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Abstract

the effects of maternal protein restriction.

Background: Maternal protein restriction during rat pregnancy is known to impact upon fetal development,
growth and risk of disease in later life. It is of interest to understand how protein undernutrition influences the
normal maternal adaptation to pregnancy. Here we investigated the mechanisms regulating renal haemodynamics
and plasma volume during pregnancy, in the context of both normal and reduced plasma volume expansion. The
study focused on expression of renal angiotensin receptors (ATR) and vasopressin-related aquaporins (AQP),
hypothesising that an alteration in the balance of these proteins would be associated with pregnancy per se and
with compromised plasma volume expansion in rats fed a low-protein diet.

Methods: Female Wistar rats were mated and fed a control (18% casein) or low-protein (9% casein) diet during
pregnancy. Animals were anaesthetised on days 5, 10, 15 and 20 of gestation (n = 8/group/time-point) for
determination of plasma volume using Evans Blue dye, prior to euthanasia and collection of tissues. Expression of
the ATR subtypes and AQP2, 3 and 4 were assessed in maternal kidneys by PCR and western blotting. 24 non-
pregnant Wistar rats underwent the same procedure at defined points of the oestrous cycle.

Results: As expected, pregnancy was associated with an increase in blood volume and haemodilution impacted
upon red blood cell counts and haemoglobin concentrations. Expression of angiotensin Il receptors and
aquaporins 2, 3 and 4 was stable across all stages of the oestrus cycle. Interesting patterns of intra-renal protein
expression were observed in response to pregnancy, including a significant down-regulation of AQP2. In contrast
to previous literature and despite an apparent delay in blood volume expansion in low-protein fed rats, blood
volume did not differ significantly between groups of pregnant animals. However, a significant down-regulation of
AT,R protein expression was observed in low-protein fed animals alongside a decrease in creatinine clearance.

Conclusion: Regulatory systems involved in the pregnancy-induced plasma volume expansion are susceptible to

Background

Human pregnancy is associated with a 30-50% increase
in plasma volume, beginning early in the first trimester
and peaking at around 32 weeks of gestation [1].
Coupled with an expansion of red blood cell mass, this
leads to an increase in blood volume [2]. Failure to
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expand circulating volume is associated with intrauter-
ine growth restriction and hypertensive complications of
pregnancy [1,3,4]. A similar profile of plasma volume
expansion occurs in rodents during pregnancy [5], pro-
viding a useful model with which to examine the mole-
cular and physiological mechanisms of volume
expansion and the impact of modifiable environmental
factors.

The events leading to plasma volume expansion are
not fully understood, but evidence suggests that it is
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triggered by a fall in systemic vascular tone [6]. This is
thought to be followed by compensatory activation of
volume-restoring mechanisms, including activation of
the renin-angiotensin-aldosterone (RAAS) and arginine-
vasopressin (AVP) systems [7,8], leading to renal sodium
and water retention. The plasma volume expansion is
associated with a substantial increase in effective renal
plasma flow (ERPF) and glomerular filtration rate (GFR)
from as early as the sixth week of human pregnancy
[9,10]. The initial trigger for this series of events
remains poorly understood. Activity of the ovaries or
corpus luteum is thought to be responsible for the initial
peripheral vasodilation, as similar changes are observed
in pseudopregnant rats [11] and in women in the luteal
phase of the menstrual cycle [12]. A role for the feto-
placental compartment has also been suggested, based
on fetal reduction experiments in rodents [13] and the
greater volume expansion observed in human twin preg-
nancies [14].

This study aimed to use a rat model of protein restric-
tion to investigate the molecular mechanisms underlying
the alterations in renal haemodynamics and plasma
volume during pregnancy and to determine the sensitiv-
ity of such mechanisms to dietary insult. Low-protein
diets are known to decrease urine concentrating ability
in humans and rats [15], and are suggested to attenuate
plasma volume expansion during pregnancy in rats
[16,17]. This is of major interest as offspring from low-
protein fed rats develop a range of metabolic disorders
in later life, including hypertension, insulin resistance
and dyslipidaemia [18,19]. Similar phenotypes have been
observed in response to a range of other maternal diet-
ary manipulations. The mechanisms through which such
programming of disease risk occurs are not fully under-
stood [20] and the contributions of maternal physiologi-
cal responses and placental functions have been largely
overlooked.

