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Abstract
This commentary focuses on potential molecular mechanisms related to the
dysfunctional synaptic plasticity that is associated with neurodegenerative
disorders such as Alzheimer’s disease and Parkinson’s disease. Specifically,
we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in
modulating synaptic function in these illnesses. STEP affects neuronal
communication by opposing synaptic strengthening and does so by
dephosphorylating several key substrates known to control synaptic signaling
and plasticity. STEP levels are elevated in brains from patients with Alzheimer’s
and Parkinson’s disease. Studies in model systems have found that high levels
of STEP result in internalization of glutamate receptors as well as inactivation of
ERK1/2, Fyn, Pyk2, and other STEP substrates necessary for the development
of synaptic strengthening. We discuss the search for inhibitors of STEP activity
that may offer potential treatments for neurocognitive disorders that are
characterized by increased STEP activity. Future studies are needed to
examine the mechanisms of differential and region-specific changes in STEP
expression pattern, as such knowledge could lead to targeted therapies for
disorders involving disrupted STEP activity.
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Introduction
Protein tyrosine phosphorylation is regulated by the fine balance of 
the activity of protein tyrosine kinases and protein tyrosine phos-
phatases (PTPs) and plays a critical role in many cellular activities, 
including gene regulation, cell growth, differentiation, migration, 
and synaptic plasticity1. Enormous progress in the understanding 
of PTP function followed the biochemical purification and charac-
terization of the first PTP (PTP1B) over 30 years ago2,3. Moreover, 
dysregulation or mutations in genes that encode PTPs lead to meta-
bolic, neurological, developmental, and psychiatric disorders1,4–6. 
These important advances have motivated efforts to find PTP inhib-
itors that are effective against diabetes, cancer, neurodegeneration, 
and other serious disorders7,8.

This commentary focuses on striatal-enriched PTP (STEP), 
which is found in the central nervous system (CNS), and how 
increased STEP activity contributes to several disorders, including  
Alzheimer’s disease (AD) and Parkinson’s disease (PD). In par-
ticular, we focus on the ways in which modulating STEP activity  
contributes to impaired neuronal communication.

STEP affects neuronal communication by opposing synaptic strength-
ening through the coordinated dephosphorylation of multiple  

substrates that regulate synaptic plasticity. As discussed in detail 
below, these substrates include subunits of both the N-methyl-D-
aspartate receptors (NMDARs) and the α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPARs). Tyrosine  
dephosphorylation of these receptor subunits leads to internaliza-
tion of NMDAR or AMPAR complexes, which diminishes synaptic 
strength9–13. High levels of STEP in human brain tissue from AD or 
PD subjects, as well as animal models of AD and PD, are believed 
to disrupt synaptic function and to contribute to the learning defi-
cits present in these disorders. These findings are consistent with 
the growing interest in synaptopathology, or the hypothesis that  
disorders of cognitive function involve disrupted synaptic function, 
at least in the earliest stages of neurodegenerative disorders14,15. 
This commentary focuses on AD and PD. The role of STEP in other 
CNS disorders is discussed in several recent reviews4,6,16.

The functional importance of STEP structure
STEP, encoded by the PTPN5 gene, is highly expressed through-
out the CNS, with the exception of the cerebellum17–21. STEP is  
alternatively spliced to produce four related proteins (Figure 1), 
with the most abundant isoforms being STEP

61
 and STEP

46
22,23. 

STEP
61

 associates with membrane compartments using a unique 
172-amino-acid domain at its N-terminus that is not present in 

Figure 1. Regulatory domains present in striatal-enriched protein tyrosine phosphatase (STEP). Four isoforms of STEP (STEP61, STEP46, 
STEP38, and STEP20) are produced by alternative splicing of a single STEP gene (PTPN5). Calpain cleavage produces an additional form 
of STEP (STEP33). STEP61 and STEP46 are the major STEP proteins in the central nervous system (CNS). The kinase-interacting motif (KIM) 
domain is necessary for interaction with substrates, and the consensus protein tyrosine phosphatase (PTP) sequence, [I/V]HCxAGxxR[S/T]G, 
is required for phosphatase activity. STEP38 and STEP20 do not contain the PTP sequence and are inactive variants of STEP with unknown 
function. STEP33 is generated by calpain cleavage within the KIM domain between Ser224 and Leu225. Cleavage at this site disrupts the ability 
of STEP33 to bind to substrates. STEP61 contains an additional 172 amino acids at the N-terminus that possesses two transmembrane (TM) 
domains and two polyproline-rich (PP) regions. The TM regions target STEP61 to the endoplasmic reticulum and to synaptic and extrasynaptic 
sites. While the KIM domain is required for binding to STEP substrates, the PP regions impart some degree of substrate specificity, with 
Fyn binding to PR1 and Pyk2 binding to PR2. PKA phosphorylates STEP within the KIM domain (Ser221 and Ser49 on STEP61 and STEP46, 
respectively), as well as in the region adjacent to the PP regions (Ser160 on STEP61). The function of Ser160 phosphorylation of STEP61 remains 
unclear. Finally, two cysteine residues, Cys65 and Cys76, present within the TM region promote dimerization of STEP and reduce its phosphatase 
activity93.
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STEP
46

