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Abstract: This study aimed to validate the accuracy and prediction performance of machine learning
(ML), deep learning (DL), and logistic regression methods in the treatment of medial meniscus
posterior root tears (MMPRT). From July 2003 to May 2018, 640 patients diagnosed with MMPRT
were included. First, the affecting factors for the surgery were evaluated using statistical analysis.
Second, AI technology was introduced using X-ray and MRI. Finally, the accuracy and prediction
performance were compared between ML&DL and logistic regression methods. Affecting factors of
the logistic regression method corresponded well with the feature importance of the six top-ranked
factors in the ML&DL method. There was no significant difference when comparing the accuracy,
F1-score, and error rate between ML&DL and logistic regression methods (accuracy = 0.89 and 0.91,
F1 score = 0.89 and 0.90, error rate = 0.11 and 0.09; p = 0.114, 0.422, and 0.119, respectively). The area
under the curve (AUC) values showed excellent test quality for both ML&DL and logistic regression
methods (AUC = 0.97 and 0.94, respectively) in the evaluation of prediction performance (p = 0.289).
The affecting factors of the logistic regression method and the influence of the ML&DL method were
not significantly different. The accuracy and performance of the ML&DL method in predicting the
fate of MMPRT were comparable to those of the logistic regression method. Therefore, this ML&DL
algorithm could potentially predict the outcome of the MMRPT in various fields and situations.
Furthermore, our method could be efficiently implemented in current clinical practice.

Keywords: knee; medial meniscus root tear; affecting factors; artificial intelligence;
predicting performance

1. Introduction

Osteoarthritis (OA) is an important burden to the healthcare system because it has
a higher prevalence with increasing age. The knee joint is the most common site affected
by OA. It is a leading cause of disability and has effects on social and public health [1,2].
The prevalence of symptomatic knee OA is estimated to be 38% among Asian adults older
than 65 years [3]. The major reason for this high incidence in the Asian population may
be related to lifestyle factors such as high flexion activities. In addition, meniscal injury is
a known important risk factor that predisposes one to develop OA and is mostly related
to degenerative meniscal tears [4]. Medial meniscus posterior root tear (MMPRT) has a
high incidence in the Asian population, with increasing concerns about its treatment. The
probability of finding an MMPRT in OA patients is estimated at approximately 80%, and
MMPRT accounts for 27.8% of all medial meniscal tears [5].

MMPRT has recently received greater attention because it has been associated with the
development of excessive meniscal extrusion and accelerated degenerative changes [6]. An
important characteristic of MMPRT is that it occurs during the early stages of OA, which
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implies that the progression of the disease can be prevented or delayed if the MMPRT
is properly managed. Therefore, it may be important to identify those patients that are
likely to respond well to conservative treatment and those that should be referred for
surgery. It would also be helpful to know the affecting factors that determine which
treatment strategies to use and the proper screening methods that are prerequisites for
successful management.

For the proper treatment of MMPRT, it would be necessary to establish an easy and
accurate algorithm rather than rely on the surgeon’s subjective assessment for the standard
approach. Nowadays, there has been much interest in using artificial intelligence (AI)
in medical imaging techniques such as X-ray and magnetic resonance imaging (MRI) [7].
More than 16,000 peer-reviewed scientific papers in the field of AI are published annually,
and orthopedic research comprises a considerable portion of these papers [8]. Using the
AI algorithm, it is possible to obtain temporal gain by improving the read efficiency and
accuracy of large-scale MRI and X-ray scans. AI, using deep learning (DL) convolutional
neural networks (CNN), has recently become a state-of-the-art method for computer vision
tasks, such as image classification, with a performance that sometimes surpasses that of
humans [9,10]. Characteristics of logistic regression and ML&DL are shown in Table 1.

Table 1. Differences between logistic regression and ML&DL.

Logistic Regression ML and DL

Type of Data Unstructured or Structured Standardized in the form

Tools SPSS Tensorflow, Python, PyTorch

Applications Not limited Not limited

Advantages It is possible to verify the relationship between the
independent variable and the dependent variable.

It is possible to check which factors were
important to the accuracy of the model.

Disadvantages Automation is not possible. The reliability of the model or the importance
of elaborate assumptions is low.