It is possible that inadequate plasma volume expan-
sion may be one mechanism by which maternal diet
impacts on the critical developmental processes related
to postnatal metabolic disease. Compromised haemodi-
lution and renal adaptation may adversely impact upon
placental perfusion and hence the transfer of nutrients
to the developing fetus. Inadequate nutrient supply or
endocrine signalling may have irreversible effects upon
organ development and therefore reduce functional
capacity in later life [20]. The current study focused on
renal expression of the angiotensin receptors (ATR) and
the vasopressin-related aquaporins (AQP) during the
oestrous cycle and pregnancy. It has been suggested that
activation of arterial baroreceptors in response to per-
ipheral vasodilation leads to nonosmotic AVP release
and activation of the RAAS, over-riding the suppression
of AVP release which would normally be observed in a
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hypo-osmotic state and thus contributing to water and
sodium retention during pregnancy [21]. It has also
been shown that the reduction in urine concentrating
ability observed in low-protein fed rats is associated
with a decrease in AQP2 protein in the inner medullary
tip [15]. We therefore hypothesised that an alteration in
the balance of ATR subtypes and the expression of
renal AQPs would be observed in the pregnant versus
non-pregnant state, and would result in a reduced
plasma volume expansion in low-protein fed rats.

Methods

Animal procedures

All experiments were carried out in accordance with the
1986 Animals (Scientific Procedures) Act. 64 virgin
female Wistar rats (Harlan Ltd, UK) were mated at
weights of 200-250 g. Upon confirmation of mating by
the presence of a semen plug on the cage floor, rats
were assigned to either a control diet (180 g casein/kg)
or a low-protein diet (90 g casein/kg) as described pre-
viously [22]. Within each dietary group, creatinine clear-
ance and plasma volume were estimated at days 5, 10,
15 and 20 of gestational age (GA, n = 7-9 in each diet-
ary GA group) prior to euthanasia. A further group of
non-pregnant virgin female Wistar rats (n = 24) were
maintained on a standard laboratory chow diet (Harlan
Ltd) and their stage of oestrous was determined daily by
vaginal swabbing. According to microscopic evaluation
of the cell types present, non-pregnant rats were classi-
fied as pro-oestrous, oestrous, met-oestrous and di-oes-
trous, and 6 animals were euthanased per stage of
oestrous following estimation of creatinine clearance
and plasma volume. Following euthanasia of pregnant
and non-pregnant animals, one kidney was snap frozen
and stored at -80°C for molecular analyses.

Creatinine clearance

On the day prior to euthanasia, animals were housed in
metabolism cages for 24 hour collection of urine. UK
Home Office restrictions did not allow animals to be
housed in metabolism cages for more than 24 hours. An
aliquot of urine was frozen at -20°C until analysed.
Plasma and urine creatinine concentrations were deter-
mined by the Jaffé alkaline picrate method [23]. A stan-
dard curve was prepared using commercially available
creatinine standards (Sigma, UK). A working reagent
was created at the time of sample analysis by mixing
equal volumes of three solutions: A (4.4 g sodium
hydroxide, 9.5 g trisodium phosphate, 9.5 g sodium tet-
raborate; in 400 mls distilled water), B (4% (w/v) sodium
dodecyl sulphate) and C (picric acid). 200 pl of working
reagent was added to 20 pl aliquots of samples and stan-
dards on a microplate in duplicate. Following 30 min-
utes incubation at room temperature on an orbital
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shaker, the absorbance was read at 492 nm. 10 pl of
30% (v/v) acetic acid was then added to each well, the
microplate incubated at room temperature for a further
five minutes and the absorbance read at 492 nm. The
difference between absorbance before and after acidifica-
tion by acetic acid was calculated. Creatinine clearance
was estimated as (urinary creatinine [pmol/l] x volume
urine produce in 24 hours [mls])/(plasma creatinine
[umol/l] x 1440 [minutes]). The intra- and inter-assay
coefficients of variation for plasma creatinine were 3.1%
and 5.5% respectively. The intra and inter-assay coeffi-
cients of variation for urinary creatinine were 3.5% and
0.5% respectively.

