancer, this gene-signature must interact with
other host and environmental factors to initiate tumorigenesis. We tested for possible
interactions between our curated gene signature and host genomic background
mutations and polymorphisms by integrating genome-wide association studies (GWAS)
and known oncogenes. We analyzed public databases to identify genes harboring single
nucleotide polymorphisms (SNPs) associated with gastric pathologies and driver genes in
gastric cancers. Using this approach, we identified 37 genes from GWA studies and 61
oncogenes, which were used with our 55-gene signature to map gene-gene interaction
networks. In conclusion, our analysis defines a unique gene signature driven by H. pylori-
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infection at early phases and that remains relevant through different stages of pathology
up to gastric cancer, a stage where H. pylori itself is rarely detectable. Furthermore, this
signature elucidates many factors of host gene and pathway regulation in infection and
can be used as a target for drug repurposing and testing of infection models suitability to
investigate human infection.
Keywords:Helicobacter pylori, gastritis, genome-wide association study, transcriptomics, gene-signature, immune
response, multi-cohort analysis, gastric cancer
INTRODUCTION

Helicobacter pylori colonizes the stomach of approximately half
of the world’s human population. This colonization is mostly
asymptomatic, but in some cases an immune response is initiated
that may cause chronic inflammation of the gastric mucosa and
can lead to various severe conditions such as peptic ulcer disease
and gastric cancer (1, 2). H. pylori antibiotic resistance, a major
cause of failure of eradication therapy, is increasing, and the
World Health Organization (WHO) has listed H. pylori
accordingly among bacteria that urgently need new therapies.
This highlights the need for new efforts to understand the
mechanisms underlying H. pylori transmission, colonization,
pathogenesis, and treatment failure. The development of
gastritis and subsequently gastroduodenal ulcer diseases and
cancer is a multifactorial process, and both the environmental
and genetic background of the patient contribute (3). Previous
Genome-wide association studies (GWAS) have been able to
identify genetic polymorphisms in the toll-like receptor (TLR)
locus that correlate to patients’ H. pylori seropositivity.
Furthermore, these patients showed high expression levels of
TLR1 (4). Other studies have identified an association of
polymorphisms in the TLR5 gene with atrophic gastritis (5) as
well as other autoimmune reactions (6). These studies hint at a
complex regulatory network for disease progression during H.
pylori-infection. This network may be mostly controlled through
environmental factors, bacterial pathogenic antigens such as
CagA or VacA, and also the patients’ genetic background and
immune response to the infection. Further gene expression
studies from human patients and experimental models have
elucidated many of the molecular mechanisms relevant to H.
pylori pathogenicity and the pathways related to the various
disease stages. However, their results remain indecisive as they
show a variable picture, most likely due to low sample numbers
in individual studies or variations in disease stage and severity in
analyzed samples (7, 8). A powerful model to study a tissue and
cell specific reaction to H. pylori especially at the different stages
of the pathology is the use of cell lines or animal models. Such
studies have elucidated many factors that contribute to disease
pathogenesis. The problem of limited reproducibility for some of
the identified gene signatures in human patients however
remains (9), and contradictory results depending on the cell
line and infection conditions have been reported (10). The use of
adenocarcinoma cell lines is also limiting because many of the
primary cell transitions would be hard to detect, and the
suitability of cellular systems to imitate the host’s reaction to
org 2
the infection is difficult to predict purely on the basis of such
biological studies.

Recently developed tools and databases of GWA studies have
enabled the collective analysis of diseases’ genetic variants across
many samples, which facilitates the discovery of the molecular
bases of this association between various diseases and genetic
polymorphisms (11–13). This is particularly relevant for
reconstructing upstream signals that lead to disease specific
gene signatures. A practical approach towards heterogenic
disease gene signatures that may develop due to technological
bias or experimental factors is to reanalyze these studies with
different computational and statistical methods that compensate
for these differences. This approach has been very successful in
harmonizing the analysis of different studies, by allowing the use
of large sample numbers and thereby permitting the
identification of novel markers for various diseases (14–16).
New associations between different pathologies such as
infection and autoimmunity have also been found through
such approaches (17–19). Combining genomic and transcriptomic
analyses can help better understand the molecular pathways and
processes associated with H. pylori infection and define disease
signatures associated with different stages of disease development.
Such a tool could improve patient diagnosis and treatment efforts.
Furthermore, comparing gene signatures of human patients with
signatures obtained from different cell lines might close the gaps
between both signatures and permit assessment of the suitability of
cell lines for investigating phases and pathways in infection
and disease.
METHODS