We conducted this study to identify whether ML&DL is suitable for determining
the treatment algorithm for MMPRT similar to a logistic regression method that was
previously determined by statistical analysis using affecting factors from the clinical data
warehouse (CDW). The AI algorithm was set up with DL and machine learning (ML) using
factors that were already analyzed from the CDW. Afterward, the accuracy and predicting
performance of ML&DL were compared to those of the logistic regression. The purpose of
this study was to validate the accuracy and predicting performance of the ML&DL method
by comparing them to those of the logistic regression method. We hypothesized that the
ML&DL method will show comparable accuracy and predicting performance with the
logistic regression method.

2. Materials and Methods

From July 2003 to May 2018, 640 patients who were diagnosed with MMPRT using
MRI readings by MSK radiologists or outpatient chart review searching from the CDW
in our hospital were included. The exclusion criteria were as follows: (1) a history of
trauma such as a periarticular fracture or ligament injury, (2) development of infection,
(3) inflammatory arthritis, and (4) previous meniscal injury and/or knee operation. First,
affecting factors for the operation were evaluated using statistical analysis. Next, AI
technology was introduced using X-ray and MRI machines. Finally, the accuracy and
predicting performance were compared between ML&DL and logistic regression methods.

2.1. Logistic Regression Method

The logistic regression method refers to a traditional statistical model. Based on
previous articles about MMPRT, possible affecting factors of operation or OA progression
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were surveyed. These factors included age, body mass index (BMI), duration of attempted
conservative treatment, malalignment as a weight-bearing line (WBL) ratio, proximal
tibial morphology, Kellgren-Lawrence grading scale (K-L grade), bone marrow lesions
(BMLs), and severity of meniscal extrusion [11–14]. Affecting factors were categorized
as demographic or radiologic factors. Age, gender, BMI, and conservative interval were
included in the demographic category. BMI was defined as the patient’s weight in kilograms
divided by the square of height in meters. Conservative interval was determined as an
interval between MRI acquisition and an event, which was either the date of operation
for patients who underwent such or the date of final outpatient department follow-up for
those who participated in conservative treatment.

Radiologic factors were extracted from standing knee anterior–posterior, lateral, hip–
knee–ankle (HKA) views, and MRI. WBL ratio, proximal tibial morphology, K-L grade,
BMLs, and severity of meniscal extrusion were categorized as radiologic factors. Me-
chanical axis deviation was evaluated using the initial WBL and delta WBL ratios, while
proximal tibial morphology was evaluated using tibial varus angle (TVA) and posterior
tibial slope (PTS). Meanwhile, the severity of OA was assessed using the K-L grade and
BMLs were evaluated using the MRI osteoarthritis knee score (MOAKS). The extent of
medial meniscal extrusion was evaluated on MRI. INFINITT ver. 5.0.9.2 (INFINITT, Seoul,
Korea) was used for all radiographic measurements. The WBL ratio was calculated by
measuring the distance from the medial edge of the proximal tibia to the point where the
WBL intersected the proximal tibia and then by dividing this measurement by the entire
width. A percentage was calculated by multiplying this ratio by 100%. The delta WBL
ratio was the difference between the initial WBL ratio and the WBL ratio just before the
operation or the last follow-up in the outpatient department for patients who underwent
conservative treatment. TVA was defined as the angle between the line perpendicular to the
tibial shaft and the articular surface of the proximal tibia [15], while PTS was defined as the
angle between the line connecting the highest anterior and posterior points of the medial
plateau and the line perpendicular to the anterior tibial cortex [11]. The K-L grade was
determined using anteroposterior (AP) knee radiographs. Each radiograph was assigned a
grade from 0 to 4 based on the extent to which they correlated with increasing OA severity.
Grade 0 indicated no presence of OA, and Grade 4 indicated severe OA [16]. The MOAKS
instrument refined the scoring of bone marrow lesions (BMLs) [17]. The extent of medial
meniscal extrusion was measured from the medial margin of the tibial plateau to the medial
margin of the medial meniscus on the image at the midpoint of the femoral condyle [11].

Logistic regression models were applied to binary classification problems, such as
the use of surgery or conservative treatment. The characteristics of the logistic regression
method were interpretable and derived from coefficients such as odds ratio. The odds
ratio was used to determine how each factor influenced the fate of MMPRT. All statistical
analyses were performed using the Statistical Package for the Social Sciences (version 22.0,
IBM, Armonk, NY, USA). On a priori power analysis, at least 135 patients were required in
each group (α = 0.05, β = 0.05).