Blood and plasma volume

The method for determining blood and plasma volume
was based on a previously published method [24].
Under isofluorane anaesthesia, a cannula was inserted
into the left iliac vein through which an initial (baseline)
blood sample of 1 ml was taken for use as a plasma
blank and for analyses of plasma creatinine and haema-
tological parameters. 0.3 ml Evans Blue Dye (0.5 mg/ml)
was injected via the cannula, followed by a flush with
0.5 ml saline. The dye was allowed to circulate for five
minutes, after which a final blood sample was taken.
The animal was then euthanased by injection of sodium
pentobarbitone, with death confirmed by cervical dislo-
cation. Blood was collected into EDTA microtubes and
centrifuged at 3000 rpm for collection of plasma, which
was stored at -20°C prior to analyses.

75 pl of the baseline and final plasma samples were
added in duplicate to a 96 well microplate. Plates were
read immediately at 620 nm (Tecan Sunrise, Magellan
Software version 4.0) and the absorbance of the baseline
plasma samples was subtracted from the absorbance of
the final plasma samples collected 5 minutes after dye
injection. Baseline plasma samples from each animal
acted as a blank for that individual animal. Plasma
volume was calculated as (milligrams dye injected/
plasma dye concentration). The inter- and intra-assay
coefficients of variation for Evans Blue dye concentra-
tions were 10.0% and 4.3% respectively. Blood volume
was calculated as (plasma volume)/(1-(0.009 x haemato-
crit)) using an F-cells ratio of 0.9 to account for the dif-
ference between whole body and venous haematocrit
(Blair & Mickelsen 2006).

Haematology analyses

Haematological parameters were measured in an aliquot
of the baseline blood sample using the Vet Medonic CA
620 (Boule Medical, Sweden) within three hours of col-
lection from the animal.
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Western blotting

Tissues were homogenised in an extraction buffer con-
taining 50 mM Tris/HCL and 5 mM EDTA. Protein
concentration was determined by the Bradford method
[25] and samples adjusted to equal concentrations. Sam-
ples were diluted with an equal volume of loading buffer
[4% (w/v) SDS, 125 mM Tris/HCI pH 6.8, 20% (v/v,
87%) glycerol, 0.1 M dithiothreitol] and heated at 90°C
for 5 minutes before being run on SDS-polyacrylamide
gels. Electrophoresis was carried out in a 10x Tris/gly-
cine/SDS running buffer (National Diagnostics, USA).
Following separation by electrophoresis, proteins were
transferred to nitrocellulose membrane (GE Healthcare,
UK). Blots were probed with the following anti-rat anti-
bodies: AT R diluted 1:500 (Santa Cruz, USA), AQP2
[26], AQP3 [27] and AQP4 [27], diluted 1:5000 (affinity
purified rabbit anti-rat AQP2 antibodies, was kindly pro-
vided by Dr. David Marples, University of Leeds), AT,R
diluted 1:45,000 (Abcam, UK) and tubulin diluted
1:30,000 (Abcam). The AT;R antibody did not distin-
guish between AT;,R and AT;,R isoforms. Blots were
then treated with goat anti-rabbit horseradish peroxidise
linked secondary antibody (GE Healthcare). Blots treated
with AQP2 and AT;R antibodies were developed using
Enhanced Chemiluminescence (ECL, Biological Indus-
tries, Israel). Blots treated with AT,R and tubulin were
developed using ECL Advance (GE Healthcare). Blots
were exposed to Hyperfilm ECL (GE Healthcare) to
visualise the protein bands, which were quantified using
a Quantity-One Multi Analyst system (Bio-Rad, UK).
Protein expression was normalised to tubulin expression
to correct for any discrepancies in the loading of sam-
ples onto the gel.