Collection of Gene Expression Data
Collection of the meta-analysis data was carried out by searching
public expression databases (NCBI GEO and Array Express)
(accessed August 2020). For the GEO query we used the
following search terms: “Helicobacter pylori” and the filters
[organism (Homo sapiens)], study type (expression profiling
by array), entry type (Dataset/Series). The Array Express query
was executed using the following search terms: “Helicobacter
pylori” and the filters [organism (Homo sapiens)], experiment
type (array assay). Initially 55 entries from GEO and 34 entries
from Array Express were retrieved. Duplicates and irrelevant
studies were excluded, and 32 studies remained. These studies
were further refined using the following inclusion criteria to
arrive at the four final studies as discovery and six other studies
February 2021 | Volume 12 | Article 624117
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that were assigned for validation. We included only studies that
had analyzed gene expression in gastric biopsies or relevant
human cell lines. Only datasets with available raw data were
included. For the human samples, uninfected healthy controls
had to be available in each dataset. The patients’ H. pylori
infection status had to be known, and we accepted studies
where at least one of the following diagnostic tests for H. pylori
had been performed: rapid urease test, culture, serologic analysis,
histopathological analysis. For cell line studies, we only included
experiments from wildtype cell lines infected with wildtype H.
pylori (host cell or bacterial mutants and other Helicobacter
species were excluded). Studies including gastric organoids were
not included due to different culture conditions in comparison to
standard cell lines. Experiments using infection times between 16
and 24 h were included; studies using longer or shorter infection
periods were excluded to ensure reasonable comparison. For
adenocarcinoma, normal and tumor tissue had to be available in
the same study to be considered. The database-search followed
the Preferred Reporting Items of Systematic reviews and Meta-
Analyses (PRISMA) statement and is documented in the
PRISMA Flow Diagram (20) (Supplementary File 1). Only
datasets with available raw data were included. After a thorough
search and excluding datasets as specified above, four datasets for
Human samples (GSE27411, GSE60427, GSE60662, and
GSE5081) and four cell line infection datasets (GSE60661,
GSE70394, GSE74577, and GSE74492) (7, 21–27) were selected
for further analysis. A total of 98 human samples were considered
for downstream analysis of the discovery steps, containing data
from 72 helicobacter-infected/gastritis/atrophy/metaplasia
patients, and 26 healthy controls. Two datasets detected through
the search process with gastric adenocarcinoma (E-MTAB-1440
and GSE65801) were collected for the validation process (28, 29).
A second search was performed to detect further gastric cancer
datasets for the validation process. GEO was mined using the
following search terms: “gastric cancer” and the filters [organism
(Homo sapiens)], study type (expression profiling by array). This
search yielded 280 entries, which were vetted to detect datasets
having cancer and normal tissue, a sufficient number of samples,
and raw expression data. Ten datasets matching our criteria were
chosen to further validate our gene-signature (30–37).

Determination of Helicobacter pylori-
Induced Pathologies Score and Validation
in Cell Line Model
We used R programming language (version 4.0.2) (38) and the
“MetaIntegrator” package (39), which utilizes a gene expression
meta-analysis workflow described by Haynes et al. (40). In
summary, the MetaIntegrator approach computes a Hedges effect
size for each gene in each dataset. These effect sizes are then pooled
across all datasets using a random-effect model by assuming that
results from each study are drawn from a single distribution and
that each inter-study difference is a random effect. The approach
computes the log sum of p-values that each gene is up/down-
regulated, then combines the p-values using Fisher’s method and
finally performs Benjamini-Hochberg false discovery rate (FDR)
correction across all genes (41). In our analysis, a gene is considered
Frontiers in Immunology | www.frontiersin.org 3
to be differentially expressed if the absolute value of its effect size is
greater than zero, the FDR is less than 5% across all training
datasets and it is significantly up/down-regulated in all of the four
training datasets with a heterogeneity P-value cutoff of 0.05 (42). To
optimize the initial gene signature, we performed a Forward Search
process by taking the initial gene set, adding one gene at a time and
calculating the weighted Area Under the ROC curve (AUC)
resulting from the addition of this gene. Weighted AUC is
calculated as: W.auc=S.auc×n, where W.auc is the weighted AUC,
S.auc is the sum of AUC of each dataset and n is the number of
samples in this dataset. This process is repeated for each gene until
the stopping threshold (0 in our case) is reached and the final set of
genes will be those that contributed the most to the weighted AUC.
We tested performance and consistency of the original gene
signature in four independent cell line datasets (GSE39919,
GSE70394, GSE74577, and GSE74492). All discovery steps were
conducted on the training datasets only.

Integrative Pathway Analysis
Functional Enrichment analysis for the original MetaIntegrator
signature was performed using the Enrich R package against the
following databases: GO Biological Processes (GO BPs), GO
Molecular Functions (GO MFs), GO Cellular Components (GO
CCs), and KEGG. Upstream signaling pathways were extracted
using the Signaling Pathway Enrichment using Experimental
Datasets (SPEED) web-tool (43). Enrichment for upstream
pathways using a list of either upregulated or downregulated
genes was tested using the Bates distribution test. In comparison
with pathway membership based methods such as Reactome (44)
and gene ontology, SPEED offers some advantage due to its ability
to infer causative upstream signals. Its overall performance is
compatible with GSEA when using the Bates test (43).

