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Abstract
Research in human volunteers and surgical patients has shown that unconsciousness under general anesthesia can be reliably tracked using 
real-time electroencephalogram processing. Hence, a closed-loop anesthesia delivery (CLAD) system that maintains precisely specified levels 
of unconsciousness is feasible and would greatly aid intraoperative patient management. The US Federal Drug Administration has approved 
no CLAD system for human use due partly to a lack of testing in appropriate animal models. To address this key roadblock, we implement a 
nonhuman primate (NHP) CLAD system that controls the level of unconsciousness using the anesthetic propofol. The key system components 
are a local field potential (LFP) recording system; propofol pharmacokinetics and pharmacodynamic models; the control variable (LFP power 
between 20 and 30 Hz), a programmable infusion system and a linear quadratic integral controller. Our CLAD system accurately controlled 
the level of unconsciousness along two different 125-min dynamic target trajectories for 18 h and 45 min in nine experiments in two NHPs. 
System performance measures were comparable or superior to those in previous CLAD reports. We demonstrate that an NHP CLAD system 
can reliably and accurately control in real-time unconsciousness maintained by anesthesia. Our findings establish critical steps for CLAD 
systems’ design and testing prior to human testing.
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Significance Statement

Unconsciousness, a fundamental component of general anesthesia, can be reliably tracked using real-time processing of a patient’s 
brain waves recorded as electroencephalogram signals. A closed-loop anesthesia delivery (CLAD) system that precisely maintains un-
consciousness would greatly aid intraoperative patient management. The Federal Drug Administration has approved no human 
CLAD system due partly to a lack of appropriate animal model studies. By combining neurophysiology, real-time signal processing, 
control theory with a programmable infusion pump system, we implemented a nonhuman primate (NHP) CLAD system that controls 
unconsciousness with the anesthetic propofol. Our CLAD system accurately and reliably controlled unconsciousness along different 
trajectories for nearly 19 h in nine experiments in two NHPs. Our findings establish critical steps for human testing of CLAD systems.
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Introduction
General anesthesia is a drug-induced reversible state consisting of 
antinociception, unconsciousness, amnesia, and immobility with 

maintenance of physiological stability (1, 2). Continuously moni-
toring a patient’s physiological state during surgery and executing 
frequent management tasks to optimize care is fundamental to 
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the practice of anesthesiology. During surgery, the American 
Society of Anesthesiologists practice standards require the pres-
ence throughout of a qualified anesthesia care provider and con-
tinual monitoring of oxygenation, ventilation, circulation, and 
temperature (3). The provider scans the relevant physiological 
variables (oxygen delivery, oxygen saturation, respiratory rate, ex-
pired carbon dioxide, heart rate, blood pressure, and temperature) 
every few minutes and takes actions to maintain stability. The 
time between actions can be longer if the provider becomes dis-
tracted with other management tasks. Automating repetitive 
task management, where possible, would mitigate fatigue, reduce 
human error and hence, benefit patient care.

An important task to automate is control of the patient’s level 
of unconsciousness. Anesthetics create altered arousal states, 
such as unconsciousness, by producing oscillations in the brain’s 
extracellular potentials that impede communication among re-
gions (4–8). The brain states of patients are readily visible in the 
electroencephalogram (EEG). However, in the United States, anes-
thesia providers are not required to monitor a patient’s brain state 
under general anesthesia. Most do not. To guard against aware-
ness, in the absence of brain monitoring, anesthesiologists almost 
certainly administer anesthetic doses beyond what are needed to 
maintain an adequate level of unconsciousness. Postoperative 
cognitive disorders are common following anesthesia, particular-
ly in the elderly (9–12). Among the contributory factors are anes-
thesia (general and regional), type of surgery, patient age, and 
patient state of health (13, 14). Recent studies suggest that use 
of brain monitoring to guide drug dosing can make general anes-
thesia less of a contributory factor (15). Level of unconsciousness 
under general anesthesia can be reliably tracked using real-time 
processing of EEG recordings (5, 6, 16–18). This suggests that the 
EEG can be used to develop a CLAD system to maintain precisely 
a specified level of unconsciousness.

Since the 1950s, EEG-based CLAD systems have been an ac-
tive area of research (17, 19–26). CLAD systems have been 
studied in rodents (27–29), and outside the United States, in 
humans (20–26). The United States Food and Drug 
Administration (FDA) readily acknowledges the enormous ben-
efits that CLAD systems, and more generally, physiological 
closed-loop control systems, can bring to patient care (30). 
However, this agency has approved no CLAD system for hu-
man testing in the United States. The FDA has identified test-
ing of CLAD systems in appropriate animal models as a critical 
prerequisite for evaluating performance reliability and repro-
ducibility prior to human testing (30). To address this critical 
gap, we develop and test a nonhuman primate (NHP) CLAD 
system for control of unconsciousness using the anesthetic 
propofol. We demonstrate that our propofol CLAD system 
can accurately and reliably maintain unconsciousness in 
simulation experiments and live experiments in two NHPs 
tracking dynamic target trajectories during nine experimental 
sessions.

Results
Overview of the propofol CLAD system
We use a linear quadratic integral (LQI) controller to implement a 
real-time CLAD system that continuously administers propofol to 
control unconsciousness in an NHP (Fig. 1). We chose the LQI con-
trol strategy because it offers a principled way to design optimal 
tracking algorithms, i.e. algorithms that have a high probability 
of accurately tracking a target (see section “Formulation of an 
NHP CLAD system”), and because it produces algorithms that 

are robust, i.e. that have low sensitivity to model errors and 
data disturbances (31). To start the control cycle, the user sets 
the target level of the marker of unconsciousness (MOU), a neuro-
physiological measure that tracks level of unconsciousness in 
real-time. The LQI controller computes the difference between 
the target and estimated MOUs. Based on that difference, the con-
troller changes the infusion rate of the syringe pump delivering 
propofol intravenously to the NHP. The neural data acquisition 
system continuously records the local field potential (LFP). In 
each cycle, the MOU is computed from the LFP and the infusion 
rate is updated. The control cycle repeats every 20 s. The MOU, 
which is the normalized power in the 20–30 Hz band, is computed 
in real-time from the LFP recorded from a prefrontal cortical elec-
trode by using multitaper spectral methods (6, 32, 33). The 
animal-specific parameters for the pharmacokinetic (PK) and 
pharmacodynamic (PD) models, and for the controller are esti-
mated in a system identification experiment conducted prior to 
initiating control (see section “Materials and methods”).

For safety purposes, because these types of experiments had 
not been previously attempted in NHPs, we initially restricted 
our protocols, PK and PD model development, MOU development, 
estimation algorithm and control algorithm studies to NHP-A. We 
also refrained from testing our CLAD work on a second animal un-
til the pandemic was under better control. Once the experimental 
modeling and analyses paradigms were well developed in NPH-A 
and the pandemic was less of an issue, we tested the CLAD system 
in NHP-B. For this reason, we had more sessions with NHP-A than 
with NHP-B.