RNA extraction and real-time RT-PCR

RNA was extracted from snap-frozen kidney tissue by the
TRIzol procedure (Invitrogen, UK) and subjected to
DNAse treatment (Promega, UK), phenol-chloroform
extraction and ethanol precipitation. RNA was reverse
transcribed using Moloney murine leukemia virus
(MMLV) reverse transcriptase (Promega). Real-time PCR
primers and a probe were designed for AQP2 using Primer
Express software (version 1.5; Applied Biosystems) from
the DNA sequence GenBank Accession no. NM_012909.
The primer sequences were as follows: AQP2 forward pri-
mer 5-CCATTGGTTTCTCTGTTACCCTG-3’, reverse
primer 5-CGGGCTGGCTTCATGGAG-3’, probe 5'-
CCACCTCCTTGGGATCTATTTCACCGG-3'. Primers
were ordered from MWG Biotech, Germany. Primer and
probe sequences for AT1,R, AT,R and B-actin are pub-
lished elsewhere [28]. Real Time PCR was performed using
a Lightcycler 480 PCR machine (Roche, UK).
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Statistical analysis

Data is presented throughout as means + standard error
of the mean (SEM). Data was analysed using SPSS ver-
sion 16.0. To assess the effect of pregnancy per se, an
independent t-test was used to compare means between
non-pregnant and pregnant control fed animals, using
all data from each condition irrespective of gestational
age or stage of oestrus. In the pregnancy data sets, the
effects of gestational age and diet during pregnancy
were assessed by two-way analysis of variance. In the
figures and tables, superscript letters are used to indi-
cate outcomes of post hoc tests (Bonferroni) applied
where ANOVA showed a main effect of diet or gesta-
tional age. Posthoc tests cannot be performed on inter-
actions of these factors and so no symbols are shown
where only interactive effects were noted. The statistical
significance of the main factors and the interaction
between them are presented throughout. In the oestrous
cycle data sets, the effect of stage of oestrous was
assessed by one-way analysis of variance. A probability
of <5% was considered statistically significant.

Results

Weight, haematological parameters and pregnancy
outcome

At the start of the experiment the two dietary groups
were of similar weight (control 240 + 5 g, low protein
247 + 5 g, not significantly different). There was no sig-
nificant effect of a maternal low-protein diet on mater-
nal body weight or pregnancy weight gain at any stage
of gestation (Table 1). There was a small but statistically
significant increase in maternal kidney weight as preg-
nancy progressed in both the control and low-protein
fed groups (Table 1, GA: P < 0.05). Significant fluctua-
tions in kidney weight were also observed in non-preg-
nant rats during the oestrous cycle (Table 2, P < 0.05).
Urine output was highly variable among pregnant rats
but was not significantly influenced by gestational age
or diet (Table 1). Non-pregnant animals (Table 2) pro-
duced less urine than pregnant animals (P = 0.031), but
urine volume was not influenced by stage of oestrus
cycle.

There was no effect of maternal diet on litter size or
on mean fetal or placental weight at gestational age 15
or 20. Maternal red blood cell count, haemoglobin con-
centration and haematocrit were all unaffected by gesta-
tional age and maternal diet (Table 1). These
parameters did not vary according to stage of the oes-
trous cycle (Table 2). Pregnant animals exhibited signifi-
cantly decreased maternal red blood cell count (6.6 +
0.1 vs. 7.2 + 0.1 10°/mm?®, P < 0.05) haemoglobin con-
centration (12.4 + 0.2 vs. 13.5 = 0.2 g/dl, P < 0.01) and
haematocrit (33.7 + 0.7 vs. 36.5 + 0.4%, P < 0.05) in
comparison to non-pregnant controls.
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Blood volume and creatinine clearance during pregnancy
There was a significant effect of gestational age on
plasma (data not shown) and blood volume (Figure 1A),
with significant expansion of volume being apparent by
day 15 in control animals (P = 0.036 compared to non-
pregnant animals at oestrus). Although it appeared that
there was a delay in the expansion of blood volume in
the low-protein fed rats leading to a difference between
groups on day 15 of pregnancy, there was no statistically
significant interaction between gestational age and diet
for either plasma or blood volume. Among the non-
pregnant rats there was significant variation in blood
volume across the oestrus cycle, with significantly
greater volume noted at di-oestrus (Figure 1B).

There was a significant interaction between gestational
age and diet in their effects on creatinine clearance dur-
ing pregnancy (Figure 1C). Whilst clearance remained
relatively constant in the control animals, there was a
decrease in creatinine clearance in low-protein fed ani-
mals between days 10 and 20 of gestation, leading to sig-
nificantly lower clearance rates on day 20 of gestation.

