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Abstract: The problem of fault identification in electric servo actuators of robot manipulators de-
scribed by nonstationary nonlinear dynamic models under disturbances is considered. To solve the
problem, sliding mode observers are used. The suggested approach is based on the reduced order
model of the original system having different sensitivity to faults and disturbances. This model
is realized in canonical form that enables relaxing the limitation imposed on the original system.
Theoretical results are illustrated by practical example.
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1. Introduction

Different industrial equipment, in particular, robot manipulators and consumer de-
vices often have crucial applications in their everyday life in industrial plants. Different
faults can occur in this equipment caused by specific environmental conditions and by the
internal plant conditions. Due to faults, the behavior of the plant components can differ
considerably from the prescribed behavior. Faults can produce an unexpected change in
the system dynamics or parameters, or the occurrence of unknown signals in the plant. In
robots, faults can occur in different components of the system, in particular, in actuators
and sensors due to the presence of electrical devices and connections [1]. To prevent critical
injuries in the plant, methods of fault detection and identification should be used.

In this paper, a fault identification scheme to deal with actuator faults in robot ma-
nipulators described by nonstationary nonlinear dynamic models is considered. There are
many methods of identification, one is based on sliding mode observers (SMO) and uses
peculiarities of sliding motion developed in [2] and used in [3–6].

Sliding mode observers are used for unknown input estimation and fault identification
(reconstruction) in different systems [7–13] and for fault tolerant control [14,15]. To ensure
the existence of sliding motion, the system should be minimum phase; that is, the invariant
zeroes of the system must be stable and the matching condition must be satisfied [16].

To relax the matching condition, two methods have been developed. In [9,17–20], a
high-order sliding mode differentiator was used forming a system, which satisfied the
matching condition. In [11], multiple SMOs in cascade were used based on fictitious
systems. Both methods enabled solving the problem at the cost of the complicated structure
of the fault identification scheme. In addition, the system should be minimum phase and
large errors can occur.

Sensors 2022, 22, 317. https://doi.org/10.3390/s22010317 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010317
https://doi.org/10.3390/s22010317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5927-7117
https://doi.org/10.3390/s22010317
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010317?type=check_update&version=1


Sensors 2022, 22, 317 2 of 12

The matching condition was relaxed in [21], but the estimation of fault was corrupted
by the fault derivative. In [22], asymptotic convergence was not achieved, since the
estimation errors were only bounded. One paper [23] relaxed the minimum phase condition
and sufficient and necessary conditions, which were less restrictive than strong detectability
were received. In [24], the problem of the partial unknown input reconstruction was solved
under some sufficient and necessary conditions. In [25,26], the minimum phase condition
was relaxed only to requiring detectability.

Nonstationary linear systems and linear parameter-varying systems were considered
in [27–32]. In [27], the varying parameters were assumed to be available and perfectly
measurable. In [28,29,32], the designed SMOs had parameter-varying dynamics; therefore,
complicated analysis was used to proof a convergence. One paper [30] assumed that the
nonstationary parameters were changed according to some known dynamical models.
In [31], virtual sensors were used to solve the problem of fault tolerant control.

In our paper, to design SMO for robot manipulators described by nonstationarity
dynamic models with nonsmooth nonlinearities, we do not use matching, minimum
phase, and detectability conditions. In addition, to take into account non-stationarity, our
procedure is based on a canonical form with constant parameters that enables simplification
of the proof of the observer convergence.

It is known that significant interactions between the individual degrees of freedom
(DOF) appear in the multilink manipulators. Such interactions can cause essential changes
of the servo actuators parameters [33,34]. If a manipulator is free from faults, these inter-
actions are presented in the form of forces which act on the corresponding DOF and are
described by the expression

Pi = Hi(q)q̈i + hi(q, q̇)q̇i + Mei(q, q̇, q̈), (1)

where Pi is the generalized force (driving torque) acting on the i-th DOF; qi is the i-th
component of the vector q ∈ Rn of the manipulator generalized coordinates; Hi(q) is a
component characterizing the inertial properties of the corresponding DOF; hi(q, q̇) is the
component of Coriolis and velocity forces; Mei(q, q̇, q̈) takes into account the gravitational
forces and the external perturbation, it does not depend on the coordinate qi and its
derivatives; i = 1, . . . , n, n is the number of manipulator degrees of freedom; and q̇ and q̈
are the vectors of velocity and acceleration of generalized coordinate.