Marker of unconsciousness: normalized  
20–30 Hz power
To design the propofol CLAD system, we first establish an MOU to 
use as a control variable. Several EEG spectral features strongly 
correlate with unconsciousness in humans (6). In recent NHP ex-
periments, Bastos et al. showed that cortical spike rates decrease 
(increase) with decreases (increases) in level of unconsciousness 
mediated by computer-controlled administration of propofol (7). 
We conducted 11 experimental sessions in two NHPs (10 for 
NHP-A and 1 for NHP-B) during which propofol was administered 
at predefined rates and LFP and neural spiking activity were re-
corded from prefrontal cortical electrodes. We looked to identify 

Fig. 1. Schematic of the propofol-based CLAD system for control of 
unconsciousness in an NHP. The user sets the target level of the marker of 
unconsciousness (MOU). The controller compares the difference between 
the target and estimated MOU. Based on that difference the controller 
changes the infusion rate of the syringe delivering propofol to the NHP. 
The neural data acquisition system records the LFP, computes an update 
of the MOU, which is the normalized power in the 20–30 Hz band and the 
control cycle begins again. The system duty cycle is 20 s.
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as an MOU an LFP spectral feature that tracked the changes in cor-
tical spike rates associated with changes in the level of propofol- 
mediated unconsciousness.

To illustrate, propofol was administered to NHP-B at a constant 
infusion rate of 3.38 mg/min for 60 min (Fig. 2A). This rate was 
within the typical maintenance dose range of propofol-mediated 
unconsciousness in NHPs (34). Following Bastos et al., we identi-
fied loss of consciousness (LOC) as the time at which the animal’s 
eyes closed and remained closed for at least 5 min (Fig. 2B, the first 
vertical magenta line) (7). Using their convention, we identified re-
covery of consciousness (ROC) as the time at which the animal 
opened its eyes for the first time after LOC [Fig. 2B, the second ver-
tical magenta line (7)]. We defined the period of unconsciousness 
as the time between LOC and ROC (Fig. 2B). To identify possible 
markers, we evaluated the relationship between the spectral 
power in 7 frequency bands and neural spike rates (Tables S1 
and S2). Of the markers we considered, the normalized total LFP 
power in the 20–30 Hz band (Fig. 2C) tracked most faithfully the 
neural spike rate (Fig. 2B) during unconsciousness with the broad-
est dynamic range (see Tables S1 and S2). During unconscious-
ness, the correlation between the time courses of the 
normalized total power in the 20–30 Hz band and the normalized 
neural spike rates was 0.882 [95% confidence interval (0.875, 
0.889)], based on 11 recording sessions (Fig. 2D). The correspond-
ing mean dynamic range was 1.87 [95% confidence interval 
(1.56, 2.18)]. We constructed the MOU so that its lower (higher) val-
ues correspond to higher (lower) levels of unconsciousness. The 
neurophysiological results reported by Bastos et al. suggest that 
this MOU will reflect a global brain state and hence, that our 
CLAD system will control a global brain state [see Fig. 1G in 
Ref. (7)].

PK–PD model of propofol’s MOU
To relate the infusion of propofol to the amount of propofol in the 
effect-site—brain sites of anesthetic action—we assumed a two- 
compartment PK model (Fig. 3A, upper panel). We assumed a 

four-parameter logistic equation to define the PD model in order 
to relate the MOU to the effect-site amount (Fig. 3A, lower panel). 
The equations for the PK and PD models are given in Materials 
and Methods section (see section “PK–PD model and related par-
ameter estimation from a given anesthesia recording session”) 
(Eqs. 1 and 3, respectively). We illustrate the behavior of this 
PK–PD system with a simulated example (Fig. 3B). The input, a 
constant propofol infusion, (Fig. 3B, upper panel, u(t)) induces 
an exponential rise in the effect-site amount followed by an expo-
nential decline after the infusion is stopped (Fig. 3B, middle pan-
el). To conduct closed-loop control, we estimate the parameters 
of the combined PK–PD model. The combined PK–PD nonlinear 
least squares model fits to experimental data—the MOU as a 
function of time in response to the propofol infusion rate—are 
shown in Figs. 3C (NHP-B) and 3D (NHP-A). The estimated effect- 
site amounts (Figs. 3C and D, middle panels, red curves) show the 
predicted inverse relations with respect to the MOU data (Figs. 3C 
and D, lower panels, black dots). The relative errors for the model 
fits in Fig. 3C and D, and the corresponding parameter estimates 
are reported in the section “PK–PD model and related parameter 
estimation from a given anesthesia recording session”. These re-
sults demonstrate that we can estimate a specific PK–PD model 
for each animal.

Formulation of an NHP CLAD system
Previous CLAD studies have used linear quadratic regulators 
(LQR) and proportional-integral-derivative (PID)-based control 
schemes (21, 28, 29). For our NHP CLAD system, we adopted a 
two degree of freedom LQI scheme to exploit, as noted above, its 
optimal tracking and robustness properties. The details of the 
construction are in the section “Controller design parameters for 
a given subject”). In the simulated and live experiments, we con-
sider the control to be accurate if the CLAD system tracks the tar-
get trajectory with minimal error, where we quantify the control 
error using the standard metrics in the section “Materials and 
methods” (Eqs. 32–35).

Fig. 2. A single experimental session for NHP-B showing the neurophysiological activity recorded from a single prefrontal cortex electrode in response to 
a constant propofol infusion (A–C). A) 60-min propofol infusion at 3.38 mg/min. B) Normalized spike rate. The first vertical magenta line is loss of 
consciousness (LOC) and the second vertical magenta line is recovery of consciousness (ROC). C) Normalized power in the 20–30 Hz band. D) Plot of 
normalized power in the 20–30 Hz band versus the normalized spike rates taken from 11 experimental sessions in NHP-A and NHP-B. The data from each 
recording session were centered about their session means. The correlation is 0.8823 [95% confidence interval: (0.8749, 0.8894)]. The solid red line is the 
linear regression fit. Corresponding plots for each of the 11 individual recording sessions are given in Figs. S1 and S2.
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CLAD system controls MOU in simulated 
experiments
We first tested our CLAD system in two simulated control experi-
ments. We constrained the range of the propofol infusion rate to 
[0.0, 0.4] mg/kg/min, added Gaussian white noise to the PK–PD mod-
el output, and maintained constant infusion rates between each 
20-s controller update. The assumed animal weight was 11 kg. 
Each simulated control experiment was divided into four stages 
and lasted 155 min (Fig. 4). During the first 30 min (stage 1), the sys-
tem ran in an open-loop mode by maintaining a constant propofol 
infusion rate of 0.285 mg/kg/min (3.1 mg/min). During the remain-
ing 125 min, the CLAD system controlled the propofol infusion 
rate: for the first 45 min to maintain the MOU at 1.05 (stage 2); for 
the second 40 min to maintain the MOU at 0.95 (stage 3); and for 