Angiotensin receptor expression during pregnancy

There was no difference in the level of AT;,R mRNA
expression (Figure 2A) between pregnant and non-preg-
nant rats. It was not possible to compare protein expres-
sion between these states due to technical reasons. As
pregnancy progressed from GA5 to GA20, there was no
alteration in protein or mRNA expression levels and
there was no effect of dietary treatment during preg-
nancy (Figure 3A &3C). Expression of AT R protein and
mRNA did not vary across the stages of the oestrus
cycle (Figure 3B &3D).

The expression of AT,R mRNA and protein did not
differ significantly between non-pregnant and control
fed pregnant animals (Figures 2B, C) and there was no
significant effect of gestational age on expression of
AT,R mRNA or protein (Figure 4A &4C). However,
expression of AT,R protein was significantly decreased
in response to a low-protein diet across all gestational
ages (Figure 4A, Diet: P < 0.05). Expression of AT,R
protein and mRNA (Figure 4B &4D) were not signifi-
cantly influenced by stage of oestrus.

Expression of AQP2, AQP3 and AQP4 during pregnancy

The expression of AQP2 protein was significantly
decreased in pregnancy in comparison to levels at oes-
trous (Figure 2D, P < 0.05). This was associated with a
35% decrease in AQP2 mRNA expression overall (Figure
2E, P < 0.05). As pregnancy progressed from GA5 to
GAZ20 there was a significant interaction between gesta-
tional age and maternal diet, which reflected an earlier
down-regulation of AQP2 in low-protein fed animals in
comparison to controls (Figure 5A, GA*Diet P < 0.05).
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Table 1 Maternal weight and haematological parameters and litter characteristics at days 5, 10, 15 and 20 of
gestation in rats fed a control or low-protein diet from mating.

Diet Gestational age (n = 7-9) Statistical significance
5 10 15 20 GA Diet  GA* Diet

Body weight (g) Control 257.3 + 10.7¢ 3128 + 6.2° 3253 + 12.1° 3728 + 150° P < 0.001 NS NS
Low protein 2778 + 82¢ 3026 + 10.7¢ 3473 + 74° 3467 + 12.8°

Pregnancy weight gain (g) Control 262 + 20° 638 + 6.8° 827 +72° 1373+ 79° P < 0.05 NS NS
Low protein 198 + 3.0¢ 604 + 63° 902 +52° 1227 +132°

Kidney weight (g) Control 104 + 004° 1.10 £ 0.04 1.10 + 0.04° 111 £ 006 P <005 NS NS
Low protein 088 + 0.11° 111 £ 005 1.14 + 004° 097 + 0.05

Urine volume (ml/24 hour) Control 183 + 35 2609 + 4.7 224 £56 295+ 74 NS NS NS
Low protein 182 + 29 266 = 6.7 214 £ 3.1 205 £ 60

Litter size (pups/litter) Control 15 £ 1 14 +£1 NS NS NS
Low protein 140 + 1 14 £1

Mean fetal weight (g) Control 030 + 0.01 366 £0.11 NS NS NS
Low protein 029 + 0.01 337 +0.13

Mean placental weight (g) Control 022 + 0.01 051 + 0.03 NS NS NS
Low protein 022 £ 0.01 053 + 0.07

Red blood cells (10%/ml) Control 6.0 + 0.7 63 +07 66 +03 65 +0.2 NS NS NS
Low protein 74 £ 0. 6.9 £ 0.1 6.7 £0.2 63 £0.2

Haemoglobin (g/dL) Control 1M13+£13 18+13 124 £ 05 11.9 £ 04 NS NS NS
Low protein 139 £ 02 130+ 03 126 + 0.2 116+ 03

Haematocrit (%) Control 306 + 36 316+ 36 333+18 326+ 12 NS NS NS
Low protein 378 £ 05 353 +07 338 £ 05 313+ 09

Data is presented as mean + SEM. Data was analysed by two-way ANOVA and the statistical significance of main factor and interaction effects is shown (NS - not
significant). Superscripts denote the statistical significance of post hoc analysis conducted where there was a significant effect of gestational age (superscript

letters indicate a>b>c > d, P < 0.05).