We assume that all DOF of the manipulator are equipped with similar electric servo
actuators with continuous current motors of independent excitation or excitation from
constant magnets. In order to use the information about the fault, the servo actuator
dynamics of such a DOF can be described by the following nonlinear equations with the
state variables x1(t) = qi(t), x2(t) = ω(t), and x3(t) = I(t):

ẋ1(t) = 1
ir

x2(t),

ẋ2(t) = − Kv+h∗(t)
JH+H∗(t) x2(t) + Km

JH+H∗(t) x3(t)− M∗e
JH+H∗(t) −

M f

JH+H∗(t) sign(x2(t)) + d(t),

ẋ3(t) = − Kω
Lm

x2(t)− Rm
Lm

x3(t) + Ku
Lm

u(t),

(2)

where qi(t) is the output rotation angle at the reducer output shaft; ω(t) is the output
rotation velocity at the motor output shaft; I(t) is the current through the servoactuator
windings; ir is the reducing ratio of the reducer; JH is the torque of inertia of the electric
servoactuator rotor and of the rotating parts of the reducer; Kv is the viscous friction
coefficient, Kω and Km are the respective coefficients of the back EMF and of the torque;
M f is the torque of the Coulomb friction at the motor output shaft; Rm and Lm are the
active and inductive resistances of the electric servoactuator windings, respectively; Ku
is the amplification coefficients of power amplifiers; H∗(t) = Hi(t)/i2r , h∗(t) = hi(t)/i2r ,
and M∗e (t) = Mei(t)/ir are, respectively, the values of Hi(t), hi(t), and Mei(t) reduced to
the shafts of electric motors.

It is assumed that only the angle at the reducer output shaft x1(t) and the current of
the electric motor rotor circuit x3(t) can be measured by the respective sensors. It can be
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seen from (2) that the electric servo actuators of the manipulator are described by third
order nonlinear differential equations with substantially variable parameters Hi(t), hi(t),
and Mei(t). Some of these parameters can even change sign in certain regimes.

Note that Hi(t), hi(t), and Mei(t) depend on the manipulator generalized coordinates,
which are functions of time. The exact form of these functions is not essential for SMO
design; for simulation, we use the exact expression (see example). For simplicity, we use
the notations Hi(t), hi(t), and Mei(t).

It is assumed that the function d(t) = − M̃(t)
JH+H∗(t) corresponds to the unknown torque

M̃(t) due to increase in the Coulomb or viscous friction. The problem is to design a sliding
mode observer estimating the function d(t).

The main contribution of this paper is that SMOs are constructed for robot manip-
ulators described by nonstationary nonlinear dynamic models not satisfying matching,
minimum phase, and detectability conditions. This is a result of the fact that SMO is not
constructed for the original system but for its reduced order model invariant with respect
to the disturbance. As a result, such a model may be free of some special peculiarities of
the original system, which may prevent the possibility of designing SMO, in particular,
the original system may be nonminimum phase or non-detectable, while its reduced order
model will be minimum phase and detectable. In addition, the disturbance does not affect
the observer, and its dimension becomes less than that of the original system. In addition,
the linear part of the observer is designed based on the canonical model with constant pa-
rameters. This enables overcoming the difficulties related to non-stationarity and avoiding
the complicated analysis, which is used in known papers to proof a convergence. All these
advantages enable extension of a class of systems for which a sliding mode observer can be
designed. As a result, this offers the practical possibility of solving the fault identification
problems for those practical devices, which were a priori impossible for previous methods.

The paper is relevant to the Special Issue “Smart Sensor-Based Robot Control and
Calibration” since sensor-based control of different robotics systems is one of the main chal-
lenges of modern robotics, and fault tolerant control can be achieved by fault identification.