the final 40 min at 1.05 again (stage 4). We termed this inverted 

top-hat target profile Target Plan 1. In the first simulated experiment 

(Fig. 4A) we treated the PK–PD parameters as known by setting them 

to be same as those in the estimated PK–PD model used to develop 

the LQI controller (Fig. 4A). The CLAD system tracked the target 

trajectories well with median (25th and 75th percentiles) values of 
inaccuracy, bias, wobble, and divergence of 1.35% (1.34%, 1.67%), 
−0.14% (−0.71%, 0.04%), −0.017% (−0.019%, −0.005%), and 1.40%/ 
min (1.31%/min, 1.62%/min), respectively, across the three target 
MOU levels. We next simulated a model misspecification scenario 
with Target Plan 1 in which the PK–PD parameters were higher by 
20% than those used in the controller design. Despite misspecifica-
tion, the target tracking was stable (Fig. 4B). The time to target con-
vergence and the performance metrics [inaccuracy = 1.55% (1.43%, 
1.60%), bias = −0.16% (−0.97%, − 0.00%), divergence = −0.019%

(−0.024%, − 0.007%), wobble = 1.35%/min (1.32%/min, 1.52%/ 
min)] agreed closely with those in the known parameter case 
(Fig. 4A).

CLAD system controls MOU in live experiments
For the first live propofol CLAD experiments, we tested Target Plan 1 
in three sessions in NHP-A (Fig. 5A–C). Performance across the three 
sessions was nearly identical. During the initial 30 min of open-loop 
control, propofol was maintained at a constant infusion rate of 

Fig. 3. PK and PD models for the CLAD system. A) (Upper figure) Two compartment PK model for propofol: u(t) is the propofol infusion rate and xe(t) is the 
effect-site amount. (Lower figure) The PD model showing the assumed sigmoidal relation between the MOU and the effect-site amount. B) Simulation of 
PK–PD models for constant infusion rate of propofol u(t) and the resultant effect-site amount xe(t) and MOU(t). C) and D) show the PK–PD model fits to 
propofol infusion and MOU data from one experimental session from NHP-B and NHP-A, respectively. Top subpanel is the propofol infusion. Middle 
subpanel is the estimated time course of the effect-site amount. Lower panel is the observed MOU (black dots) and the MOU estimated (red curve) from 
the PK–PD model. LOC (vertical magenta line): loss of consciousness.
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0.285 mg/kg/min (3.7 mg/min) (Fig. 5A–C, lower panel, red dots). The 
MOU initially increased then decreased monotonically indicating 
that the NHP became more unconscious (Fig. 5A–C, upper panel, 
blue dots). At 30 min, the CLAD system took over the propofol infu-
sion to initiate the first 45 min of closed-loop control. As in the simu-
lation experiment, to increase the MOU level to 1.05 (Fig. 5A–C, 
upper panel, black line)—decreasing the level of unconsciousness 
—the CLAD system stopped the infusion for approximately 3 min 
(Fig. 5A–C, lower panel, red dots). Once the target level of 1.05 was 
acquired, the infusion restarted, and the controller varied the pro-
pofol infusion rate to keep the MOU at the target level. During the 

second 40 min of closed-loop control, the target MOU was decreased 
to 0.95, meaning a deeper level of unconsciousness. The CLAD sys-
tem achieved the new target within approximately 2–4 min (Fig. 5A– 
C, upper panel, blue dots). The controller varied the infusion rate 
to control the MOU (Fig. 5A–C, bottom panel, red dots). For the fi-
nal 40 min of closed-loop control the target level was reset to 1.05 
(Fig. 5A–C, upper panel, black line). The CLAD system again 
achieved the new target level by stopping the infusion for approxi-
mately 4 min (Fig. 5A–C, lower panel, red dots). Once the target 
level of 1.05 was achieved, the CLAD systems again changed the 
infusion rate to maintain MOU control at this target level.

Fig. 4. Simulated CLAD experiments. Simulated CLAD Experiments using Target Plan 1 (see text in section “CLAD system controls MOU in simulated 
experiments”). Upper subpanel: Black line is the target trajectory. Blue dots are the CLAD system trajectory. Lower subpanel: Red dots are the propofol 
infusion rates determined by the CLAD system. A) The CLAD system control is executed with the PK–PD parameter set Θ(1)

P and control parameter set ΘC 

used in the system design. B) The CLAD system control is executed with PK–PD parameter set Θ(2)
P not used in the system design.

Fig. 5. Live CLAD experiments. Live CLAD experiments using Target Plans 1 and 2 (see text in section “CLAD system controls MOU in live experiments”). 
Upper subpanel: Black lines are the target trajectory. Blue dots are the MOU trajectory. Lower subpanel: Red dots are the propofol infusion rates 
determined by the CLAD system. A–C) Three CLAD experimental sessions with NHP-A using Target Plan 1. D–F) Three CLAD experimental sessions with 
NHP-A using Target Plan 2. G–I) Three CLAD experimental sessions with NHP-B using Target Plan 1.
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We conducted three more live CLAD experiments in NHP-A 
with Target Plan 2 (Fig. 5D–F). It had a top-hat profile consisting 
of: 30 min of a constant infusion rate at 3.7 mg/min; 45 min of 
closed-loop control at MOU level 0.95; 40 min of closed-loop con-
trol at MOU level 1.05; and 40 min control at MOU level 0.95. As 
with Target Plan 1 for NHP-A, during the first 30 min of open-loop 
control with propofol administered at a constant infusion rate, the 
MOU initially increased then monotonically decreased indicating 
a deeper level of unconsciousness (Fig. 5D–F, upper panel, blue 
dots). The difference between the final MOU value at the end of 
the open-loop period and the MOU target for the first control peri-
od was less than for any of the three sessions of Target Plan 
1. Therefore, the controller did not stop the propofol infusion 
(Fig. 5D–F, lower panel, red dots) to achieve the initial target 
MOU of 0.95 (Fig. 5D–F, upper panel, black line). Control was 
well maintained for the three target MOU values in each of the 
three sessions. Of note in session 2, the controller used the max-
imal rate of 5.2 mg/min (Fig. 5E, lower panel, red dots) nearly non-
stop to maintain control for the second MOU target value of 0.95 
(Fig. 5E, upper panel).

Finally, we executed in NHP-B a nearly identical protocol to the 
NHP-A Target Plan 1 (Fig. 5G–I). We adjusted the MOU target levels 
so that the upper MOU level was 0.9 and the lower level was 0.8 to 
maintain an appropriate state of unconsciousness for NHP-B. The 
controller’s performance for the three sessions of Target Plan 1 
executed with NHP-B (Fig. 5G–I) agreed closely with its perform-
ance for this target plan in NHP-A (Fig. 5A–C).