. This domain contains two hydrophobic regions that tar-
get STEP

61
 to the endoplasmic reticulum (ER) and synaptic as well 

as extrasynaptic membranes. In contrast, STEP
46

 is a cytosolic  
protein19,24,25. Both STEP

61
 and STEP

46
 contain, at their C-termi-

nus, the consensus PTP sequence ([I/V]HCxAGxxR[S/T]G) that is 
required for catalytic function. Upstream of the catalytic domain 
is a kinase-interacting motif (KIM), the substrate-binding domain 
necessary for associating STEP with all known substrates25–27.

STEP substrates: glutamate receptors
STEP regulates the trafficking of two glutamate receptor sub-
types, NMDARs and AMPARs9,10,13,28–30. NMDARs are internalized 
after GluN2B dephosphorylation (at Tyr1472), which facilitates the  
binding of GluN2B to clathrin adaptor proteins and promotes the 
internalization of GluN1/GluN2B receptor complexes31. Consistent 
with this finding, STEP knockout mice display increased synapto-
somal GluN1/GluN2B receptors and increased NMDAR excitatory 
post-synaptic currents, which appears to facilitate hippocampal 
and amygdala learning29,30,32,33. Similarly, GluA2 dephosphoryla-
tion promotes internalization of GluA1/GluA2 receptor complexes; 
whether internalized NMDAR and AMPAR complexes are recycled 
or degraded is not yet known.

Internalization of GluA1/GluA2 AMPARs results from tyrosine 
dephosphorylation of the GluA2 subunit34,35. STEP is the PTP that 
mediates this process12,36. Stimulating mGluRs with the agonist 

DHPG (S-3,5-dihydroxyphenylglycine) leads to internalization of 
GluA1/GluA212. DHPG stimulation of mGluRs increases the local 
translation of STEP, resulting in the subsequent dephosphorylation 
and endocytosis of GluA1/GluA2. Moreover, neuronal cultures 
from STEP knockout mice display increased surface expression of 
AMPARs and do not undergo DHPG-mediated AMPAR endocyto-
sis; however, internalization of AMPARs can be restored with the 
re-introduction of STEP into the knockout mouse cultures12.

STEP substrates: other synaptic substrates
Additional STEP substrates involved in synaptic strengthen-
ing include two members of the mitogen-activated protein kinase 
(MAPK) family, extracellular signal-regulated kinases 1 and 2 
(ERK1/2), and p3837–43. STEP dephosphorylates regulatory tyrosine 
residues within their activation loops and thereby inactivates them. 
ERK1/2 and p38 have opposing actions: ERK1/2 promotes syn-
aptic strengthening and p38 promotes cell death pathways. STEP 
and both MAPKs reside in dendritic spines, raising the question of 
how STEP regulates the activity of two proteins with such different 
cellular actions43. The balance between the activation of synaptic or 
extrasynaptic NMDARs appears to be critical to this regulation44,45.

Synaptic stimulation leads to STEP ubiquitination and consequent 
degradation and to the activation of ERK1/2 but not p38 (Figure 2). 
At synaptic sites, STEP