The rest of the paper is organized as follows. In Section 2, the basic models are
considered. In Section 3, the reduced model of the initial system is designed. The reduced
order model transformation is considered in Section 4. Section 5 describes the SMO design.
A practical example is considered in Section 6. Section 7 concludes the paper.

2. Preliminaries

In order to develop the new method of SMO design, we consider a system described
by a general nonlinear nonstationary dynamic model under faults and disturbances:

ẋ(t) = F(t)x(t) + G(t)u(t) + C(t)Ψ(x(t), u(t)) + Dd(t) + Lρ(t),
y(t) = Hx(t),

(3)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are vectors of state, control, and output; F(t),
G(t), and C(t) are known time varying matrices; H, D, and L are known constant ma-
trices; d(t) ∈ R is a function describing faults: if there are no faults, d(t) = 0, if a fault
occurs, d(t) becomes an unknown function of time; ρ(t) ∈ Rp is the unmatched distur-
bance, it is assumed that ρ(t) is an unknown bounded function of time; and Ψ(x, u) is the
nonlinear term:

Ψ(x, u) =

 ϕ1(A1x, u)
. . .

ϕq(Aqx, u)

, (4)

A1, . . . , Aq are constant matrices, and ϕ1, . . . , ϕq are nonlinear functions. It is assumed that
the function Ψ(x, u) satisfies the generalized Lipschitz condition about x uniformly for t
and u:

‖Ψ(x, u)−Ψ(x′, u)‖ ≤ N‖x− x′‖+ M, (5)
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where N, M > 0 are some constants. This assumption is typical for papers devoted to the
fault identification problem via SMO.

It is assumed in [12] and many other papers that system (3) satisfies the following
conditions: (1) matching condition when rank(H[L D]) = rank([L D]), and (2) minimum
phase condition when all invariant zeros of (F, [L D], H) lie in the left half plane. In [25,26],
the system should be detectable. To solve the problem of fault identification, these condi-
tions are not used in the present paper. The foundation of the suggested approach is the
reduced order model of the original system; such a model can be free from some of the
specific properties of the original system preventing SMO design, for example, the original
system can be non-detectable while its reduced order model is detectable.

Note that the assumption d(t) ∈ R means that our approach can be applied to solve
the problem of single fault identification as the most probable faults in the system. On the
other hand, this assumption enables reduction of the limitations imposed on the original
system in comparison with the abovementioned papers.

3. Reduced Order Model Design

Assuming that x∗ ∈ Rk, k < n, is the state vector of the reduced order model, we set

x∗(t) = Φ(t)x(t) (6)

for some differentiable matrix function Φ(t).

Assumption 1. The function Φ̇(t)x(t) is expressed in terms of x∗ and y; that is,

Φ̇(t)x(t) = α(x∗(t), y(t), t) (7)

for some function α.

Solution of the problem is based on the reduced order model of system (3), generally
described by the equations

ẋ∗(t) = F∗x∗(t) + G∗(t)u(t) + J∗(t)y(t) + C∗(t)Ψ(x∗(t), y(t), u(t))
+α(x∗(t), y(t), t) + D∗(t)d(t) + L∗(t)ρ(t),

y∗(t) = H∗x∗(t),
(8)

where x∗(t) ∈ Rk is the state vector, F∗, G∗(t), J∗(t), C∗(t), H∗, D∗(t), and L∗(t) are matrices
and matrix functions to be determined;

C∗(t)Ψ(x∗, y, u) =

 ϕi1(A∗1i1(t)x∗ + A∗2i1(t)y, u)
. . .

ϕik (A∗1ik (t)x∗ + A∗2ik (t)y, u)

, (9)

and A∗1i1(t), A∗2i1(t), . . . , A∗1ik (t), A∗2ik (t) are matrix functions to be determined.
By analogy with (6), it is assumed that y∗(t) = R∗y(t) for some matrix R∗. It is

known [35,36] that matrices R∗ and Φ(t) satisfy the conditions

Φ(t)F(t) = F∗Φ(t) + J∗(t)H, R∗H = H∗Φ(t), Φ(t)G(t) = G∗(t),
Φ(t)D = D∗(t), Φ(t)L = L∗(t), Φ(t)C = C∗(t)

Ai = (A∗1i(t) A∗2i(t))
(

Φ(t)
H

)
, i = i1, . . . , ik.