During all the studies, the animals were physiologically stable. 
We measured oxygen saturation and heart rate from the pulse ox-
imeter during each experiment. The electrocardiogram and blood 
pressure were not recorded. Oxygen saturations stayed above 90% 
and the heart rates ranged from 120 to 160 beats per minute. The 
animals breathed room air spontaneously. No emergency inter-
ventions were required to maintain hemodynamics, oxygenation 
or ventilation. These physiological responses were in close agree-
ment with those reported by Bastos et al. (7), where the animals 
received constant infusions of propofol.

Performance analysis for live control experiments
The boxplot summaries of the performance metrics for the live ex-
periments suggest highly accurate performance (Fig. 6A) of our 
CLAD system with no appreciable overall bias (Fig. 6B), no appre-
ciable temporal bias (Fig. 6C), and no unusually large fluctuations 
or error variability (Fig. 6D). The groups in the boxplots and the 
CLAD performance metrics are defined in the legend of Fig. 6
and section “Analysis of CLAD performance.” The group 3 box-
plots showed slightly higher variability for the MDAPE (Fig. 6A), 
comparable to the MDPE (Fig. 6B) and the Wobble (Fig. 6D). With 
the exception of a slightly higher percentiles for group 3, the 
standard deviations of the propofol infusion rates (Fig. 6E) were 
also comparable. The differences between the boxplots reflect 
animal variation since the groups 1 and 2 boxplots show results 
from NHP-A, whereas the group 3 boxplots give the results from 
NHP-B. The overall performance of our CLAD system for these 
two animals in terms of these metrics is comparable to perform-
ances in earlier human and rodent propofol-based CLAD studies 
(25, 26, 28) (also, see Table S4).

Discussion
We have demonstrated that a propofol CLAD system can accur-
ately control in the NHP, rhesus macaque, level of 

unconsciousness for the maintenance period of general anesthe-
sia. Our CLAD system accurately controlled unconsciousness for 
18 h and 45 min in nine experiments by tracking two different 
125-min dynamic target trajectories in two different animals 
(Fig. 5). We limited the duration of the maintenance periods to ap-
proximately 2 h as these were preliminary investigations designed 
to demonstrate the feasibility of closed-loop control in NHPs as a 
steppingstone to the development of human systems. Our system 
performance was comparable or superior to that reported in pre-
vious CLAD studies (Tables S3 and S4).

The inputs to our CLAD system are the user-prescribed MOU 
target value and the current MOU value computed by the state es-
timation algorithm (Fig. 1). Every 20 s, our CLAD system computes 
a new output, the update of the propofol infusion rate. The cur-
rent MOU value is easy to compute in real-time using standard 
multitaper spectral estimation methods (5, 32, 33) applied to the 
LFP recorded from a prefrontal cortical electrode. We established 
that the normalized LFP power in the 20–30 Hz band strongly cor-
related with normalized spike rate, a marker of propofol- 
mediated unconsciousness (Fig. 2) characterized in our previous 
studies (7). As a safety measure, our CLAD system has a user-set 
maximum infusion rate.

We used an optimal LQI control strategy (31, 35, 36) to control 
the output response of a linear time-invariant dynamical system 
with an additive disturbance. We set the LQI parameters so that 
for control of the linearized PK–PD model, the CLAD system had 
high gain and phase margins and a fast-settling time. When con-
trolling the response of a nonlinear PK–PD model our CLAD sys-
tem showed stable target tracking with error levels at or below 
those reported in previous studies (Table S4). Our optimal LQI 
strategy offers the flexibility to tune the controller to achieve 
both reliable target tracking and disturbance rejection. We tuned 
our LQI controller by devising subject-specific instantiations of 
the PK and PD models that characterized how the MOU changed 
with propofol dose (Fig. 3C and D). We used nonlinear least 
squares to estimate animal-specific PK–PD model parameters 
from MOU and drug-infusion rate data.

We began each experimental session by running our CLAD sys-
tem with a constant infusion rate and no feedback control to 
simulate common operating room usage of propofol infusion sys-
tems in the United States to control unconsciousness. Target con-
trolled infusions (TCI) have not been approved by the US FDA. 
Instead of the MOU remaining at a constant level, in each session 
it increased and then monotonically decreased, indicating that 
unconsciousness became progressively more profound (Fig. 5A– 
I). This likely relates to the known biphasic response of the neuro-
physiological parameters to propofol (37). To achieve the target 
level of unconsciousness once the CLAD system took over MOU 
control, the controller set the infusion rate to 0 for 3–8 min. This 
is a clinically relevant observation because it shows how the com-
mon practice of using constant infusion rates can lead to overdos-
ing. This observation is particularly relevant for elderly patients 
who at standard propofol infusion rates readily drift into burst 
suppression, a profound level of unconsciousness associated 
with postoperative cognitive disorders (2, 12).

To date, most CLAD studies have maintained the control 
variable at a specific value for the duration of the study (19, 21, 
23–25, 38, 39). In contrast, we maintained control of the MOU at 
a fixed value for 35–40 min then switched to control level of un-
consciousness to another target MOU value (Fig. 5A–I). Therefore, 
we maintained a more refined control of unconsciousness. Such re-
fined control is key at all times during surgery but especially for 
timing emergence from general anesthesia when it is important 
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to coordinate control over return of consciousness, movement, and 
spontaneous ventilation.

At present, computer-assisted administration of intravenous 
anesthetics is achieved using TCI systems in which the infusion 
rate is guided by population PK and PD models, and a user- 
specified target effect-site concentration to be achieved at a spe-
cific time (40, 41). Our CLAD system offers three important advan-
tages over TCI systems. First, our system adapts the PK model to 
the individual subject by estimating subject-specific parameters. 
Second, the TCI system offers no way of knowing if the target 
effect-site is achieved. Third, the EEG is frequently used with 
TCI systems. However, it is not a component of this system. 
Therefore, because the TCI system lacks a PD model and feedback 
control, it cannot adjust the anesthetic infusion rate in real time 
based on a neurophysiological response of the patient to the anes-
thetic. Our CLAD system offers a principled way to combine PK 

and PD modeling and neurophysiological measurements to guide 
automated maintenance of unconsciousness.