61
 binds to post-synaptic density protein 95 

(PSD-95) but not to other PSD-95 family members, and the binding 

Figure 2. Differential regulation of ERK and p38 by synaptic versus extrasynaptic stimulation. Extrasynaptic N-methyl-D-aspartate 
receptor (NMDAR) stimulation invokes calpain-mediated proteolysis of striatal-enriched protein tyrosine phosphatase 61 (STEP61), producing 
a truncated cleavage product, STEP33. STEP33 is unable to bind to and dephosphorylate its substrates. The stress-activated mitogen-activated 
protein kinase (MAPK) p38 is preferentially activated by extrasynaptic NMDAR stimulation, and cell death pathways are subsequently initiated. 
Cleavage of STEP61 is therefore likely a component of excitotoxic insults associated with stroke/ischemia and Huntington’s disease. On the 
other hand, synaptic NMDAR stimulation leads to the activation of multiple kinases responsible for phosphorylating STEP61 and recruiting 
the ubiquitin proteasome system to dendritic spines. Post-synaptic density (PSD) protein 95 (PSD-95) binds to STEP61 through its third PDZ 
domain, and the binding of PSD-95 to STEP61 promotes the rapid ubiquitination and degradation of STEP61 by the proteasome46. As PSD-95 
stabilizes NMDARs within the PSD, removing the negative regulator STEP promotes synaptic strengthening. Synaptic NMDAR stimulation 
results in the degradation of STEP61, leads to an increase in ERK1/2 activation, and promotes neuronal survival.
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of PSD-95 to STEP
61

 promotes rapid STEP
61

 ubiquitination and then 
degradation by the proteasome46. As PSD-95 stabilizes NMDARs 
at the postsynaptic density, removing the negative regulator STEP  
promotes synaptic strengthening. Extrasynaptic sites display a  
two- to three-fold increase in STEP

61
 levels compared to synaptic 

sites47. As glutamate levels increase at the synapse, extrasynaptic 
NMDARs are engaged and calcium influx activates calpain and 
STEP

61 
cleavage (Figure 2). The cleavage occurs in the substrate-

binding KIM domain, releasing a smaller STEP variant (STEP
33

) 
that no longer binds to or dephosphorylates STEP substrates. In 
contrast to the stimulation of synaptic NMDARs, the stimulation of 
extrasynaptic NMDARs activates p38 and downstream cell death 
signaling pathways, but not ERK1/2. In support of this model of 
STEP function, the addition of a STEP-derived peptide that spans 
the calpain cleavage site competitively blocks proteolysis and  
neurons are protected from glutamate-mediated excitotoxicity44.

Two other STEP substrates are Pyk2 and Fyn, where dephos-
phorylation of the regulatory tyrosines in their activation loops  
inactivates these kinases48,49. STEP

61
 has two polyproline-rich 

regions that, in addition to the KIM domain, are involved in substrate 
binding and contribute to substrate specificity; the first polyproline 
domain facilitates binding to Fyn48, while the second polyproline 
domain is necessary for binding to Pyk249 (Figure 1). Of note,  
Fyn phosphorylates GluN2B at Tyr1472, the same site that is dephos-
phorylated by STEP. Thus, STEP dephosphorylates GluN2B 
directly and at the same time dephosphorylates and inactivates the 
kinase that phosphorylates GluN2B10,48,50.

The most recently identified STEP substrate is PTP alpha, an acti-
vator of Fyn51. In contrast to STEP, which dephosphorylates the 
activation loop and thereby inactivates Fyn, PTP alpha dephospho-
rylates a distinct inhibitory pTyr residue in Fyn52,53. Notably, STEP 
dephosphorylates a pTyr in PTP alpha that normally results in the 
translocation of PTP alpha to lipid rafts, where it activates Fyn. 
Thus, STEP has a two-pronged mode of inactivating Fyn: it directly 
inactivates Fyn and concomitantly prevents activation of Fyn by 
PTP alpha by blocking its translocation to the membrane.

STEP and altered synaptic activity in Alzheimer’s 
disease
The first suggestion that STEP might contribute to the cognitive 
deficits in AD came from a study by Snyder and colleagues10, 
which examined the mechanism by which beta amyloid (Aβ) 
increases the removal of NMDARs from synaptosomal membranes 
in rodent neuronal models (Figure 3). Previous studies suggested 
that Aβ binds to and stimulates α7 nicotinic acetylcholine receptors 
(α7nAChRs)54–56. Aβ binding to these receptors results in calcium 
influx and activation of a cascade of serine/threonine phosphatases 
involving protein phosphatase 2B (PP2B; calcineurin) and protein 
phosphatase 1 (PP1). PP1 dephosphorylates and activates STEP, 
leading indirectly to the dephosphorylation of GluN2B and GluA2. 
It was subsequently shown that Aβ inhibits proteasomal activ-
ity57,58, leading to a rapid increase in STEP levels9,59. Thus, these 
studies show that both dephosphorylation by PP1 and decreased 
degradation result in an increase in STEP activity and STEP levels, 

respectively, and subsequent internalization of GluN1/GluN2B and 
GluA1/GluA2 receptors10,12,33,60.