2.2. DL&ML

The dataset of the ML&DL method was shared with that of the logistic regression
method. Preprocessing was performed using data cleaning, integration, transformation,
reduction, and discretization. Meniscal extrusion and K-L grade were interpreted using
the DL method with MRI and X-ray images, as opposed to the logistic regression method
that used numerical data. Other numerical data such as age, BMI, conservative interval,
TVA, PTS, MOAKS, and WBL ratio were modeled using ML. The results of the DL and
ML models were summed using weighted voting and the probability was quantified
(Figures 1 and 2). The detailed structures of DL and ML were as follows.



Diagnostics 2021, 11, 1225 4 of 12

Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

ML models were summed using weighted voting and the probability was quantified (Fig-
ures 1 and 2). The detailed structures of DL and ML were as follows. 

 
Figure 1. The overall process of ML&DL and logistic regression methods. The process consists of data preprocessing, 
splitting, modeling, prediction, and probability scoring. The first three steps are similar for both methods while the final 
two steps differ. 

 
Figure 2. Practical application of the ML&DL method. 

The approach of the DL method was based on the CNN architecture. The detailed 
network structure for the CNN is summarized in Figure 3. The collected image data con-
sisted of the most visible MRI image cuts for the meniscal extrusion and standing knee 
AP X-ray images for the K-L grade. The extraction of lesions was performed on the col-
lected image data for model development. Operation and conservative treatment were 
labeled on the image from which the lesion was extracted. Labeled images were used as 
input data for the CNN model. The CNN processing pipeline framework was imple-
mented in a hybrid computing environment involving Python (version 3.6; Python Soft-

Figure 1. The overall process of ML&DL and logistic regression methods. The process consists of data preprocessing,
splitting, modeling, prediction, and probability scoring. The first three steps are similar for both methods while the final
two steps differ.

Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

ML models were summed using weighted voting and the probability was quantified (Fig-
ures 1 and 2). The detailed structures of DL and ML were as follows. 

 
Figure 1. The overall process of ML&DL and logistic regression methods. The process consists of data preprocessing, 
splitting, modeling, prediction, and probability scoring. The first three steps are similar for both methods while the final 
two steps differ. 

 
Figure 2. Practical application of the ML&DL method. 

The approach of the DL method was based on the CNN architecture. The detailed 
network structure for the CNN is summarized in Figure 3. The collected image data con-
sisted of the most visible MRI image cuts for the meniscal extrusion and standing knee 
AP X-ray images for the K-L grade. The extraction of lesions was performed on the col-
lected image data for model development. Operation and conservative treatment were 
labeled on the image from which the lesion was extracted. Labeled images were used as 
input data for the CNN model. The CNN processing pipeline framework was imple-
mented in a hybrid computing environment involving Python (version 3.6; Python Soft-

Figure 2. Practical application of the ML&DL method.

The approach of the DL method was based on the CNN architecture. The detailed
network structure for the CNN is summarized in Figure 3. The collected image data
consisted of the most visible MRI image cuts for the meniscal extrusion and standing knee
AP X-ray images for the K-L grade. The extraction of lesions was performed on the collected
image data for model development. Operation and conservative treatment were labeled on
the image from which the lesion was extracted. Labeled images were used as input data for
the CNN model. The CNN processing pipeline framework was implemented in a hybrid
computing environment involving Python (version 3.6; Python Software Foundation,
Wilmington, NC, USA) and MATLAB (version 2013; MathWorks, Natick, MA, USA). The
CNNs were coded using the Keras package with TensorFlow libraries (version 1.6). The
ResNet50 network was used for the extraction of images. The classification CNN in the
processing pipeline, which consisted of a 2D ResNet convolutional structure, evaluated
structural abnormalities around the joint articular space. Image downsampling was not
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performed when extracting the image patches. The ResNet50 in the classification CNN
was followed by fully connected layers to provide an output probability score within each
extracted image patch. Our model predicted a probability distribution for the meniscal
extrusion and K-L grades for given images while also highlighting relevant radiological
features by generating class-discriminating factors called attention maps. Consequently,
we also visualized the attention map, which explained the decision made by the ResNet50
network. For our classifiers, a threefold cross-validation method was applied to randomly
classify the 640 patients into 3 equal-sized groups to ensure the independence of the
training data from the test data (Table 2).
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Figure 3. The detailed network structure for the CNNs of DL. Data processing was performed using ResNet50, feature
maps were obtained, and probability prediction was calculated using demonstrated formulas.

Table 2. Training and testing data of cross validation.