Our CLAD system offers several key innovations. The first is 
successful use of a CLAD system to control unconsciousness in 
an NHP model. Our application in rhesus macaques demonstrates 
successful CLAD testing in an animal system whose central ner-
vous (7, 42, 43), cardiovascular (44), renal (45), and hepatic sys-
tems (46) are established models for their human counterparts. 
By conducting our CLAD development with NHPs, we have fol-
lowed the FDA’s recommendation of using an animal model 
that is clinically, physiologically and anatomically relevant to hu-
mans (30). Second, we linked the LFP markers used in the CLAD 
system to sparse neuronal spiking activity, a clear neurophysio-
logical correlate of unconsciousness characterized in our recent 
studies (7). Establishing this relationship was key for delineat-
ing the neurophysiological mechanisms underlying our MOU 

Fig. 6. Box plots of performance measures for the two NHPs and the two target plans. Groups 1–3, respectively, correspond to the three experimental 
designs: NHP-A with Target Plan 1, NHP-A with Target Plan 2, and NHP-B with Target Plan 1. A) Median absolute performance error (MDAPE). B) Median 
performance error (MDPE). C) Divergence (Div). D) Wobble (Wob). E) Average infusion rate (uavg). F) Standard deviation of the infusion rates (ustd).
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and for constructing accurate PD models. Third, our CLAD sys-
tem efficiently combined modern control theory principles and 
state estimation algorithms with parsimonious PK models and 
neurophysiologically validated PD models. Finally, our experi-
mental and analytic paradigms can help guide critical path-
ways for soliciting FDA approval of CLAD systems for human 
testing (30).

In future research, we will develop a MOU based on scalp EEG 
recordings in our NHP model because in any eventual human 
studies, the MOUs will be computed in real-time from EEG meas-
urements. In our next set of NHP studies, we will refine the def-
inition of unconsciousness by correlating our EEG-based MOU 
with both neurophysiological and behavioral measures of un-
consciousness (5, 47, 48). The propofol-induced dynamics in 
the 20–30 Hz LFP band in the NHPs resemble the dynamics ob-
served in the alpha (8–12 Hz) and in the beta (13–24 Hz) ranges 
of the frontal EEG signals recorded from healthy, young human 
adults (5). The MOU in the humans will likely be based on the 
EEG power in these ranges and in the slow-delta (0.1–1 Hz) range. 
These are reliable markers of unconsciousness in humans for 
propofol and other GABAergic anesthetics (5, 49). Our current 
analyses assumed that the PD and PK model parameters were 
static. This assumption will likely not be valid as the time inter-
val for control increases. Therefore, we will pursue adaptive par-
ameter estimation as part of adaptive control strategies to 
further improve CLAD performance. The current instantiation 
of our CLAD system is designed to control maintenance of un-
consciousness. Further work will be required to make it appro-
priate for control of induction and emergence. As stated above, 
the key transition to developinng the human CLAD system 
from the current work is identifying EEG markers of uncon-
sciousness. Once identified, we will reinvestigate our choice of 
control strategies (50) using the EEG markers in simulated and 
eventually in live human experiments. The latter will require 
FDA approval. We are highly optimistic that the CLAD frame-
work we have established for the NHP model can be successfully 
extended to humans.

Materials and methods
Experimental subjects and vascular access
All procedures followed the guidelines of the MIT Animal Care 
and Use Committee and the US National Institutes of Health. 
Two rhesus macaques (Macaca mulatta) aged 14 years (NHP-A, 
male, approximately 13 kg) and 16 years (NHP-B, male, approxi-
mately 14 kg) participated in these experiments. To receive its 
intravenous propofol infusion, each animal was acutely im-
planted with a 24 gauge catheter in an ear vein after administra-
tion of lidocaine to the overlying skin. The catheter was removed 
at the end of the session and reinserted at the start of the next 
session.

Neural recordings
For neural recordings, both NHP-A and NHP-B had two chron-
ically implanted 8 × 8 iridium-oxide contact microelectrode ar-
rays (Utah arrays, Multiport: 1.0 shank length, 400 μm spacing, 
Blackrock Microsystems, Salt Lake City, UT) for a total of 128 
electrodes per animal. The arrays in NHP-A are located in sup-
plemental eye field (SEF) and the ventrolateral prefrontal cor-
tex (vlPFC). The arrays in NHP-B are located in the dorsal 
lateral prefrontal cortex and the vlPFC. A common subdural 
site was used to ground and reference the PFC and SEF 
recordings.

LFPs were recorded at 30 kHz, low-pass filtered online with a 
cutoff of 250 Hz and downsampled to 1 kHz. Spiking activity was 
recorded by bandpass filtering the 30 kHz signal from 250 to 5  
kHz, and manually thresholding. Blackrock Cereplex E headstages 
were used for digital recording through 2–3 synchronized 
Blackrock Cerebus Digital Acquisition systems.

Experimental sessions
To conduct the experiments, the animals were head-fixed in a 
sitting posture using an implanted titanium head-post and 
placed in a noise-isolation chamber with white noise masking. 
During the CLAD sessions, the 1 kHz neural signal was made ac-
cessible within Matlab (The Mathworks, Inc, Natick, MA) work-
space through the Blackrock cbmex interface. In both animals, 
LFP recordings from a preselected single PFC electrode were 
used for CLAD algorithm design and experimental testing. The 
single electrode was selected based on the observation by an 
NHP electrophysiology expert of multiunit activity characterized 
by distinct spike wave forms prior to experimental testing of the 
CLAD algorithm. From each subject, both raw signal at 30 KHz 
and a filtered 1 KHz signal low-passed below 250 Hz were 
recorded.

Infrared monitoring tracked facial movements, and pupil size 
(Eyelink 1000Plus, SR-Research, Ontario, CA) throughout the 
course of the experiments. Physiological monitoring of heart 
rate and oxygen saturation was performed by dedicated NHP an-
esthesia experts throughout the period of the recording to ensure 
safety of the animal (using Model 7500, Nonin Medical, Inc., 
Plymouth, MN). Occasionally, when oxygen saturation ap-
proached 90%, breathing support was provided manually using 
an ambu bag. Throughout each experiment session, we ensured 
that the oxygen saturation stayed steadily above 90% and subject 
was breathing spontaneously without intubation.

We conducted nine CLAD sessions divided as six for NHP-A and 
three for NHP-B. Each CLAD session consisted of two parts. In the 
first part, propofol was infused at a prespecified rate (open-loop 
control) of 0.285 mg/kg/min held after an initial baseline neural 
recording phase of at least 5 min. In the second part, and continu-
ing from the first part without pause, we conducted closed-loop 
control of the MOU which we took to be the baseline normalized 
power in the 20–30 Hz band. During both parts of each session, 
propofol was infused intravenously using a computer-controlled 
syringe pump (PHD ULTRA 4400, Harvard Apparatus, Holliston, 
MA). We set the maximum allowable flow rate to 0.4 mg/kg/min 
in our computer program.

Prior to conducting the aforementioned 9 CLAD sessions in 
NHP-A and NHP-B, we used simultaneous neural activity and pro-
pofol infusion rate information from 11 additional recording ses-
sions (10 of these from NHP-A) to determine the MOU. Of these 
11 sessions, the chronologically last of the 10 sessions in NHP-A 
and the 1 session from NHP-B were used for PK–PD model fitting 
and NHP-specific control design.