(10)

Consider the method to solve these conditions and to construct the model (8) invariant
with respect to the disturbance that enables solving the problem of exact fault identification.
Note that if such a model does not exist, the problem of approximate fault identification
can be solved [13].
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The matrices F∗ and H∗ are sought in the canonical form

F∗ =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . .
0 0 0 . . . 0

, H∗ = ( 1 0 0 . . . 0 ). (11)

Clearly, this is always possible if (F∗, H∗) is observable. If (F∗, H∗) is unobservable,
system (8) can be transformed into observable canonical form [37], and then the matrices
describing the observable part of this form can be presented in the canonical form (11) of
less dimension.

Using these matrices, one obtains from (10) equations for rows of the matrices Φ(t)
and J∗(t):

Φ1 = R∗H,
Φi(t)F(t) = Φi+1(t) + J∗i(t)H, i = 1, . . . , k− 1,
Φk(t)F(t) = J∗k(t)H,

(12)

where Φi(t) and J∗i(t) are i-th rows of the matrices Φ(t) and J∗(t), i = 1, . . . , k. As is shown
in [35], Equations (12) can be transformed into the single equation

( R∗ −J∗1(t) . . . −J∗k(t) )W(k)(t) = 0, (13)

where

W(k)(t) =


HFk(t)

HFk−1(t)
. . .
H

. (14)

The condition Φ(t)L = 0 of invariance with respect to the disturbance can be taken
into account in the form (R∗ −J∗1(t) . . . −J∗k(t)) L(k)(t) = 0 [35,36] where

L(k)(t) =


HL HF(t)L . . . HFk−1(t)L
0 HL . . . HFk−2(t)L

. . . . . . . . . . . .
0 0 . . . 0

. (15)

The last equation and (13) result in the single equation

(R∗ −J∗1(t) . . . −J∗k(t)) (W(k)(t) L(k)(t)) = 0. (16)

Equation (16) has a nontrivial solution if

rank(W(k) L(k)) < l(k + 1). (17)

To construct the model, find from (17) the minimal dimension k, and find the row
(R∗ −J∗1(t) . . . −J∗k(t)) satisfying (16). Then calculate the rows of the matrix Φ(t)

based on (12), and check the condition (7) for some function α. If it is true, calculate the
matrix (9), and check the condition

rank
(

Φ(t)
H

)
= rank

 Φ(t)
H
Ai

, i = i1, . . . , ik. (18)

If it is true, set G∗(t) := Φ(t)G and D∗(t) := Φ(t)D; the matrices A∗1i(t) and A∗2i(t),
i = i1, . . . , ik, are found from (10). If (18) is not true, one finds another solution of (16) with
former or incremented dimension k. If (18) is not true for all k < n, the model invariant
with respect to the disturbance cannot be designed.
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4. Reduced Order Model Transformation

Write down all matrices in (8) in the form

F∗ =

(
F1 F2
F3 F4

)
, H∗ = (1 0), G∗(t) =

(
G∗1(t)
G∗2(t)

)
,

J∗(t) =

(
J∗1(t)
J∗2(t)

)
, C∗(t) =

(
C∗1(t)
C∗2(t)

)
, D∗(t) =

(
D∗1(t)
D∗2(t)

)
,

Φ(t) =

(
Φ(1)(t)
Φ(2)(t)

)
=

(
R∗H

Φ(2)(t)

)
, α =

(
α1
α2

)
=

(
0
α2

)
,

(19)

where
F1 = 0, F2 = (1 0 . . . 0 0) ∈ R1×k−1,

F3 = 0, F4 =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 0

 ∈ Rk−1×k−1,
(20)

the rest of the matrices in (19) have the appropriate dimensions. The function α1 is equal to
zero since