No. of Group 1 2 3

Training (80%)

All patients 512 510 516

Operation 201 196 193

Conservative Tx. 311 314 323

Testing (20%)

All patients 128 130 124

Operation 40 45 48

Conservative Tx. 88 85 76
Values are presented as patient numbers.

Similar processes used in DL were also used in ML for preprocessing and data splitting.
The boosting series XGBoost model, one of the three models frequently used in structured
data analysis, was used for ML. The grid-searching method, which is the process of
scanning the data to configure optimal parameters for a given model, was applied for
hyperparameter tuning. Before running XGBoost, we set various types of parameters. The
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learning rate (also called eta and step size shrinkage) was set to 0.3. In this model, the
feature weights were reduced to make the boosting process more conservative. Gamma
(also called minimum loss reduction) was set to 0. As the maximum depth of the tree
increased, the model became more complicated and the possibility of overfitting also
increased. Therefore, the max_depth value applied was the default of 6. The subsample
was set to 1, which was applied when making a tree (also called iteration), and was also
used to prevent overfitting problems. Colsample_bytree, which was a family of parameters
for subsampling of columns, was set to 1. As a weight parameter used in the classification
model, scale_pos_weight was set to 1. ML was coded by numerical data, excluding
meniscal extrusion and K-L grade, which were used differently in DL. The ML model was
trained on 80% of the data set using a stratified threefold cross-validation method for initial
model tuning, leaving out 20% for final model evaluation.

We performed an analysis to determine those factors that affected the fate of MMPRT.
The odds ratio of the logistic regression method and the feature importance of the AI
method were compared to assess if they were affecting factors for the fate of MMPRT. The
odds ratio was given a statistical significance, while the feature importance was a numer-
ical value of relative influence. Affecting factors of the logistic regression method with
statistically significant odds ratios were compared with the rankings of feature importance
in the ML&DL method.

Accuracy was compared through a confusion matrix using classification performance
evaluation indicators including specificity, recall (also called sensitivity), precision (also
called positive predictive value), accuracy, F1 score, and error rate. Among the six param-
eters, accuracy, F1 score, and error rate were closely related to the accuracy evaluation.
Therefore, these parameters were used for the accuracy comparison between logistic regres-
sion and ML&DL methods. [18] Predicting performance was evaluated using a receiver
operating characteristic curve (ROC). The area under the curve (AUC) was calculated in
both logistic regression and ML&DL methods. Finally, accuracy and predicting perfor-
mance were compared between the two methods.

3. Results

The mean age of the patients was 58.09 years (range: 21–86), and the average follow-
up period was 3.75 years (range: 2–11) to final treatment. The inter- (kappa = 0.816) and
intraobserver (kappa = 0.853) reliabilities were acceptable for assessing X-rays and MRI.
Detailed demographic and radiologic data are listed in Table 3.

Table 3. Affecting factors for the fate of MMPRT in the logistic regression method.

Operation (n = 241) Conservative Tx. (n = 399)

Demographics
Male/Female 60: 181 155: 244
Age (years) 58.25 ± 20.02 57.13 ± 15.16

BMI (kg/m2) 27.71 ± 3.03 25.92 ± 2.87
MRI–Event (years) 1.02 ± 1.12 3.13 ± 2.21
Radiologic factors
Initial WBL (ratio) 29.41 ± 15.02 36.24 ± 9.32
Delta WBL (ratio) 5.91 ± 1.20 2.76 ± 1.09

TVA (degree) 5.12 ± 1.32 5.07 ± 1.60
PTS (degree) 10.92 ± 2.59 11.11 ± 3.48

K-L grade 3.02 ± 0.88 2.01 ± 1.06
MOAKS 2.14 ± 0.55 1.83 ± 1.02

Extrusion (mm) 3.42 ± 1.24 1.36 ± 1.51
Values are presented as mean ± standard deviation. WBL: weight-bearing line; BMI: body mass index; TVA: tibia
varus angle; PTS: posterior tibial slope; MOAKS: MRI osteoarthritis knee score.
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For the logistic regression method, odds ratios of affecting factors with statistical
significance were meniscal extrusion, MRI–Event, initial WBL, delta WBL, K-L grade, and
BMI (p-values were 0.030, 0.029, 0.042, 0.024, 0.037, and 0.035, respectively). Odds ratios
were 4.11, 0.43, 0.67, 7.88, 5.79, and 2.14, respectively. Age, MOAKS, PTS, and TVA showed
odds ratios that were not statistically significant: 1.15, 1.22, 1.10, and 0.98, respectively
(p-values were 0.624, 0.291, 0.442, and 0.735, respectively) (Figure 4A). The confusion
matrix was used as part of a method to evaluate the accuracy of the logistic regression
model. Classification performance evaluation indicators, which can be calculated using the
confusion matrix, were analyzed. These included specificity, recall, precision, accuracy, F1
score, and error rate (0.92, 0.86, 0.92, 0.89, 0.89, and 0.11, respectively) (Figure 5A, Table 4).
ROC analyses were conducted to evaluate the performance of the logistic regression
method, and the AUC value was measured to be 0.94 for this method (Figure 5B).
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Table 4. Comparison of performance indicators between logistic regression and ML&DL methods.