Spectral analysis of single-channel LFP from 
a given recording session
In both offline and online (real-time) spectral analysis of 1 KHz 
single-channel LFPs, we used nonoverlapping, consecutive data 
windows of Δ = 20 s. We estimated the instantaneous power 
spectra using the multitaper spectral methods [Chronux 
Toolbox (51)] with the time-halfbandwidth product = 4 and num-
ber of tapers = 3. To calculate MOU for a given Δ interval, we com-
puted first the LFP power (in dB) in 20–30 Hz range from the 
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corresponding multitaper spectrum. Then, the MOU estimate 
was determined by dividing this LFP power in 20–30 Hz band by 
a normalization factor. The normalization factor was the median 
of power from the same band determined from a 5-min period of 
data immediately prior to start of intravenous propofol infusion. 
In the offline setting, a smoothed estimate was obtained by fitting 
a cubic smoothing spline to the entire MOU sequence using 
Matlab function csaps( ) with its smoothing parameter set as 
1/(1 + Δ3/0.06). This smoothed estimate was used for both visual-
izing the MOU and estimating the session-specific PK–PD model 
parameters.

Spike rate calculation from a given 
recording session
The spike rates were calculated offline by postprocessing the 30  
KHz data from multiple channels in the same microelectrode ar-
ray from which we selected the single electrode for MOU calcu-
lation (see section “Spectral analysis of single-channel LFP from 
a given recording session”). First, we band-passed the signal 
from each electrode between 250 and 5,000 Hz using a second- 
order Butterworth filter. Then we determined the standard devi-
ation of 1-min segments of the signal from the middle of the 
anesthesia session. We used a threshold-based approach to de-
tect multiunit activity where we identified all voltage activity 
whose magnitude exceeded 4.5× the estimated standard devi-
ation. Then we explicitly imposed a 1.5-ms refractory period to 
identify a binary time-series of inferred spiking activity (such 
that 1 would indicate a single spike event, and 0 otherwise). 
From such binary time-series from significant spiking electrodes 
(whose total spike counts across the entire session exceeded 
90th percentile from all channels in the relevant microelectrode 
array), we calculate the ensemble spike rate in the kth Δ interval 
by summing up all the 1’s across all the channels from that 
interval and converting them to dB scale. Finally, to obtain the 
baseline normalized spike rate we divide spike rate sequence 
by the median value from the 5-min interval immediately prior 
to start of propofol infusion. For visualization purposes only, 
and similar to the approach used for the LFP MOU data (see sec-
tion “Spectral analysis of single-channel LFP from a given re-
cording session”), we estimate a smoothed spike rate sequence 
using Matlab function csaps( ) with its smoothing parameter 
set as 1/(1 + Δ3/0.06).

PK–PD model and related parameter estimation 
from a given anesthesia recording session
We define the PK component of the PK–PD model by the following 
continuous-time state-space equation (in modal form),

dx(t)
dt

= Ax(t) + Bu(t), (1) 

where x(t) = [x1(t), x2(t)]T represents the propofol amount in a 

two-compartment mamillary PK model. Superscript [ · ]T denot-
ing a matrix transpose operation, A is a diagonal matrix with 

A1,1 = λ1 and A2,2 = λ2 with λ2 < λ1 < 0, B = [1, 1]T is the input scaling 
matrix, and u(t) denotes the infusion rate input (52). The inequal-
ity on the eigenvalues follows from the distinct, real-valued and 
nonpositive nature of eigenvalues of mamillary compartmental 
models (53). The amount of drug in the effect compartment is 
given by,

xe(t) = [1, − 1]x. (2) 

The sigmoidal function describing the decreasing trend in the 
MOU, y(t), with increasing xe(t) during the period of unconscious-
ness is posited to be,

y(t) = β0 − βmax
(xe(t)/β50)βc

1 + (xe(t)/β50)βc
, (3) 

where β0, βmax, β50, and βc are positive scalar-valued parameters. 
To be precise, for a two-compartment mamillary model (Fig. 3A, 
top panel) xe ∝ [1, − 1]x (54), but we set it as an equality since the 
proportionality factor cannot be distinguished from β when we 
seek to estimate all the PK–PD model parameters directly from 
u(t) and y(t) data [see Ref. (52, Sec. C) for details]. Therefore, the 
parameter set ΘP = {β0, βmax, βc, β50, λ1, λ2} characterizes a PK–PD 
model.

To estimate ΘP from a given recording session of duration KΔ, 
we fit the PK–PD model to the available information on MOU y1 : K ≡ 
{y(kΔ)}Kk=1 at every Δ time interval and infusion rate history up to 
the same duration, {u(t) : 0 < t < KΔ}. To minimize the effect of 
the outliers in the optimization problem, we fit the model to a 
smoothed estimate of MOU {y(sm)

k }Kk=1 derived from y1 : K (see section 
“Spectral analysis of single-channel LFP from a given recording 
session” for details on the smoothing operation). First, we set β0 

to be the maximum value that the MOU attains before starting 
its descent during a monotonically nondecreasing infusion rate 
of propofol. To estimate the other PK–PD parameters, we minim-
ize the following objective function,

F(ΘP) =
􏽘H

k=L

β0 − βmax
(xe(t)/β50)βc

1 + (xe(t)/β50)βc
− y(sm)

k

􏼠 􏼡2

. (4) 

The time interval [LΔ, HΔ] corresponded to the period of uncon-
sciousness. By our choice of L and H, note that our PK–PD model 
will be valid in our anesthetic regime of interest where the LFP 
marker decreases with increase in xe. Starting with an initial 
guess, we estimate the parameters using an alternating optimiza-
tion approach where we alternate between the two minimization 
problems to estimate the PD and PK parameters separately [simi-
lar in principle to our earlier work (52)].

The initial guesses for the PD parameters are given by 
β(0)

max = 2β0 − 2 min [{y(sm)
k }Kk=1], β(0)

50 = max [{x(0)
e,k}Hk=L], β(0)

c = 1, where 
superscript ((·)(0)) denotes the 0th iteration of the alternating opti-
mization. The initial guesses for the PK parameters, λ(0)

1 and λ(0)
2 , 

are set as the maximum and minimum eigenvalues of the transi-
tion matrix characterizing the PK of a two-compartment mamillary 
model for propofol PK in Japanese macaques derived as follows: In 
the absence of a propofol PK model for rhesus macaques, we con-
sider a three-compartment linear model for propofol PK in 
Japanese macaques (55). We then derived a reduced order [a two- 
compartment mamillary model (54)] that has an impulse response 
function for the effect compartment most similar to the impulse re-
sponse function for the central compartment of the three- 
compartment mamillary PK model (55).