Complementing these molecular studies, STEP levels are elevated 
above normal in the prefrontal cortex and hippocampus of AD 
patients and in the four AD mouse models tested to date9,33,61,62. It 
is noteworthy that when STEP knockout mice were crossed with 
either of two mouse AD models, STEP deficiency restored the 
expression of NMDARs and AMPARs at the synapse, which was 
associated with a significant improvement in cognitive function33,60. 
In summary, high levels of STEP activity in AD disrupt synaptic 
activity and the synaptic plasticity required for learning and thereby 
appear to contribute to the cognitive deficits that characterize early 
symptoms of this devastating illness.

STEP and altered synaptic activity in Parkinson’s 
disease
Parkinson’s disease (PD) is the second most common neuro-
degenerative disorder after AD and affects millions of people  
worldwide63. This disorder is characterized by selective loss of 
dopamine neurons in the substantia nigra and dopamine deple-
tion in the striatum, which eventually lead to characteristic motor  
abnormalities64. As with AD, there is no cure for PD, only  
temporary symptomatic relief, highlighting the importance of  
further research on the molecular basis of these diseases in an effort 
to develop more effective treatment strategies.

Kurup and colleagues65 recently showed that STEP is upregulated in 
PD. As discussed earlier under substrates, STEP is normally ubiqui-
tinated and degraded by the proteasome – this process is disrupted 
in AD9. The more recent study identified parkin as the E3 ligase 
that ubiquitinates STEP. Deficits in parkin expression, the PARK2 
gene product, are implicated in genetic forms of PD, suggesting the 
possibility that STEP overexpression might contribute to the etiol-
ogy of PD. Notably, STEP expression was significantly increased 
in human sporadic PD post mortem samples65. STEP levels are also 
increased in animal models of the illness, including Park2 knockout 
rats, and a toxin-based mouse model. Moreover, increased STEP 
activity is associated with down-regulation of synaptic proteins 
in the striatum. Together, these results suggest a convergence of a 
shared pathway in the regulation of STEP and the etiology of some 
forms of PD.

STEP inhibition as a potential treatment for 
neurocognitive disorders
Cognitive function in AD mice is significantly improved by geneti-
cally decreasing STEP activity, as previously discussed33,60. Such 
results provide a strong rationale to identify small molecule inhibi-
tors of STEP. Recent studies have led to the isolation of a potent 
STEP inhibitor, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-
amine (known as TC-2153)66. TC-2153 increases the tyrosine phos-
phorylation of three STEP substrates (ERK2, Pyk2, and GluN2B) 
in neuronal cultures. Moreover, both 6- and 12-month-old 3xTg-
AD mice show significant improvement in cognitive function after 
TC-2153 systemic injections, where the performance of TC-2153-
treated 3xTg-AD mice is indistinguishable from that of wild-type 
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Figure 3. Potential role of striatal-enriched protein tyrosine phosphatase (STEP) in neurodegenerative diseases. A. Alzheimer’s 
disease (AD): Two mechanisms are known to result in an increase in STEP61 activity in AD. Beta amyloid (Aβ) binding to the α7 nicotinic 
acetylcholine receptor (α7nAChR) results in calcium influx and activation of protein phosphatase 2B (PP2B)/protein phosphatase 1 (PP1), 
which results in dephosphorylation of the regulatory serine221 within the substrate-binding domain of STEP61. Dephosphorylation of this site 
allows STEP61 to now associate with and dephosphorylate its substrates. In addition, STEP61 is normally ubiquitinated and degraded to 
remove it from synaptic compartments, as synaptic strengthening requires degradation of STEP61. Aβ-mediated inhibition of the proteasome 
results in a build-up of STEP61 levels. The net effect is an increase in STEP61 level and activity and the subsequent internalization of synaptic 
GluN1/GluN2B receptor complexes. For clarity, only one substrate is shown (GluN2B subunit of the N-methyl-D-aspartate receptor [NMDAR] 
complex), although all will be dephosphorylated by increased STEP activity. Ub, ubiquitin. B. Parkinson’s disease (PD): The E3 ligase that 
leads to the ubiquitination of STEP61 is parkin, encoded by the PARK2 gene. Loss-of-function mutations in PARK2 are one cause of PD in 
humans, and STEP61 levels are elevated in post mortem samples as well as in animal models of PD. Related to STEP turnover, the growth factor 
brain-derived neurotrophic factor (BDNF) leads to the activation of protein kinase C (PKC) and the rapid ubiquitination and degradation of 
STEP61. Decreased levels of BDNF may contribute to the pathophysiology of PD, although it remains to be determined whether the decreased 
BDNF signaling is involved in the increased STEP61 observed in PD. DAG, diacylglycerol; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC-γ, 
phospholipase Cγ; Ub, ubiquitin.
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mice in the Morris water maze, Y-maze, and object recognition 
task. It is important to note that pTau and Aβ levels were unchanged  
in the 12-month-old AD mice treated with TC-2153 compared 
to vehicle-treated AD mice, demonstrating that inhibiting STEP  
activity is sufficient to reverse cognitive deficits without affecting 
pTau and Aβ levels66.