Identification of Differentially Expressed
Genes in Individual and Collective
Datasets Using Limma and
NetworkAnalyst
The datasets were retrieved from the NCBI GEO database using
the GEOquery R package (45). Processing of individual datasets
was carried out using the limma R package (46). Human gastric
biopsies datasets were normalized using log2 transformation and
genes with an adjusted p-value of < 0.05 using the Benjamini–
Hochberg method were considered for downstream analysis.
Different gene IDs were converted to the official gene symbols
or Entrez IDs either through the AnnotationDbi R package (47) or
DAVID (Database for Annotation, Visualization, and Integrated
Discovery) (48). Meta-analysis of human samples was conducted
with the web-based tool NetworkAnalyst (49, 50). For each
individual dataset we carried out Log2 transformation with
autoscaling and inspected possible outliers using principle
component analysis (PCA). The individual analysis of each
dataset was carried out using the Benjamini–Hochberg’s False
Discovery Rate (FDR) with cut-off p-values of <0.05. The
microarray chip identifiers were annotated to other suitable Gene
IDs including Entrez Gene identifiers, and datasets were merged
after annotation. A suitable identification condition for each sample
February 2021 | Volume 12 | Article 624117
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was assigned where only healthy uninfected samples were assigned
to the control group and all other conditions (H. pylori-infected,
gastritis, erosions, atrophy, metaplasia) were assigned to the case
group. To ensure unbiased comparative analysis of the different
datasets, the batch effect was adjusted through the ComBat batch
effect method integrated in NetworkAnalyst and was investigated
before and after adjustment through principle component analysis.
The size effect method was used to identify DEGs between the cases
and controls. Cochran’s Q test was used to estimate the statistical
heterogeneity to identify the most suitable effect size model between
the fixed and random effects models (FEM and REM). Depending
on the Cochran’s Q test results REM was used to identify DEGs,
which usually gives more conservative but reliable results. A
discovery significant value of <0.05 was used to identify DEGs.
NetworkAnalyst integrated visualization tools were used to create
heatmap of DEGs. Genes were clustered using single linkage method.

Identification and Validation of the Refined
Gene Signature
Intersection between the MetaIntegrator and NetworkAnalyst
gene signatures was carried out through InteractiVenn (51). The
refined 55-gene signature was tested in 12 independent gastric
cancer datasets. We used both the Area Under the Receiver
Operating Characteristic Curve (AUC), and the Area Under the
Precision-Recall Curve (AUPRC) as evaluation metrics.

Genome-Wide Association Studies Data
Collection and Analysis
Collection of GWAS data was carried out by searching the NHGRI
GWAS catalog database using the keyword “Helicobacter pylori”,
“Gastritis”, or “Gastric cancer” (52). In total 64 SNPs were
considered for further analysis. The corresponding genes were
identified, and the nearest upstream and downstream genes were
selected for intergenic variants. Genetic variants were annotated
using the HaploReg v4.1 tool (53). Further gastric cancer driver
genes were gathered from the IntOGen database (54). In total 61
genes were discovered through the database research.

Hub Genes Network Analysis
Protein-protein interaction (PPI) networks were generated using
the IMEx Interactome innateDB database (55). A gene list with the
55-gene signature, the 37 GWAS genes, and the 61 gastric cancer
driver genes was used for the analysis. A first-order PPI network
was generated consisting of 2973 nodes (Proteins) and 5297 edges
illustrating the interaction between these genes. To focus on key
regulators of this network we curated a zero-order PPI network
with 49 nodes and 81 edges including only direct interaction
between the seed proteins. Nodes were ranked based on the
number of connections they have to other nodes (degree) and the
number of shortest paths going through them (betweenness
centrality) (56).

cMAP Analysis
To find potential compounds that induce a similar or opposing
gene expression pattern as our H. pylori-gene signature we used
the Connectivity Map analysis (CMAP, https://www.broadinstitute.
Frontiers in Immunology | www.frontiersin.org 4
org/cmap/) (57, 58) as described before (59). The query yields a
ranked list of various perturbagen’s signatures based on a
connectivity score between − 100 to 100 where the positive scores
indicate expression signature similarity between the perturbagen’s
and the query signature and the negative score implies an opposing
impact. The 55-gene signature (up- and down-regulated) was used
to query the CMap database resulting in a connectivity score matrix
of 8559 perturbations.

Data Accessibility
All datasets used in this study are publicly available on the Gene
Expression Omnibus (GEO) and ArrayExpress under the
corresponding accession number. The code for this analysis is
available on GitHub and can be accessed using the following link:
https://github.com/Tarek-Badr/Comprehensive-Integration-of-
GWAS-and-Gene-Expression-studies-in-H.pylori-induced-
Gastric-Disease
RESULTS

Data Acquisition
From the initial datasets acquired by searching public databases,
eight matched our predetermined inclusion criteria (see
Methods), four for human gastric biopsies – of non-cancerous
origin- and four for three different cell lines. The four human
gastric biopsies datasets included in the downstream analysis
were used for the discovery of gene-signature and contained
samples from 98 human samples, including data from 72 H.
pylori-infected/gastritis/metaplasia patients, and 26 healthy
controls. Twelve gastric cancer datasets were included for the
validation process. The data summary of the included datasets is
shown in Table 1.