Logistic Regression ML&DL p-Value

Specificity 0.92 0.98 0.010 *
Recall 0.86 0.83 0.030 *

Precision 0.92 0.98 0.010 *
Accuracy 0.89 0.91 0.114
F1-score 0.89 0.90 0.422

Error Rate 0.11 0.09 0.119
AUC 0.94 0.97 0.289

AUC: area under the ROC curve. * means a significant p-value.

Using the feature importance score of the ML&DL method, we investigated which
factors affect the fate of MMPRT. The results suggest that the greater the feature importance
score was, the more important the affecting factor was to the fate of MMPRT. The feature
importance scores of the following parameters were ranked from highest to lowest: menis-
cal extrusion, MRI–Event, initial WBL, delta WBL, K-L grade, BMI, Age, MOAKS, PTS, and
TVA (feature importance scores were 100, 79, 68, 59, 54, 52, 28, 15, 9, and 7, respectively)
(Figure 4B). Classification performance evaluation indicators of the ML&DL method were
analyzed including specificity, recall, precision, accuracy, F1 score, and error rate (0.98, 0.83,
0.98, 0.91, 0.90, and 0.09, respectively) (Figure 5A, Table 4). AUC values were measured as
0.97 for this method (Figure 5B).

In terms of the comparison of influence (affecting factors) between ML&DL and logistic
regression methods, six of the affecting factors that were statistically significant in the logis-
tic regression method also had the highest feature importance scores in the ML&DL method.
Classification performance evaluation indicators were as follows: specificities of the logistic
regression and ML&DL methods were 0.92 and 0.98, respectively (p = 0.010); recalls of
the logistic regression and ML&DL methods were 0.86 and 0.83, respectively (p = 0.030);
precisions of the logistic regression and ML&DL methods were 0.92 and 0.98, respectively
(p = 0.010). There was no significant difference when comparing the accuracy, F1-score, and
error rate between the logistic regression and ML&DL methods (accuracy = 0.89 and 0.91,
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respectively; F1-score = 0.89 and 0.90, respectively; error rate = 0.11 and 0.09, respectively;
p = 0.114, 0.422, and 0.119, respectively). The AUC values showed excellent test quality for
both ML&DL and logistic regression methods (AUC = 0.97 and 0.94, respectively). There
was no significant difference between ML&DL and logistic regression methods in terms of
evaluating the predicting performance (p = 0.289) (Table 4).

4. Discussion

This study compared the accuracy and predicting performance between logistic re-
gression and ML&DL methods. The principal findings of this study include the following:
(1) important affecting factors of the logistic regression method for the fate of MMPRT,
namely, meniscal extrusion, MRI–Event, initial WBL, delta WBL, K-L grade, and BMI,
corresponded well with feature importance of the ML&DL method; (2) the accuracy, F1-
score, and error rate of the logistic regression and ML&DL methods were not significantly
different; (3) predicting performance was not significantly different between the two groups
in terms of the AUC. Therefore, both of our hypotheses were verified.

With regard to evaluating the influence of affecting factors, several studies tried to
identify factors that would affect the fate of MMPRT based on treatment strategies. Ford
et al. demonstrated significant associations between increasing BMI and meniscal tears,
leading to surgical interventions [19]. Hashikawa et al. reported a positive correlation
between K-L grade and surgery [20]. Similarly, BMI, meniscal tear, and K-L grade were
also important affecting factors in our study. Primeau et al. had reported that varus
alignment was consistently identified as a strong predictor of medial knee OA progression
in patients with MMPRT [21]. Our study also demonstrated that initial and delta WBL had
a strong association with the probability of needing an operation. Meniscal extrusion is
another important concern in the progression of OA. Shelburne et al. reported that ≥3-mm
medial meniscal extrusion was strongly associated with degenerative joint disease [22].
Another study also reported that meniscal extrusion assessment may be important for
determining the optimal treatment strategy for MMPRT [12]. Meniscal extrusion was
likewise an important factor in our study. Interestingly, the interval of the conservative
treatment, which was the interval between MRI acquisition and an event, was also an
important factor for the operation in our study.