In the ith iteration of the iterative alternating optimization ap-
proach, we first solve the following constrained optimization 
problem using Matlab’s fmincon() function,

{β(i)
max, β(i)

c , β(i)
50} = arg min

βmax, βc , β50

F({βmax, βc, β50, λ(i−1)
1 , λ(i−1)

2 }) (5) 

such that β(0)
max/2 ≤ βmax ≤ 5β(0)

max, 􏽢x(0)
e,L ≤ β50 ≤ 100 max [{􏽢x(0)

e,k}Hk=L], 

0.1 ≤ βc ≤ 20 and,

􏽢x(i)
e,k= ∫kΔ

0 (e(kΔ−τ)λ(i)
1 − e(kΔ−τ)λ(i)

2 )u(τ) dτ. (6) 
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After solving the optimization problem in Eq. 5, we solve another 
optimization problem

{λ(i)
1 , λ(i)

2 } = arg min
λ1, λ2

F({β(i)
max, β(i)

c , β(i)
50, λ1, λ2}) (7) 

such that −10, 000 < λ1 < λ2 < 0. We alternate between the two 
optimization problems, Eqs. 5 and 7, for a prescribed maximum 
number of iterations (50 iterations in our implementations). 
Finally, we determine the inaccuracy between the estimated 

MOU 􏽢y and the given data y using a relative error metric calculated 

as 100 × (
􏽐H

k=L (􏽢yk − y(sm)
k )2)1/2/(

􏽐H
k=L (y(sm)

k )2)1/2. The relative error 

metric for the model fits in Fig. 3A and B were 5.94% and 5.13%, re-

spectively. The parameter estimates (􏽢β(max), 􏽢β50, 􏽢βc, 􏽢λ1, 􏽢λ2), corre-

sponding to Fig. 3A and B, were (5.6826, 327.1569, 1.6261, 
−0.0377, −509.4326) and (5.2299, 249.8976, 1.7543, −0.0425, 
−509.4326), respectively.

Controller design parameters for a given subject
In choosing our control strategy, we considered existing strat-
egies reported in literature that can enable the output of the sys-
tem being controlled (the MOU response in the current case) to 
track a user-prescribed target value (target MOU). Those strat-
egies were favored that were similar to ones that have prece-
dence in the CLAD literature, such as the optimal control 
framework [linear quadratic regulator (LQR) strategy with esti-
mated state feedback] for CLAD as in our prior rodent studies 
(28, 29) and the proportional-integral-derivative (PID) control 
framework for CLAD as used in human subjects outside the 
United States (25, 39, 56). In a separate simulation-based study, 
we verified that a hybrid approach based on a linear quadratic 
itegral (LQI) control, with the principled optimization-based de-
sign framework of LQR control and the stable output tracking 
property under model uncertainty of a proportional-integral 
(PI) control, could stably control the PD response of propofol 
PK–PD models of human subjects (57). This inspired us to choose 
the LQI scheme that updates the infusion rate by combining two 
components: an LQR strategy and an integral compensation 
strategy that monitors accumulation of the tracking error 
(MOUtarget − MOUactual) (31, 35, 36). The LQR component uses an 
observer to estimate the propofol effect-site level (31, 58). Since 
LQR, when coupled to an estimator, can be sensitive to model 
mis-specification, the inclusion of an integral compensation 
can ensure stable MOU tracking even when the PK–PD model is 
mis-specified. Hence, the integral compensation helps ensure a 
degree of robustness in our control strategy. In addition to the 
aforementioned benefits, the chosen LQI control framework (ori-
ginally proposed by Hagiwara et al. (31, 35, 36) for a general lin-
ear time-invariant system with step targets and disturbances) 
provides a principled optimization-based framework to design 
a two-degree-of-freedom controller for a linear system with 
step targets and step disturbances. The “two-degree-of-freedom” 
feature of the controller stems from the fact that the response to 
step targets and to step disturbances can be tuned separately 
without affecting the performance of either. For the LQI control 
this is done by minimizing two distinct quadratic criteria. The 
solution of the first leads to the LQR feedback gains and the so-
lution to the latter characterizes the integral action and observer 
gains. The control design is characterized by the set of user- 
prescribed parameters that goes in the definitions of the quad-
ratic criteria.

Choosing the LQI strategy was just the first step towards our 
CLAD controller design (see Fig. S3A for an overview and Fig. S4

for detailed block diagram of the same LQI strategy). Tuning the 
parameters of the controller such that the CLAD has desired prop-
erties was the next step. Since the optimal LQI control strategy 
was developed for linear systems, we linearized a PK–PD model 
(estimated from each NHP) about a steady-state infusion rate of 
uss = 0.285 mg/kg/min, a value that we determined empirically 
to be a safe dose for maintaining unconsciousness during a pro-
longed experimental session for the NHP. The steady-state values 
for the PK state, xss and for the MOU, yss were calculated as fol-
lows. According to the PK model (Eqs. 1 and 2) the steady-state val-
ues for the PK states is given by

xss = −A−1Buss, (8) 

xe,ss = [1, − 1]xss. (9) 

Then steady-state response yss is calculated by substituting xe 

with xe,ss in Eq. 3. Assuming that the CLAD operation will be pri-
marily in the neighborhood of this steady state, the next step 
was to derive the following linear systems approximation that 
captured the dynamics in the deviation of the state and MOU 
about the steady state.

d􏽥x
dt

= A􏽥x + B􏽥u, (10) 

􏽥y ≈ Cuss
􏽥x, (11) 

where 􏽥y = y − yss, 􏽥x = x − xss, 􏽥u = u − uss, and 
Cuss = (dy/dxe)xe=xe,ss

[1, − 1].
From this step onwards, the feedback control problem was re-

phrased as that of output tracking problem (where 􏽥y should track 
a constant target value, 􏽥ytar ≡ ytar − yss) of a linear time-invariant 
system with additive disturbance terms, dx and dy.

d􏽥x
dt

= A􏽥x + B􏽥u + dx, (12) 

􏽥y = Cuss
􏽥x + dy. (13) 

This formulation of the feedback control problem with system 
dynamics given by Eqs. 12 and 13 was amenable to controller 
design per Hagiwara et al.’s two-degree-of-freedom LQI con-

trol framework (31, 35, 36). The optimal feedback control, 􏽥uc, 
is calculated as

􏽥uc = u1 + u2 + u3, (14) 

where u1 is an output of an LQR control block, u2 is a feed- 

forward value that would account for nonzero setpoint, 􏽥ytar, 
and u3 corresponds to the control contribution due to integral 
compensation (see Fig. S4 for detailed block diagram). The 
LQR control, u1 in Eq. 14, is given by

u1 = KC
􏽢􏽥x, (15) 

where KC denotes the LQR gain and 􏽢􏽥x denotes the estimated 
deviation of the state from its nominal value xss. Here, the 
LQR gain, KC, can be calculated as