Discovery and Validation of Gene Set
Predictive Score Matching Cell Line
Infection Models to Human Pathology
To detect stably host-deregulated genes across various stages in
H. pylori-induced gastritis, we compared healthy controls
(controls) to samples from gastritis, atrophy, erosions, and
metaplasia (cases). The initial meta-analysis resulted in the
identification of 881 DEGs (294 up-regulated and 587 down-
regulated genes). We refined this initial signature by using a
forward search process, which resulted in the identification of
427 DEGs (225 up-regulated and 202 down-regulated genes
(Supplementary Table 1). Our gene signature distinguished
healthy controls from patients with a pooled area under the
curve (AUC) = 0.948 [95% confidence interval (CI) 0.858−1] in
the discovery datasets (Figure 1A). Violin plots of the
performance of the signature in each discovery datasets shows
the significant score difference between cases and controls
(Figures 1B–E)

To match this gene signature curated from human samples to
gene expression in different model cell lines, we tested the
capability of the gene signature to distinguish infected from
uninfected samples. The Human gene signature was able to
February 2021 | Volume 12 | Article 624117
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distinguish infected samples in AGS and HT29 cell lines
sufficiently with AUC = 1 in GSE39919 (AGS) and GSE74492
(E12), and AUC = 0.889 in GSE70394 (AGS) suggesting
similarity of their gene signature to human gastric signature
and their suitability to hypothesis testing and experimentation in
comparison with human pathology (Supplementary Figures
1A, B, D). Interestingly our signature underperformed in
distinguishing infected samples in the tested GES-1 dataset
(GSE74577) (Supplementary Figure 1C). This was surprising:
the GES-1 cells are derived from SV40 transformed human fetal
gastric epithelial cells, which intuitively may be considered relatively
close to primary cells (60). The gene expression analysis however
suggests substantial differences to human gastric tissue. Further cell
line experiments with larger sample numbers will be required to
elucidate definitive similarities and differences between these in
vitro models and the human gastric disease.

Identification of Enriched Pathways
and Upstream Signaling Activity
To understand the molecular basis and biological effect of the
curated gene signature we searched for enriched pathways and
gene ontologies using the KEGG and GO databases.

Unsurprisingly, immune defense related pathways and
cytokine response related pathways were among the most
highly enriched pathways as previously described (61). Among
the most downregulated pathways were mitochondrion and
mitophagy related terms, as well as various cell metabolism
Frontiers in Immunology | www.frontiersin.org 5
pathways as ATPase activator activity, mineral absorption, and
folate biosynthesis.

Searching for upstream signaling impact through our gene-
signature through the SPEED analysis showed upregulation of
IL-1, TNF, and H2O2 regulated genes (Figure 2A) which has
been shown to induce epithelial mutagenesis (62). At the same
time, this analysis permitted identification of genes known to be
down-regulated by IL-1, TNF, and TLR-signals (Figure 2B).
This is strong evidence that these pathways are up-regulated
during H. pylori-infection. On the other hand, p53 and PPAR
signaling seem to be downregulated. A list of top 10 over/
underrepresented pathways in each category as well as results
of SPEED analysis are shown in Supplementary Table 2.

Identification of a Common Gene
Expression Signature in Helicobacter
pylori-Related Pathologies Using Random
Effect Models
To further stratify and refine our gene signature, we used another
pipeline to determine DEGs in the discovery datasets. The
individual dataset gene expression normalization was carried
out using the NetworkAnalyst log2 transformation function,
followed by autoscaling. The individual datasets were inspected
with PCA plots before and after ComBat method normalization,
and PCA plots of gene expression data of the four datasets before
and after normalization and after gene expression analysis are
shown in Supplementary Figures 2 and 3 respectively. No major
TABLE 1 | Summary of the datasets integrated in the meta-analysis pipeline and prediction and validation of the gene signature.

Human samples PMID Data set Platform Cell type Controls Cases Refrence

1 24119614 GSE27411 GPL6255 Gastric biopsies 6 12 Nookaew et al., 2013
2 28739826 GSE60427 GPL17077 Gastric biopsies 8 24 Nagashima et al., 2015; Tanaka et al., 2017
3 28111844 GSE60662 GPL13497 Gastric biopsies 4 12 Hanada et al., 2014
4 18321301 GSE5081 GPL570 Gastric biopsies 8 24 Galamb et al., 2008
Cell line PMID Data set Platform cell type controls infected Refrence
1 22889111 GSE39919 GPL6947 AGS 4 4 Kim et al., 2012
2 26802142 GSE70394 GPL6480 AGS 3 3 Costa et al., 2016
3 26690385 GSE74577 GPL17586 GES-1 3 3 Zhu et al., 2015
4 29085225 GSE74492 GPL570 HT29-MTX-E12 3 3 Cairns et al., 2017
Tumor samples PMID Data set Platform cell type controls cases Refrence
1 25928635 GSE65801 GPL14550 Gastric tissue 32 32 Hao Li et al., 2015
2 24321518 E-MTAB-1440 A-MEXP-1171 Gastric tissue 20 20 Eftang et al., 2013
3 29113266 GSE79973 GPL570 Gastric tissue 10 10 Jin Y et al., 2017
4 21132402 GSE19826 GPL570 Gastric tissue 15 12 Wang, Q. et al., 2012
5 29725014 GSE13861 GPL6884 Gastric tissue 19 65 Oh SC et al., 2018
6 19081245 GSE13911 GPL570 Gastric tissue 31 38 D’Errico et al., 2009
7 24867265 GSE29272 GPL96 Gastric tissue 134 134 Li WQ et al., 2014
8 21781349 GSE29998 GPL6947 Gastric tissue 49 50 Holbrook et al., 2011
9 NA GSE31811 GPL6480 Gastric tissue 17 21 Kitamura et al., 2011
10 22735568 GSE37023 GPL96 Gastric tissue 36 112 Wu et al., 2013
11 22735568 GSE37023 GPL97 Gastric tissue 36 29 Wu et al., 2013
12 28199974 GSE81948 GPL6244 Gastric tissue 5 15 Canu et al., 2017
Non-gastric diseases PMID Data set Platform cell type controls cases Refrence
1 30653341 GSE126848 GPL18573 Liver biopsies 14 43 Suppli et al., 2019
2 NA GSE88839 GPL570 Liver biopsies 3 35 NA
3 NA GSE83448 GPL18134 Intestinal biopsy 14 39 NA
4 31467298 GSE130970 GPL16791 liver biopsies 6 72 Hoang et al., 2019
5 NA GSE101685 GPL570 liver biopsies 8 24 NA
6 29782846 GSE112366 GPL13158 ileum biopsies 26 362 VanDussen et al., 2018
7 NA GSE117999 GPL20844 cartilage tissue 12 12 NA
F
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differences were seen that could be attributed to differences in
dataset platforms or conditions and that could have introduced a
bias. Based on the Cochran’s Q test analysis (Supplementary
Figure 4) we used the REM to identify 263 genes significantly
deregulated among the different human cohorts between patients
and healthy controls (p<0.05 in the REM) (Supplementary
Table 3). A heatmap of the most highly differentially regulated
genes is shown in (Figure 3). Using this method, we see many
genes identified as deregulated that were not detectable in their
respective individual datasets (Supplementary Figure 5).