The specificity of TC-2153 has been examined in several ways, 
including a comparison of STEP with its closely related PTPs,  
PTP-STEP-like (PTP-SL) and hematopoietic (He)-PTP. Little  
difference was evident in the inhibition of truncated versions of  
the PTPs that contained only the catalytic domain. However,  
comparative analysis of full-length PTPs suggests a significant 
degree of specificity for STEP compared to the other PTPs. As 
mentioned, STEP is present throughout the brain with the excep-
tion of the cerebellum, which contains the closely related PTP-SL67. 
ERK1/2 and Pyk2 are expressed ubiquitously, and multiple PTPs 
dephosphorylate these proteins in non-brain tissues. However, 
administration of TC-2153 increases ERK2 and Pyk2 phosphoryla-
tion only in the cortex and hippocampus and not in the cerebel-
lum or any of the peripheral organs tested. Moreover, there is no  
significant increase in ERK2 and Pyk2 phosphorylation over base-
line conditions in STEP knockout mice treated with TC-215366.

The mechanism by which TC-2153 inhibits STEP activity likely 
involves the formation of a covalent bond with a cysteine residue 
within the catalytic domain of STEP64. The oxidative attack and 
addition of a sulfur to the cysteine promotes a loss of STEP cata-
lytic activity. Mass spectrometry confirmed modifications to the 
active site cysteine, suggesting that a sulfur from the benzopen-
tathiepin ring is retained. These findings support recent research 
showing that oxidative regulation of PTPs is an important regula-
tory mechanism occurring in cells to link tyrosine phosphorylation 
signaling and redox status68,69.

Speculation and future directions for studies of STEP 
in neurocognitive disorders
STEP levels are clearly elevated in AD and PD. An increase in 
STEP activity is also observed in mouse models of schizophre-
nia (SZ)70 (but see 71) and fragile X syndrome (FXS)72. Potential 
mechanisms for increased STEP activity in these diseases include 
decreased degradation, evident in AD, PD, and SZ, or an increase 
in its translation, evident in FXS. Additional, as-yet-unknown 
mechanisms likely contribute to the regulation of STEP expres-
sion and/or activity and thereby contribute to the modulation of 
synaptic function. In contrast, low STEP activity may contribute 
to the pathophysiology of other nervous system disorders includ-
ing alcohol abuse73–75, stress disorders76–78, cerebral ischemia79, and  
Huntington’s chorea80,81.

Given that both high and low STEP activity contributes to various 
neuropsychiatric disorders, the original general model whereby 
STEP suppresses synaptic plasticity requires modification, and it 
appears to be clear that optimal levels of STEP are required for 
normal synaptic function. Related to this, a recent study showed 
that decreased STEP activity in the mouse striatum (through  
protein kinase A [PKA] phosphorylation of STEP) is important 
for improving motor learning82. These findings are consistent with 

earlier studies showing that STEP knockout mice have facilitated  
hippocampal and amygdala learning but extend the possible involve-
ment of STEP to other types of learning. In addition, it was noted in 
the Morris water maze paradigm that despite the enhanced learning 
by STEP knockout mice after the initial training phases, learning to 
find the location of the platform after it was moved to a new loca-
tion was impaired30. Thus, when STEP levels are low, extinction 
may be disrupted because the mice appeared to perseverate on the 
initial learned task. It will be important for future studies to examine 
STEP activity in tic disorders, obsessive compulsive disorder, and 
autism, all disorders characterized by repetitive behaviors as well as 
difficulties in modulating behaviors in a changing environment.