There was also an interaction between gestational age
and maternal diet in their effects on AQP2 mRNA
expression, resulting in a difference between control and
low-protein fed animals on GA5 only (Figure 5C,
GA*Diet P < 0.05). The protein expression of AQP3 and
AQP4 did not differ between pregnant and non-preg-
nant animals (data not shown) and was not affected by
gestational age or maternal diet (Figure 6A &6C). The
expression of AQP2 protein and mRNA (Figure 5B
&5D) and of AQP3 and 4 proteins (Figure 6B &6D)
were similar over all stages of the oestrus cycle.

Discussion

This study used a rat model of protein restriction to
investigate the molecular mechanisms regulating renal
haemodynamics and plasma volume during pregnancy
and the sensitivity of these processes to dietary insult.
The study focused on renal expression of the angioten-
sin receptors and the vasopressin-related aquaporins
(AQPs), hypothesising that an alteration in the balance
of these proteins would be associated with pregnancy
per se and with the maternal response to protein
restriction.

Table 2 Weight and haematological parameters in control fed Wistar rats at each stage of the oestrous cycle

Stage of oestrus cycle (n = 6 per stage) P
Proestrus Oestrus Metestrus Dioestrus

Body weight (g) 2342 + 89 2565+ 116 2339 + 37 2448 + 9.8 NS
Kidney weight (g) 0.88 + 0.02° 092 + 0.05 097 £ 0.02 1.01 + 002° P <005
Urine volume (ml/24 hour) 16.7 = 3.0 184 + 45 187 £ 4.7 153+ 16 NS
Red blood cells (10%/ml) 74 +02 73 +0.1 75+02 70 £ 0.1 NS
Haemoglobin (g/dL) 140 + 0.5 134 + 0.2 13.7 £ 03 132+ 02 NS
Haematocrit (%) 37913 36.1 £ 0.7 369 + 0.7 355+08 NS

Data is presented as mean + SEM. Data was analysed by one-way ANOVA and the statistical significance of the effect of stage of oestrous is shown (NS - not
significant). Superscripts denote the statistical significance of posthoc analysis, which were conducted where a significant main factor effect was found

(superscript letters indicate a > b, P < 0.05).
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Figure 1 Blood volume of pregnant and non-pregnant rats.
Blood volume in rats fed control or low protein diet during
pregnancy(A, n = 7-9) and in non-pregnant rats at different stages
of the oestrus cycle (B, n = 6) Creatinine clearance (C, n = 4-8) in
rats fed a control or low-protein diet during pregnancy. Data is
presented as mean + SEM and was analysed by one or two-way
ANOVA, as described in the methods section. There was a
significant effect of gestational age on blood volume (P < 0.05), but
no effect of maternal diet. Blood volume varied with stage of
oestrus (superscript letters denote a > b, P < 0.05) There was a
significant interaction between gestational age and diet in their
effects on creatinine clearance (P < 0.05).

Effects of pregnancy per se

In agreement with previous literature, an expansion of
plasma and blood volume was observed during preg-
nancy. Blood volume increased in comparison to that
observed in rats at oestrous by 45% at day 5 of preg-
nancy and 180% at day 20. As expected, the expansion
in blood volume was coupled with evidence of haemodi-
lution, as reflected by decreased maternal haematocrit
and haemoglobin concentrations
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To our knowledge, this is the first study to character-
ise renal angiotensin receptor protein expression
through the course of pregnancy in the rat. No change
in ATiR or AT,R mRNA expression compared to the
non-pregnant state was observed and there was no
cumulative change in AT;R or AT,R expression as
pregnancy progressed from day 5 to 20. Although a
recent paper reported no effect of pregnancy on AT;R
expression [29], the study focused on mRNA expression
only. Previously Bedard et al., [30] reported down-regu-
lation of AT;R protein expression in the pregnant rat
kidney. Observations in non-pregnant animals suggest
that binding to AT;R is inhibited by 178-oestradiol
[31]. Progesterone is another endocrine factor that is
known to inhibit expression of AT1R and which could
have a potent influence during pregnancy [32]. How-
ever, in the current study we found that mRNA and
protein expression was unchanged in pregnancy. It is
important to note that pregnancy-induced plasma
volume expansion occurs in the context of systemic and
intra-renal vasodilation [33], and an increase in ERPF
and GFR [9,10]. This is reflected in the relative systemic
pressor resistance to Angll found in pregnancy [34,35].
Although AT;R might be envisaged as having effects
upon multiple sodium and water transport systems in
the nephron, the localization of this receptor is in the
proximal tubule. Promotion of sodium reabsorption
here is in proportion to GFR and would not impact
upon blood volume. Alternatively, although systemic
vascular responses to Angll are attenuated, others have
shown a normal renal vascular response to AnglI [36].
It is possible that site-specific up-regulation of intra-
renal AT;R may therefore mediate vasoconstriction of
the medullary vasculature and contribute to the blunt-
ing of the acute pressure natriuresis curve observed in
pregnancy [37]. AT,R has been suggested to have a role
in systemic and renal vasodilation [38] although a role
for this receptor in altered renal function during preg-
nancy has not been fully established. However Ferreira
and colleagues observed a 30 fold increase in the
mRNA expression of one of the relaxin receptors
(LGR7) in the renal cortex. This could result in signifi-
cant renal vasodilation, allowing glomerular filtration to
rise during pregnancy [38]. Relaxin has been suggested
to have a major role in both renal and systemic vasodi-
lation in pregnancy [39].