Intersection of Gene Sets Curated
Through Two Meta-Analysis Pipelines
Comparing this newly curated gene set with our original signature,
we identified 55 genes in common between the two independent
trainingmethods; of these, 31 genes were up-regulated and 24 genes
were down-regulated (Supplementary Figure 6). Representative
forest plots of the five most up- and down-regulated genes from the
55-gene intersection signature can be seen in (Figure 4) and a list of
the 55-gene signature can be found in Table 2. This refined gene
signature was used for further analysis and validation. We validated
this 55-gene signature in the four original discovery datasets to see if
Frontiers in Immunology | www.frontiersin.org 6
it is sufficient in distinguishing patients from healthy controls.
Despite the lower gene number in comparison with the original
signature and the sample heterogeneity due to dataset origin and
inclusion criteria, this gene signature was able to identify patients in
the four discovery datasets (Pooled AUC = 0.934 [95%CI 0.825−1])
(Figure 5A).

The refined 55-gene signature scored very well in distinguishing
gastric cancer samples from normal tissue in all tested datasets with
AUC values between (0.71–0.93). Moreover, the newly calculated
meta-score of the refined signature was significantly higher in
cancer samples against controls in all datasets, proving its
capability in distinguishing gastric cancer tumor from controls,
even when the signature comes from precancerous lesions (Figures
5B–F; 6A–G). To explore the potential role of our 55-gene
signature in other inflammatory diseases we tested its
performance in both epithelial and non-epithelial diseases
(Supplementary Figure 7). The gene signature underperformed
in inflammatory diseases of hepatocellular origin such as fatty liver
disease, liver adenoma or hepatocellular carcinoma with AUC
values between 0.14 and 0.36. In other bowel inflammatory
diseases such as Crohn’s disease, the signature showed a decent
performance with AUC values (0.63-0.665).
A B C D E

FIGURE 1 | The performance of the original signature in discovery datasets. (A) ROC curves of the comparison between cases and controls with the pooled AUC
(area under the curve) in the four training datasets. (B–E) violin plots of the difference in the signature meta-scores in each training dataset between cases (gastric
disease) and healthy controls with each point representing a sample. Shown are p-values from Wilcoxon test.
February 2021 | Volume 12 | Article 624117
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Genome-Wide Association Studies
Catalog Single Nucleotide Polymorphisms
Identification and Functional Annotation
Mining the NHGRI GWAS catalog database yielded 64 SNP
entries associated with Helicobacter pylori status or gastric
related pathologies. All variant related information can be
found in Supplementary Table 4. All identified variants could
be successfully annotated through the HaploReg tool resulting in
45 unique SNPs in 37 unique genes that were used for
downstream analysis. From the coding variants, five were
missense mutations in the genes PLCE1, CHD6, SEBOX,
HABP2, and MTX1. Detailed functional analysis can be found
in Supplementary Table 5.
Frontiers in Immunology | www.frontiersin.org 7
Cross-Linking Genome-Wide
Association Studies With Helicobacter
pylori-Gene Signature Through Hub
Genes Network Analysis
Our curated 55-gene signature represents the downstream effect of the
Helicobacter-induced pathology. Linking it with upstream causal and
cancer driver genes will be of great benefit to understand the
regulation network of this signature and the interactions between its
players. We performed a network-based analysis to investigate the
interaction between the 55-gene signature, genes harboring
polymorphisms associated with Helicobacter and gastric pathologies,
and known gastric cancer driver genes. This analysis identified key
hub genes among the most highly deregulated genes (Figure 7). The
A