α1(x∗(t), y(t), t) = Φ̇1(t)x(t) =
d(R∗H)

dx
x(t) = 0. (21)

Introduce a coordinate transformation z = Tx∗ with T =

(
1 0
Q Ik−1

)
, where Q ∈

Rk−1×1 is selected to make F̄4 = F4 + QF2 stable. Since (F4, F2) is observable, this matrix
exists and is of the form Q := (a1 a2 . . . ak−1)

T . As a result, the model (8) takes the form

ż1(t) = F̄1y∗(t) + F̄2z2(t) + Ḡ1(t)u(t) + C̄1(t)Ψ(z2(t), y∗(t), y(t), u(t))
+ J̄1(t)y(t) + D̄1(t)d(t),

ż2(t) = F̄3y∗(t) + F̄4z2(t) + Ḡ2(t)u(t) + C̄2(t)Ψ(z2(t), y∗(t), y(t), u(t))
+ J̄2(t)y(t) + D̄2(t)d(t) + ᾱ2(z2(t), y∗(t), y(t), u(t), t),

y∗(t) = z1(t),

(22)

where F̄1 = −a1, F̄2 = (1 0 . . . 0 0),

F̄3 = −


a2

1 + a2
a1a2 + a3

. . .
a1ak−1

, F̄4 =


a1 1 0 . . . 0
a2 0 1 . . . 0
. . . . . . . . . . . . . . .

ak−1 0 0 . . . 0

,

Ḡ1(t) = G∗1(t), Ḡ2(t) = QG∗1(t) + G∗2(t),
J̄1(t) = J∗1(t), J̄2(t) = QJ∗1(t) + J∗2(t),

C̄1(t) = C∗1(t), C̄2(t) = QC∗1(t) + C∗2(t),
D̄1(t) = D∗1(t), D̄2(t) = QD∗1(t) + D∗2(t),

ᾱ2(z2, y∗, y, u, t) = α2(z2, y∗, y, u, t).

(23)

Note that the model (22) corresponds to that in [8,26] and other similar papers where
the matrix F∗2 is stable due to the minimum phase or detectability properties of the original
system; in our approach the matrix F∗2 is stable because of the canonical form of the
matrices F∗ and H∗.

5. Sliding Mode Observer Design

Since F̄4 is stable, symmetric positive definite matrices P and W exist such that F̄T
4 P +

PF̄4 = −W. By analogy with [26], SMO is sought in the form

˙̂z1 = F̄1y∗ + F̄2ẑ2 + Ḡ1u + J̄1y + C̄1Ψ(ẑ2, y∗, y, u) + k2e1 + k3v,
˙̂z2 = F̄3y∗ + F̄4ẑ2 + Ḡ2u + J̄2y + C̄2Ψ(ẑ2, y∗, y, u) + ᾱ2(ẑ2, y∗, y, u, t) + K̄1v,
ŷ∗ = ẑ1,

(24)
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where v = sign(e1), e1 = y∗ − ŷ∗, K̄1 = P−1 F̄T
2 k1, k1, k2, and k3 are positive numbers.

Let e2 = z2 − ẑ2; it follows from (22) and (24)

ė1 = F̄2e2 + C̄1∆Ψ + D̄1d− k2e1 − k3v,
ė2 = F̄4e2 + C̄2∆Ψ + ∆α + D̄2d− K̄1v,

(25)

where ∆Ψ = Ψ(z2, y∗, y, u)−Ψ(ẑ2, y∗, y, u), and ∆α = ᾱ2(z2, y∗, y, u, t)− ᾱ2(ẑ2, y∗, y, u, t).
Assume that the functions Ψ(x, u) and α(x∗, y, t) satisfy the Lipschitz condition (5) about
x, and x∗, respectively, then the functions Ψ(z2, y∗, y, u) and ᾱ2(z2, y∗, y, u, t) satisfy this
condition and

‖C̄1∆Ψ‖ ≤ N∗1‖e2‖+ M∗1,
‖C̄2∆Ψ + ∆α‖ ≤ N∗2‖e2‖+ M∗2

(26)

for some positive N∗1, N∗2, M∗1, and M∗2.