Recent studies have investigated some of the regulatory mech-
anisms that promote STEP ubiquitination and degradation.  
Brain-derived neurotrophic factor (BDNF) and other neurotrophic 
factors promote the development of synaptic strengthening while 
STEP opposes it, raising the possibility that they might regu-
late each other’s activity. It was recently shown that BDNF sig-
naling leads to the rapid ubiquitination and degradation of STEP  
through TrkB binding and activation of the phospholipase Cγ and 
protein kinase C (PKC) pathways83,84. Moreover, decreased neuro-
trophic factor signaling has been proposed in the pathophysiology  
of PD85–88 and, as discussed above, STEP levels are elevated in 
sporadic PD65. Together, these findings lead to the hypothesis that 
decreased neurotrophic factor signaling may contribute to the 
pathophysiology of PD, at least in part, by increasing STEP expres-
sion levels. However, further research is necessary to establish a 
causal relationship between neurotrophic signaling and the increase 
in STEP levels detected in PD.

Several additional questions raised in this commentary need fur-
ther study. As mentioned, STEP levels are elevated in a number of 
CNS disorders that include AD, PD, FXS, and SZ. Reducing STEP 
activity with genetic or pharmacologic inhibition of STEP reverses 
the cognitive and behavioral deficits observed in animal models 
of these disorders. However, it raises the question of how elevated 
STEP might result in very different types of neurocognitive illness. 
Presumably, the difference results from brain region- or brain cell 
type-specific regulation of STEP expression or activity. In support 
of this hypothesis, STEP is elevated in the striatum in PD, but not 
in the cortex or hippocampus65, and STEP activity is decreased in 
alcohol abuse in the dorsomedial striatum but not in the adjacent 
dorsolateral striatum or nucleus accumbens74. Future studies are 
needed to address these questions and whether other regulatory 
mechanisms (e.g. microRNAs) provide differential and region- 
specific increases, or decreases, in STEP expression patterns.

TC-2153 has been shown to be a useful tool for testing new hypoth-
eses about STEP function in neurocognitive disorders. TC-2153 
corrects biochemical abnormalities at the synapse and reverses 
cognitive and behavioral deficits in mouse models of AD66 and has 
been used successfully in a number of other cell-based and animal 
models. TC-2153 is not likely to be useful as a template for fur-
ther drug development, owing to its chemical properties. However, 
STEP appears to be an excellent drug target. STEP is brain specific, 
enriched in frontal brain regions important in cognition, is localized 
to post-synaptic sites, has limited substrate specificity, and, as an 
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enzyme, has an active site that is amenable to drug development. 
The rationale for the use of any STEP inhibitor would be to target 
deficits associated with synaptopathologies found at early stages 
of neurodegenerative diseases such as AD or PD. STEP inhibition 
may also be able to complement other therapies that, for example in 
AD, target the generation or deposition of the Aβ peptide.

A significant focus in studies of STEP has been its ability to 
dephosphorylate key proteins involved in the regulation of synaptic  
activity, such as glutamate receptors. It is likely that additional 
substrates for STEP remain to be identified, some of which may 
provide a link between the various diseases with which STEP 
has been associated. Disruption in synaptic connectivity and loss 
or altered development of dendritic spines have been observed in 
AD, FXS, and SZ. In this respect, a recent study showed that STEP 
dephosphorylates SPIN90, a negative regulator of cofilin-mediated 
actin depolymerization89. When tyrosine-phosphorylated, SPIN90 
binds to cofilin, inhibits its activity, and blocks actin depolymeriza-
tion; this sequence of events prevents the activity-dependent redis-
tribution of key proteins that are required for the morphological 
changes in synaptic structure that occur during synaptic strengthen-
ing. STEP dephosphorylation of SPIN90 reverses this process to  
effectively promote synaptic reorganization.

A role for STEP in synaptic excitation was observed in several 
studies showing that a decrease in STEP may increase seizure 
thresholds. It is noteworthy in this context that STEP deficiency 
protects hilar interneurons from excitotoxic damage during  
pilocarpine-induced seizures90,91. Finally, a recent study showed that 
STEP plays a role during homeostatic synaptic plasticity through 

the regulation of AMPAR and NMDAR trafficking92. Further work 
is needed to confirm and extend these findings.

In summary, the current model of STEP function is that STEP nor-
mally opposes the development of synaptic strengthening. Both  
high and low levels of STEP activity contribute to synaptic dys-
function and to disruptions in behavior and cognitive function. 
Given the large number of neurocognitive diseases in which STEP 
has now been implicated, it appears to be a critical nodal point for 
synaptic regulation. Future efforts should focus on discovering  
additional disorders in which STEP and synaptic function are dis-
rupted to refine our understanding of how STEP influences neuro-
cognitive function and dysfunction.
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