B

FIGURE 2 | Upstream signaling pathways enrichment. Enriched upstream signals were tested in (A) upregulated or (B) downregulated genes using the (SPEED)
web-tool. The x axis represents z-scores between –1 and 1 representing the rank of up- and down-regulated genes per pathway experiment. Bar graph values
represent mean rank of our query gene-list for each pathway and bar colors represent adjusted p-values. Distribution of the used gene list is shown as a barcode
plot on the right side of each pathway where each black bar represents a query-gene. The mean rank shift of each pathway was tested using the Bates test.
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FIGURE 3 | Heatmap of most significantly differentially expressed genes. Heatmap showing the relative expression of the 50 most significantly differentially
expressed genes (DEGs) of the 263 significant DEGs identified through the meta-analysis, where 182 genes were co-up-regulated, and 81 genes were co-down-
regulated (case versus control). The heatmap indicates the normalized expression value of each DEG in the individual samples, and genes were clustered based on
their condition (cases vs controls) and their original datasets. The heatmap was created by the visualization module in NetworkAnalyst, where genes with p-value <
0.05 in the Random Effect Model analysis were considered significant.
A

B

FIGURE 4 | Forest plots of the 5 most up- and down-regulated genes in the intersection gene-signature. The x axis represents standardized mean difference
between cases and controls for each gene. The blue rectangles’ size is oppositely proportional to the standard error of the mean in this study and their whiskers
represent the 95% CI. Orange diamond represents combined mean difference of the represented gene across all studies where its width gives the 95% CI of the
overall combined mean difference. (A) Five most upregulated genes; (B) five most downregulated genes.
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TABLE 2 | Fifty-five–gene signature identified through intersection of the two meta-analysis pipelines.

Up-regulated genes Effect Size Down-regulated genes Effect Size

SERPINA3 1.6036095653983 XK -1.29819389406181
CASP1 1.40416698180637 TPST1 -1.20167450116234
IFNGR1 1.39998598913411 GUCA2B -1.1661305569252
TLR8 1.26453608862267 TDRD3 -1.13977250937525
TNFRSF10B 1.26119688894584 LAPTM4A -1.12730715165818
SLC28A3 1.22800817108748 DPPA5 -1.12047935329112
HPS5 1.19800916792719 SSBP3 -1.10490349676448
MLKL 1.18085464438904 CYB5A -1.09837700706879
SNX10 1.13561882235051 UCK1 -0.985800926144472
PROS1 1.10871487093572 SS18L1 -0.96750241497866
PPA1 1.10216223136474 ADI1 -0.926114181353538
PSMB8 1.07187280747353 RAB5C -0.84320004421934
CRELD2 1.05109963792112 RNF10 -0.842623053934248
PROK2 0.921169469208918 TSPYL1 -0.836367491510706
KCNE3 0.913103915871443 GOLPH3L -0.824627729687288
KPNB1 0.85084526960045 CBR1 -0.771803065890106
LPIN1 0.839131410798793 LRFN3 -0.757794341085025
DGKA 0.795056386539426 NAPA -0.740224650645346
TNIK 0.781737882009995 SLC39A1 -0.723858288394722
MCM5 0.776235448665165 PTPRU -0.679860486124954
RCN1 0.76081302431008 KCTD1 -0.621574946697534
GMDS 0.734400543529141 NIPSNAP3B -0.606036954338933
FCER1G 0.724174020680609 APLP2 -0.514682777690594
MICB 0.711112386548431 FBXO9 -0.383603913554028
MR1 0.659225335601429
PARP9 0.646715982680413
CDC42SE2 0.639975897261079
POLD3 0.62818746016387
HHIP 0.497135355992992
RNGTT 0.496984121112146
SRP72 0.443790344485934
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FIGURE 5 | Performance of the refined 55-gene signature in the five independent gastric adenocarcinoma datasets. (A) The pooled AUC in the four training
datasets. (B–F) The performance of the refined signature in the five independent gastric cancer datasets. The upper panel shows a violin plot of the difference in the
refined signature meta-score between cases (gastric adenocarcinoma) and controls with each point representing a sample. The middle and lower panels show the
Area under the ROC Curve (AUC) and the Area under the Precision Recall Curve (AUPRC), respectively.
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FIGURE 7 | Interactions between signature derived genes and genome-wide-associated and cancer driver genes. The genes of the 55-gene signature were integrated with
37 GWAS and 61 cancer driver genes in NetworkAnalyst tools to visualize gene interactions. A “zero order” interaction network with 49 nodes and 81 edges was used. The
most highly ranked nodes across the dataset based on network topology measures were TP53 (betweenness centrality = 468.99), and CTNNB1 (betweenness centrality =
450.38). TNFRSF10B (betweenness centrality = 32.53) ranked the highest among the gene signature and MUC1 (betweenness centrality = 43.66) among GWAS genes.
(Red = up-regulated DEGs; Blue = down-regulated DEGs; Green = GWAS; Purple = OncoGene).
FIGURE 6 | Performance of the refined 55-gene signature in the seven independent gastric adenocarcinoma datasets (A–G). The upper panel shows a violin plot of
the difference in the refined signature meta-score between cases (gastric adenocarcinoma) and controls with each point representing a sample. The middle and
lower panels show the Area under the ROC Curve (AUC) and the Area under the Precision Recall Curve (AUPRC), respectively.
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tumor suppressor gene tumor protein p53 (TP53) has the largest
interaction with other cancer driver and downstream deregulated
genes. Many of the deregulated genes seem to be directly connected to
GWAS or cancer driver genes such as TLR8, CASP1, and
TNFRSF10B. The data suggest that the genes that are deregulated
in H. pylori-infection are linked to the activation of oncogenes.