Theorem 1. Assume that λ(W) ≥ 2‖P‖N∗2. If D̄1 = 0, the function d(t) can be estimated by

d̂(t) = D̄+
2 K̄1veq(t), (27)

if D̄1 6= 0, d(t) can be estimated by

d̂(t) = k3D̄+
1 veq(t), (28)

where D̄+
1 = (D̄T

1 D̄1)
−1D̄T

1 and D̄+
2 = (D̄T

2 D̄2)
−1D̄T

2 , veq(t) is the so-called equivalent output
injection signal representing the average behavior of the discontinuous function v(t). Similar to [8],
we use as veq(t) the continuous approximation

veq(t) =
e1(t)

|e1(t)|+ ε
, (29)

where ε is a small positive scalar.

Proof of Theorem 1. By analogy with [26], we prove firstly that ‖e2‖ ≤ δ = max{δ1, δ2},
where

δ1 =
2λ̄(P)(β‖PD̄2‖+ ‖PK̄1‖)
λ(P)(λ(W)− 2‖P‖N∗2)

, δ2 =

√
λ̄(P)
λ(P)

‖e2(0)‖, (30)

β is such that β ≥ ‖d(t)‖. Consider the Lyapunov function V2 = eT
2 Pe2, and find its

derivative with respect to time, taking into account (25) and (26):

V̇2 = −eT
2 We2 + 2eT

2 PD̄2d− 2eT
2 PK̄1v + 2eT

2 P(C̄2∆Ψ + ∆α)
≤ −‖e2‖2(λ(W)− 2‖P‖N∗2) + 2‖e2‖(β‖PD̄2‖+ ‖PK̄1‖+ M∗2).

(31)

Using Rayleigh’s inequality λ(P)‖e2‖2 ≤ V2 ≤ λ̄(P)‖e2‖2, one obtains

V̇2 ≤ λ(W)−2‖P‖N∗2
λ̄(P) V2 +

2
√

V2√
λ(P)

(β‖PD̄2‖+ ‖PK̄1‖+ M∗2). (32)

The rest of the proof coincides with that in [26].
Secondly, we prove that by suitable choices of observer gains, e1 = 0 in finite time and

sliding motion is achieved. Consider the Lyapunov function V1 = e1
1, and find its derivative

with respect to time taking into account (25):

V̇1 = 2e1 ė1 = 2e1(F̄2e2 + C̄1∆Ψ + D̄1d− k2e1 − k3v). (33)

Since v = sign(e1), and ‖C̄1∆Ψ‖ ≤ δN∗1 + M∗1, then 2e1k3v = 2k3|e1|, and
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V̇1 ≤ −2k2e2
1 + 2|e1|(−k3 + δN∗1 + M∗1 + ‖F̄2‖‖e2‖+ ‖D̄1‖‖d‖)

≤ −2k2e2
1 + 2|e1|(−k3 + δN∗1 + M∗1 + δ + β‖D̄1‖).

(34)

If k3 satisfies
k3 ≥ β‖D̄1‖+ δ(N∗1 + 1) + M∗1, (35)

then it can be shown by analogy with [26] that V̇1 ≤ −c1
√

V1 for some c1 > 0, and sliding
motion (e1 = ė1 = 0) happens in finite time.

Thirdly, to prove that by suitable choices the observer gains e2 = 0 in finite time and
sliding motion is achieved, consider the Lyapunov function V2 and its derivative (31). From
the first equation in (25), and since sliding motion has occurred (e1 = ė1 = 0), it follows
that F̄2e2 = k3v− D̄1d− C̄1∆Ψ. Using K̄1 = P−1 F̄T

2 k1, we obtain

V̇2 = −eT
2 We2 + 2eT

2 P(C̄2∆Ψ + ∆α) + 2eT
2 PD̄2d− 2eT

2 F̄T
2 k1v

= −eT
2 We2 + 2(eT

2 P(C̄2∆Ψ + ∆α) + eT
2 PD̄2d− (k3v− D̄1d− C̄1∆Ψ)Tk1v).

(36)