Many papers comparing the accuracy and performance of ML&DL and logistic regres-
sion methods, a similar area of study as ours, have been published. Accuracy, defined as
the proportion of correct predictions, was often used as the result in these papers. However,
care had to be taken when using this metric in highly imbalanced datasets. The F1-score was
typically used instead of accuracy in cases of severe class imbalance in the dataset. In most
papers, accuracy and F1 scores were used together or interchangeably [18]. The DL and
ML communities most often used the AUC statistic for comparing model performance [23].
Wang et al. demonstrated that DL with the deep CNN method outperformed the non-DL
method for searching prostate cancer [24]. They showed that both accuracy and AUC
values of DL were higher than those of the non-DL method. Liu et al. reported that high
diagnostic performance was obtained using a fully automated DL-based cartilage lesion
detection system [25]. They proved that their DL model had comparable accuracy and di-
agnostic performance with those of radiologists. Schaffter et al. found that a single ML&DL
algorithm could not outperform radiologists for screening mammograms [26]. However,
they insisted that an ensemble of ML&DL algorithms combined with radiologist assessment
in a single-reader screening environment improved the overall accuracy. Therefore, many
studies have reported that the accuracy and performance of the ML&DL method were
excellent, compared to those of the logistic regression method. Our results also revealed
similar patterns as those seen in previous studies in that the ML&DL method showed
comparable accuracy and predicting performance with the logistic regression method.
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Our study used DL and ML together to evaluate all important affecting factors. For the
meniscal extrusion and K-L grade, convolution features taken from morphologic images
of the X-ray and MRI were used to predict the fate of MMPRT. These factors are usually
measured or interpreted by orthopedic or radiologic specialists in the clinic. However,
our DL model could effectively recognize the convolution features, quantify the meniscal
extrusion, and classify the K-L grade. In addition, the probability of fate was calculated by
weighted voting using both DL and ML. Therefore, this finding implies that predicting the
fate of MMPRT may be possible by obtaining only a few factors from the patient without
expert involvement. This enables primary medical facilities to utilize reliable tools in
predicting the fate of MMPRT with less involvement from tertiary medical institutions.
It can also help to increase the reading efficiency and accuracy of large-scale MRI and
X-ray results.

This study has several strengths. First, we tried to establish a treatment algorithm that
goes beyond the diagnosis, whereas most studies in the field of ML&DL are limited by
focusing on diagnostic accuracy or performance only. It was significant that ML&DL could
support clinicians in terms of arriving at a diagnosis and in choosing the best treatment.
Second, we used the combined modalities of DL and ML for the evaluation of various kinds
of affecting factors. This enabled us to assess all important factors without selection bias.
Third, both images and numerical data used in this study were obtained from the CDW of a
single institute and were long-term follow-up data. We were able to obtain broad-spectrum
information and observe the serial changes in most patients. Finally, our method may
be easy to use, and it enables us objectively compare the serial analysis regardless of the
location or scale of the hospital.

Limitations

The current study also has some limitations to be considered. First, our study is
limited to the MMRPT in OA that may have various etiologies, and MRI is a prerequisite
for establishing the diagnosis of MMPRT. However, MMPRT is an important contributor to
OA progression, and it also has a high incidence in the early stages of OA. Second, image
data of the WBL was converted to numerical data and was operated in the ML method,
which made full automatization impossible although meniscal extrusion and K-L grade
used the DL method. It was technically difficult to establish the program to identify the
WBL ratio automatically with a whole leg radiograph. Third, the number of data used
in our ML&DL model was less than in another ML&DL study. The data numbers were
small because we targeted patients with MMPRT as a precondition and not just patients
with common OA. However, our dataset included a wide range of information and serial
long-term follow-up, which can improve the performance of the ML&DL.

5. Conclusions

The affecting factors of the logistic regression method and the influence of the ML&DL
method were not significantly different. The accuracy and performance of the ML&DL
method in predicting the fate of MMPRT were comparable to those of the logistic regression
method. Therefore, this ML&DL algorithm could potentially predict the fate of MMRPT in
various fields and situations. Furthermore, our method could be efficiently implemented
in current clinical practice.
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