There was a significant down-regulation of the expres-
sion of AQP2 protein during pregnancy to 43% of the
level observed in non-pregnant animals. AQP2 is the
predominant vasopressin-sensitive water channel, cloned
and located in the principal cells of the kidney collecting
duct [40]. Evidence suggests that the decrease in arterial
baroreceptor stretch during pregnancy leads to
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non-osmotic vasopressin release [21] which activates the
vasopressin V, receptors (V,Rs) and the adenylate-cyclic
AMP pathway in the collecting duct, resulting in
increased AQP2 gene transcription and shuttling of
AQP2 water channels to the apical membranes of

principal cells. Whilst translocation of AQP2 from cyto-
solic vesicles to the apical membrane mediates the acute
response to AVP stimulation [41], long-term regulation
of collecting duct water permeability is characterised by
an increase in AQP2 mRNA and protein [42,43].



Cornock et al. Reproductive Biology and Endocrinology 2010, 8:105
http://www.rbej.com/content/8/1/105

Page 8 of 13

5 10 15 20
Gestational Age (days)

-
u
g

...
)
2

[
2

o
I

5 10 15 20
Gestational Age (days)

AT;,R mRNA expression
(% of expression at oestrous)

Control Low Protein
GA 5-20 GA 5-20
A B
| | P O M D
ATlR ———— A — S — — — ATlR - 2
Tubulin Tubulin
. R A— - — o— P — . — —— ———
c c
2.0 .8
-% £ @l Control 2 £ 0.8
2 3 O Low Protein ¢ 3
= 5 1.51 - 3 0.6
% - [= N
s 2 s 2
£ 5 1.07 £ o 0.4
29 25
0 = =
5§ 0.5 2 2 0.21
X = X =
£ 2 0.0/ ol
K £o0 K £ 0.0

Il Control
[ Low Protein

pro-oest oestrous met-oest di-oest

e
%

o
-}
1

o
N
h

AT,;,R mRNA expression
(normalised to p-actin)
(<)
£

e
e

pro-oest oestrous met-oest di-oest

Figure 3 Expression of renal AT;R. Renal expression of type 1 angiotensin receptor protein and mRNA in kidneys from rats fed a control and
low-protein diet during pregnancy (A & C) and in non-pregnant rats at different stages of the oestrus cycle (B & D). Data is presented as mean
+ SEM (n = 6-8 per group). Data was analysed by one or two-way ANOVA as described in the methods section. Representative western blots are

shown.

The observed down-regulation of AQP2 mRNA and
protein expression during pregnancy is in direct contrast
to evidence published previously demonstrating a preg-
nancy-related up-regulation of AQP2 in renal papillae
[44,45]. Segmental differences in aquaporin protein
expression in the kidney have been reported by other
groups. The utilization of whole kidney samples for ana-
lyses was an important limitation of the present study.
The increase in AQP2 in pregnancy reported by Ohara
et al., [44] occurred in the inner medulla and may not
be detectable in whole kidney studies. Furthermore, it is

possible that translocation of AQP2 from the cytosol to
the cell membrane may have interfered with protein
extraction and skewed our analyses. It would therefore
be more informative to consider the relative distribu-
tions of cytosolic and apical AQP2 in future studies and
this would be best accomplished through immunohisto-
chemical analysis.