Since ‖e2(t)‖ ≤ δ, it follows that

V̇2 ≤ −eT
2 We2 + 2(δ‖P‖(δN∗2 + M∗2) + βδ‖PD̄2‖ − k1k3 + k1β‖D̄1‖+ k1(δN∗1 + M∗1)). (37)

If k3 and k1 are chosen, respectively, as

k3 > β‖D̄1‖+ δN∗1 + M∗1,
k1 > δ(‖P‖(δN∗2+M∗2)+β‖PD̄2‖)

k3−β‖D̄1‖−δN∗1−M∗1
,

(38)

then it can be shown by analogy with [26] that V̇2 ≤ −c2
√

V2 for some c2 > 0, and finite
convergence of e2 happens as well. Based on (35) and (38), one has to choose k3 as

k3 > β‖D̄1‖+ δ(N∗1 + 1) + M∗1. (39)

It follows from (25) that if D̄1 = 0, then the function d(t) can be estimated from the
second equation in (25) as (27); otherwise, we use the first equations in (25) and obtain (28).
Theorem has been proved.

6. Practical Example

Consider the robot manipulator PUMA presented in Figure 1 and its actuator (2)
described by the following matrices:

F =

 0 1
ir

0

0 − Kv+h∗(t)
JH+H∗(t)

Km
JH+H∗(t)

0 − Kω
Lm

− Rm
Lm

, G =

 0
0

Ku
Lm

, D = C =

 0
1
0

,

H =

(
1 0 0
0 0 1

)
, A = (0 1 0), ϕ(x, u) = − M∗e

JH+H∗(t) −
M f

JH+H∗(t) sign(Ax(t)).

(40)

The functions H∗(t), h∗(t), and M∗e (t) are described as follows:

H∗ = 1.6324 + 0.9cos(q3), h∗ = −0.9q̇3sin(q3),
M∗e = (0.75 + 0.45cos(q3))q̈3 − 0.45q̇2

3sin(q3) + 26.166sin(q2) + 8.82sin(q2 + q3)

−0.5(1.291sin(2q2) + 0.333sin(2q2 + 2q3) + 0.9sin(2q2 + q3))q̇2
1.

(41)
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Figure 1. Kinematic scheme of manipulator: mi is the mass of i-th link; li is the length of i-th link; l∗i
is the distance from the rotation joint of i-th link to its center of mass; and mt is the mass of the load
(tool in the gripper).

Clearly, rank(HD) = 0 6= rank(D) = 1; therefore, the matching condition is not
satisfied. Thus, the method suggested in [8,11] cannot be used in our case.

Construct a sliding mode observer estimating the function d(t) corresponding to the
matrix D. The solution of (16) with L = 0 is as follows:

R∗ = (0 1), Φ(t) =

(
0 0 1

0 − Kω
Lm

Kv+h∗(t)
JH+H∗(t)

)
, G∗ =

( Ku
Lm

Ku(Kv+h∗(t))
Lm(JH+H∗(t))

)
,

J∗ =

 0 − (Kv+h∗(t))Lm+(JH+H∗(t))Rm
(JH+H∗(t))Lm

0 − KmKω+(Kv+h∗(t))Rm
(JH+H∗(t))Lm

, C∗ =

(
0
− Kω

Lm

)
, D∗ =

(
0
− Kω

Lm

)
.

(42)

It is assumed that the function d(t) = − M̃(t)
JH+H∗(t) corresponds to the unknown torque

M̃(t) due to increase in the Coulomb or viscous friction.
Clearly, the function α depends only on y2, and since Ḣ∗(t) = h∗(t), then

α(y(t), t) =

(
0

ḣ∗(t)(JH+H∗(t))−h∗(t)(Kv+h∗(t))
(JH+H∗(t))2 y2(t)

)
. (43)

The model is described as follows:

ż1 = z2 − (Kv+h∗(t))Lm+(JH+H∗(t))Rm
(JH+H∗(t))Lm

y2(t) + Ku
Lm

u(t),

ż2 = −KmKω+(Kv+h∗(t))Rm
(JH+H∗(t))Lm

y2(t)− Kω
Lm

d(t) + α(y(t), t) + Ku(Kv+h∗(t))
Lm(JH+H∗(t))u(t)

−Kω
Lm

(− M∗e
JH+H∗(t) −

M f
JH+H∗(t) sign((−z2(t) +

Ku(Kv+h∗(t))
Lm(JH+H∗(t))y2(t)) Lm

Kω
)),

y∗ = z1.