Drug Targeting of the 55-Gene Signature
As the 55-gene signature remains relevant during different stages of
the disease, it was interesting to test its potentiality as a target for
therapeutics development and drug repurposing. We used the
signature to feed the connectivity map tool to search for
compounds that are negatively correlated with this gene signature,
implying their capability of inducing a reverse gene signature. Two
compound classes were especially negatively enriched with scores
lower than -90 hinting to their potential in opposing the H. pylori
gene signature, which are Bromodomain Inhibitors and Leucine
rich repeat kinase inhibitors. Apart from these two classes, dihomo-
gamma-linolenic acid (DGLA) was one of agents inducing the
highest reverse signature with a score of -92.93. Results of the
highest opposing compounds and classes can be found in
Supplementary Table 6.
DISCUSSION

H. pylori is the main cause of gastric cancer worldwide (63) and
remains the only bacterium that is classified as a definite group 1
carcinogen by the World Health Organization’s (WHO)
International Agency for Research on Cancer (IARC) (64).
Eradication of H. pylori in patients and high risk carriers remains
the most successful method in preventing development of gastric
cancer (65). As the rates of H. pylori antibiotic resistance increase,
the WHO has published its first ever list of antibiotic-resistant
“priority pathogens”, a catalogue of 12 families of bacteria including
H. pylori that pose the greatest threat to human health. The list was
drawn up in a bid to guide and promote research and development
(R&D) of new antibiotics.

An approach that has become possible through the
availability of large datasets and modern computational
methods is the analysis of gene regulation networks that drive
disease progression and that therefore may be targets of
prevention and therapy. In other infections, this approach has
proved successful: using machine learning models and multi-
cohort analysis it has been possible to identify global host gene
expression signatures that can be used as a diagnostic framework
in different diseases such as tuberculosis and Severe Dengue
(66, 67).

Through our multi-cohort analysis approach, we identified a
robust 55-gene signature that defines H. pylori-induced
pathologies and that, intriguingly, remains relevant throughout
disease progression to cancer. Our results show the importance
of such in silico approaches to refine and polish results from
heterogenic backgrounds with regard to technology and sample
cohorts. Our approach could detect many genes that were
underperforming in their individual datasets as TLR8. This 55-
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gene signature can be the basis for future pathophysiological
and molecular studies for H. pylori induced gastritis and
gastric carcinoma.

Through this signature, we were further able to compare gene
expression patterns of H. pylori cell line infection models with
the human signature. This comparison showed the expected
suitability of the gastric AGS cell lines toH. pylori research. Gene
expression profiles in the colon HT29-MTX-E12 cell line suggest
that this cell is also a good model for this infection. The
underperforming of the GES-1 cell line indicates the need for
further validation of its response to infection and a robust control
of batch effects between different labs. Such heterogeneities
between different laboratories cell line batches have been
recently demonstrated in the Hela cell line (68).

Detection of pathogen-associated molecular patterns’
(PAMPs) through TLRs or other receptors is a particularly
important step in alerting the immune system, and this is also
highlighted in our upstream-signaling SPEED analysis. H. pylori
belongs to the Gram-negative bacteria and has LPS, which is
typically recognized with TLR4, yet it manages to evade this
detection through its evolved structure (69). Other TLR receptors
such as TLR2 or TLR5 play a bigger role in H. pylori alert system
(70). Our curated original and refined gene signatures emphasize
a rather intriguing high upregulation of the endosomal receptor
TLR8 across different samples and stages of the pathology. H.
pylori RNA recognition and MyD88-dependent cytokine
induction through TLR8 was before described (71, 72) which
makes it a candidate for more extensive studies.

Caspase-1 (CASP1) can be activated through Nod-like
receptors to induce cytokine production and inflammasome
activation during H. pylori infection mainly through control of
IL-1b and IL-18 levels (73). CASP1 was consistently upregulated
in our two meta-analysis pipelines and appeared to influence the
gene-gene interaction network through interaction with the
tumor suppressor gene TP53. It has been previously shown
that CASP1 transcription can be targeted through TP53 (74).
This suggests an interesting basis of host background interaction
with H. pylori pathogenesis, where TP53 modulates expression
levels of CASP1, which in return can modulate H. pylori
immune response.

The positive enrichment of cytokine-mediated signaling and
response to interferon-gamma and tumor necrosis factor
pathways –pathways that are commonly activated in H. pylori
infection- in our predicted gene signature supports its biological
relevance in disease pathogenesis. Interestingly, the SPEED
analysis indicated an upregulation of JAK and STAT upstream
signaling which was recently shown to be a coping mechanism of
H. pylori to block IFNG signaling through reduction of
cholesterol levels in infected cells to allow it to evade the host’s
immune response (75). The upregulation of various genes related
to C-type lectin receptor signaling pathway as FCER1G, PSMB8,
and MALT1 also hints to its importance in H. pylori detection.
The C-type lectin innate immune receptors (CLRs) can recognize
various pathogen-related carbohydrate structures (76) but the
spectrum of their role in H. pylori recognition and the extent of
their involvement in gastritis development is not fully
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understood. CLRs have been very recently shown to be able to
detect host metabolites modified by H. pylori and induce
gastritis (77).