Interestingly, in the study of Ohara et al., [44], the up-
regulation of AQP2 was observed in the absence of a
detectable increase in plasma AVP, but with a role for
vasopressin receptor indicated by antagonist studies.
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Similarly, increased urinary excretion of AQP2 in
human pregnancy occurred in the absence of increased
circulating AVP concentrations [46]. Given the apparent
dissociation between AVP and AQP2 expression in
these studies and the contrasting results observed in the
current study and that of Ohara et al. [44], further work
investigating the regulation of AQP2 expression and
shuttling is required before its involvement in the
enhanced water reabsorption during pregnancy can be
fully understood. AQP3 and AQP4 are both present in
the basolateral plasma membrane of collecting duct
principal cells [47] and represent exit pathways for
water reabsorbed apically via AQP2. The protein expres-
sion of these aquaporins remained unaffected by preg-
nancy per se, suggesting that the key regulatory events

occur at the apical plasma membrane where the abun-
dance of AQP2 protein creates a “bottleneck” for water
reabsorption.

Effects of a low protein diet

In contrast to previous literature [16,17], feeding a low-
protein diet to pregnant rats did not have a statistically
significant effect on plasma or blood volume expansion
during pregnancy. However, a trend towards delayed
volume expansion was noted at day 15 of pregnancy.
The study by Rosso & Streeter [16] used a more severe
protein restriction (6% versus 25% casein) than that
used in the current study (9% versus 18% casein), and
the latter may not have been sufficient to impact signifi-
cantly on plasma volume expansion. However, a
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previous study using the same experimental dietary for-
mulations as the current study did suggest a significant
reduction in plasma volume expansion at day 20 of
pregnancy [17]. In the current study, the relative reduc-
tion in creatinine clearance and the alterations in
expression of key mediators of renal fluid homeostasis
in response to a low-protein diet do provide further evi-
dence that the regulatory systems involved in plasma
volume expansion are susceptible to maternal protein
restriction. However, the impact of the protein restric-
tion was subtle and considerably less than expected.
Our findings therefore suggest that maternal adaptation

to pregnancy is less sensitive to protein restriction than
has been previously inferred [16,17], and that only
severe undernutrition has major influence on these
processes.

The expression of AT,R protein was significantly
decreased in low-protein fed rats throughout pregnancy.
Enhanced AT,R-mediated vascular relaxation pathways
have been implicated in the systemic vasodilation of
pregnancy, including increased expression and activity
of endothelial AT,R [48] and involvement in the vasodi-
lation of the uterine artery [49]. As a candidate for med-
iating counter-regulatory vasodilation in response to
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Angll in pregnancy, disruption of AT,R receptor expres-
sion may be involved in inadequate vascular adaptation
to pregnancy. Interestingly, a previous study has shown
vascular relaxation in response to an endothelium-
dependent vasodilator to be impaired in mesenteric
arteries of pregnant rats fed a 9% protein diet [50]. This
study adds to this previous literature by indicating a role
for intra-renal AT,R in mediating altered haemody-
namic function in pregnant rats fed a low-protein diet.
In addition to the alterations in AT,R expression, the
down-regulation of AQP2 occurred earlier in low-pro-
tein fed rats. Given the prevailing evidence of reduced
or, as observed here, delayed plasma volume expansion
in low-protein-fed dams, we had hypothesised that this
would occur and suggest that this signifies a reduced
capacity for water reabsorption in low-protein-fed rats.

Conclusion

To conclude, this study has demonstrated that no
change in expression of intrarenal AT R or AT,R pro-
teins occurs during pregnancy. Surprisingly, a down-reg-
ulation of AQP2 was observed and the role of this water
channel during pregnancy remains unclear. A significant
down-regulation of AT,R protein expression was
observed in low protein fed animals alongside a relative
decrease in creatinine clearance, providing evidence that
regulatory systems involved in plasma volume expansion
are susceptible to maternal nutrient restriction. How-
ever, the impact of protein restriction on maternal
blood volume expansion was relatively minor, suggesting
that adaptive responses are able to compensate for var-
iation in nutritional status.
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