(44)

Clearly, based on (26), we have for the function “sign” N∗ = 0 and M∗ = 2. Since
F2 = 1 and F4 = 0, set Q = −1 and F̄4 = −1, which gives P = 1 and W = 2. The description
of SMO is given by

˙̂z1(t) = ẑ1(t) + ẑ2(t) + Ku
Lm

u(t) + k2e2(t) + k3v(t)− (Kv+h∗(t))Lm+(JH+H∗(t))Rm
(JH+H∗(t))Lm

y2(t),
˙̂z2(t) = − KmKω+(Kv+h∗(t))Rm

(JH+H∗(t))Lm
y2(t) + α(y(t), t) + Ku(Kv+h∗(t))

Lm(JH+H∗(t))u(t)

− Kω
Lm

(− M∗e
JH+H∗(t) −

M f

JH+H∗(t) sign((−ẑ2(t) +
Ku(Kv+h∗(t))
Lm(JH+H∗(t)) y2(t)) Lm

Kω
))

−ẑ1(t)− ẑ2(t)− Ku
Lm

u(t) + K̄1v(t) + (Kv+h∗(t))Lm−(JH+H∗(t))Rm
(JH+H∗(t))Lm

y2(t),

ŷ∗(t) = ẑ1(t),

(45)

where v(t) = sign(y∗(t)− ŷ∗(t)), K̄1 = P−1 F̄T
2 k1 = k1. The function d(t) is estimated as

d̂(t) = k1D+
2 veq(t).
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To check the effectiveness of the observer, consider the servo actuator in the second
DOF of the manipulator PUMA (Figure 1). For simulation, the nominal values of the
parameters are taken as follows: ir = 100, JH = 0.0001 kg·m2, Kω = 0.04 V·s, Ku = 100,
R = 0.5 Ω, L = 0.0005 H, Km = 0.04 N·m/A, Kv = 0.005 Nms/rad, K f = 0.02 Nm, and
u(t) = 2sin(t). The coefficients k1, k2, and k3 are k1 = 107, k2 = 1, and k3 = 104. The fault
is modeled by increasing Kv(t) and M f (t) by 50% since 3 s in M̃(t) = Kv(t) + M f (t); the
variables q1, q2, and q3 are modeled as follows: q1 = 2sin(1.5t), q2 = sin(t), and q3 = sin(2t).

The simulation results are demonstrated in Figures 2 and 3 showing the behavior of
the functions M(t) and M̃(t) and the estimation error ∆M̃(t) = M̃(t)−M(t), respectively.
Clearly, the estimation error is rather small, which shows a high quality of estimation.

Note that the quantization error/measurement noise of the system can be taken into
consideration by modification of the fault identification procedure. The limited space of the
paper does not allow us to consider this in full measure; such a problem was considered
in [38,39].

Figure 2. Behavior of the functions M(t) and M̃(t).

Figure 3. Behavior of the estimation error ∆M̃(t) = M̃(t)−M(t).

7. Conclusions

In this paper, the problem of fault identification in robot manipulators described by
nonstationary nonlinear dynamic models under disturbances based on sliding mode ob-
servers has been studied. Distinguished from the known methods, the suggested approach
was based on the reduced order model of the original system having different sensitivity
to faults and disturbances. This model was realized in observable canonical form with
constant parameters that enabled overcoming the difficulties related to non-stationarity
and relaxing the limitation imposed on the original system. The theoretical results were
illustrated by the practical example of the manipulator PUMA.
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