H. pylori can induce various complications but its effect on
nutrition through decreasing absorption of various nutrients is
especially important in children (78, 79). The downregulation of
pathways related to the cellular response to zinc and copper ions
as well as to mineral absorption and folate biosynthesis in our
analysis paint the picture of a bacterium that can actively affect the
host’s nutrition status. This validates previous recommendations
of screening of H. pylori in diseases other than gastritis such as
metabolic syndrome (80).

Dihomo-gamma-linolenic acid (DGLA) was one of agents
inducing the highest reverse signatures in our connectivity map
analysis. High serum values of g-linolenic acid were associated
with reduced risk for atrophic gastritis (81), and this metabolite
has been considered as an anti-inflammatory and anti-
proliferative agent (82). H. pylori converts host’s cholesterol
into cholesteryl glucosides that has been recently shown to
modulate host’s immunity and gastritis (77).

Some sterols such as vitamin D may be capable of competing
with cholesterol to attenuate this effect (83) and fatty acids such
as DGLA can be hypothesized to induce its reverse signature
through a similar mechanism. The capability of DGLA to
attenuate LDL uptake and to improve mitochondrial biogenesis
can be hypothesized to contribute to its activity againstH. pylori-
induced gastritis as various mitochondrial viability genes vital for
mitophagy regulation (e.g., TOMM7) were downregulated in our
analysis (84, 85). Further validation of DGLA derivatives
potential in reducing gastritis can be of great value as they can
be suitable candidates for supplementary treatment in gastritis.

Various inflammatory and immune signals can be shared
between tissues especially those of similar origins and in response
to similar stimuli. To better understand the applicability of our 55-
gene signature to other disease settings we tested its performance in
other representative inflammatory diseases of epithelial origin such
as Crohn’s disease, and other inflammatory diseases of non-epithelial
origins such as osteoarthritis and fatty liver disease. Although the
gene signature performed poorly in inflammatory and cancer
diseases of the liver -which indicates major differences in the host
response in these situations- it performed moderately well in other
inflammatory bowel diseases indicating some shared mechanisms
between the cell responses in these conditions in comparison to its
response to H. pylori infection. Nevertheless, the cross activation of
some of the components of our curated signature in other
inflammatory diseases due to conserved mechanisms in epithelial
cell signaling in inflammation does not undermine the relevance of
the whole signature for H. pylori-induced pathologies, and its
capability when searching for compounds inducing reverse gene
signatures. In addition, the 55-gene signature remained highly
sensitive in inferring disease status when tested in the context of
H. pylori infected tissue and gastric cancer.

In this study, we identify a set of genes that remain robustly
relevant for H. pylori-induced pathologies across different stages of
the disease up to the development of gastric cancer. While only a
minority of H. pylori-infected patients will develop cancer, the
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validation of our signature in cancer patients is strong support for
the pathological contribution of the infection to the transformation
process, while other factors such as host genetic background would
complement this pathogenic effect of the disease to develop cancer.
Therefore, further dissecting this signature and investigating its
related pathways will illustrate the mechanisms of H. pylori-
induced mutagenesis, and the results can be used to develop new
therapeutics that counter this effect in patients with higher risk or
failed eradication trials for H. pylori.

It is clear that this gene signature has to be further validated
experimentally in larger cohorts of patients’ samples and cell
lines infection models. We believe however that it can serve as a
basis for further investigation of new molecular pathways and
mechanisms involved in H. pylori pathogenesis and can help
refine the results curated in them.
CONCLUSION

Our study shows that the approach of a multi-cohort analysis
increases sensitivity and permits the identification of candidate
genes and mechanisms that may play a role in the pathogenesis
of H. pylori associated disease including tumorigenesis. The
identification of genes and pathways previously implicated by
experimental studies in gastric disease in the past provides
validation of the approach. Novel targets and therapeutic
candidates were identified that may provide a basis for future
functional and epidemiological studies. Our observations
provide robust data about the underlying biology of the host
response to H. pylori and emphasize the importance of early
screening in various other diseases such as metabolic syndrome.
This work could guide efforts to find new agents for prevention
and therapy of gastric ulcer and cancer, especially at a time when
H. pylori antibiotic resistance is on the rise.
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et al. Toll-like Receptor 10 in Helicobacter pylori Infection. J Infect Dis (2015)
212(10):1666–76. doi: 10.1093/infdis/jiv270

22. Hanada K, Uchida T, Tsukamoto Y, Watada M, Yamaguchi N, Yamamoto K,
et al. Helicobacter pylori infection introduces DNA double-strand breaks in
host cells. Infect Immun (2014) 82(10):4182–9. doi: 10.1128/IAI.02368-14

23. Galamb O, Gyõrffy B, Sipos F, Dinya E, Krenács T, Berczi L, et al. Helicobacter
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