KC = −R−1BTX1, (16) 

where X1 represents the solution of the following algebraic 
equation,

ATX1 + AX1 − X1BBTX1 + Q = 0, (17) 

where Q and R are user-prescribed parameters to enforce a 
design choice specifying contributions of deviations in state 
trajectory and deviation in control trajectory, respectively, to 
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a quadratic criterion that is minimized (28, 36, 59). We further 
impose structure on the parameters Q and R as follows:

Q =
α1

(x1,max−x1,ss)2 0

0 α2

(x2,max−x2,ss)2

􏼢 􏼣

, (18) 

R =
ρ

(umax − uss)2
, (19) 

where x1,max and x2,max are steady-state values corresponding 
to a user-prescribed umax (= 0.4 mg/kg/min in this work). 
Therefore, LQR design is characterized by α1, α2, and ρ. The dy-

namics of the estimate 􏽢􏽥x is governed by the following differen-
tial equation:

d􏽢􏽥x
dt

= 􏽢A􏽢􏽥x + B􏽥uc − KE􏽥y, (20) 

where 􏽢A = A + KECuss (58). A stable estimator design can be spe-

cified by choosing the estimator gain, KE, such that 􏽢A has 
negative eigenvalues. Following Hagiwara et al. (31), in this 
work, KE, is prescribed as a Kalman Filter-like gain, per,

KE = −W−1
y Cuss X2, (21) 

where X2 represents the solution of the following equation:

AX2 + ATX2 − X2CT
uss

Cuss X2 + Wx = 0. (22) 

Again, Wx and Wy are design parameters that can be regarded 

as terms that capture the variability in the process dynamics 
and the measurements, respectively [similar in principle to 
covariance matrices of random noise terms in the process 
and observation equation of a Kalman Filter (60)]. Following 
Hagiwara et al. (31), we impose the following structure on 
Wx and Wy:

Wx = σ2BBT, (23) 

Wy = 1. (24) 

Therefore, specifying σ enforces a design choice for the esti-
mator dynamics. Furthermore, the feed-forward input u2 in 
Eq. 14 is given by

u2 = H0􏽥utar, (25) 

where the feed-forward gain, H0 is given by

H0 = −(Cuss (A + BKC)−1B)−1
. (26) 

In the absence of disturbances and modeling errors, the term u3 = 
0 in Eq. 14 is zero (36). When disturbances and modeling errors 
are present, u3 acts as a correction term enabling output tracking 
via an integral compensation. The expression for u3 in Eq. 14 is 
given by

u3 = G Γ􏽢􏽥x+ ∫t0 (ytar − y(t′)) dt′
􏼐 􏼑

, (27) 

where Γ ≡ Cuss (A + BKC)−1. Note that u3 has contributions from 
both the estimator output and the integral of the output tracking 
error. Following Hagiwara et al. (36), the gain G is given by

G = −κ−1( − H−1
0 )TX3. (28) 

In the above Eq. 28, X3 satisfies the following equation:

−X3( − H−1
0 )κ−1( − H−1

0 )TX3 + ξ = 0, (29) 

where κ and ξ are user-prescribed positive-valued scalar design 
parameters that enforce design choices on disturbance rejection 
properties of the controller when disturbances and model 

misspecifications are present.1 Similar to the Q and R, the terms 
ξ and κ serve to enforce design choices for disturbance rejection 
properties in another quadratic criterion that is minimized to de-
termine G per Eq. 28 (36). In the current implementation, we set 
κ = 1, and prescribe ξ as a design parameter. Therefore, the linear 
controller design for a given NHP is specified by the set of param-
eters, ΘC = {ΘP, α1, α2, ρ, σ, ξ}, where ΘP represents the set of PK– 
PD parameters from a given NHP used to design the respective 
CLAD algorithm.

By using the continuous-time framework of the LQI control 
strategy, one can determine the loop transfer function and conse-
quently determine metrics that capture the robustness of the con-
troller and convergence dynamics. This information can be 
determined by using the margin() and stepinfo() subroutines from 
Matlab’s Control System Toolbox with the loop transfer function 
as an argument. The loop transfer function can be calculated as 
a product of two complex-valued functions GP(s) and GY(s), where

GP(s) = Cuss (sI − A)−1B, (30) 

GY(s) = −(1 − (GΓ + KC)(sI − 􏽢A)−1B)−1 −
G
s

− (GΓ + Kc)(sI − 􏽢A)−1KE

􏼒 􏼓

(31) 

and s denotes a complex number.
In simulation studies (as shown in Fig. 4), we tested the ability 

of this linear feedback control strategy to provide acceptable 
tracking performance when the dose-effect-site relationship was 
governed by the NHP’s PK–PD model. To mimic actual experimen-
tal conditions in our simulations, we imposed the lower and upper 
limits (umin = 0 mg/kg/min and umax = 0.4 mg/kg/min) on the sug-
gested control uc to determine the actual control signal u that is 
communicated to the infusion pump. Furthermore, we added to 
the PK–PD model output a Gaussian white noise with zero mean 
and standard deviation of 0.02. The standard deviation value 
was empirically determined from the residual error between ob-
served MOU and the estimated MOU using the best fitting PK–PD 
model. We enforced fixed rate of infusion between each discrete 
controller updates. This simulation strategy is illustrated in 
Fig. S3B. For a given NHP’s PK–PD model, ΘP, we tuned the free pa-
rameters, {α1, α2, ρ, σ, ξ} and tested each candidate controller de-
sign in in silico experiments that comprised a 125 closed-loop 
simulation with 3-step input changes at 0, 45, 85 min after a 
30-min open-loop simulation under constant infusion rate of 
0.285 mg/kg/min. Through this manual tuning exercise, we se-
lected an NHP-specific control design ΘC (with α1 = 106, α2 = 1, 
ρ = 104, σ = 10−3, ξ = 104, and ΘP set to parameter estimates for 
NHP-A (or, NHP-B) as reported in section “PK–PD model and re-
lated parameter estimation from a given anesthesia recording 
session”) such that the open-loop transfer function (−GPGY) had 
high phase margin (>80◦), high gain margin (>60 dB) and low set-
tling times for a unit step input (<11 min), and the CLAD perform-
ance was acceptable in simulation experiments. The performance 
criteria chosen was that of inaccuracy being less than 5% across 
the 125 min of closed-loop simulation. Briefly, a high gain margin 
for the control design indicates that the closed-loop system will 
still remain stable even when the true system has a multiplicative 
gain factor that was unaccounted during control design. The mar-
gin provides the extent to which this unaccounted gain factor can 
be tolerated. Similarly, a high phase margin would indicate that 
the closed-loop system would still remain stable even when the 

1 Even in an ideal case when the true PK–PD parameters are available the 
model used in the control design can still be misspecified due to unaccounted 
nonlinearities (present in the true model) during the linearization step.
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true system has delay (up to an extent specified by the margin) 
that was unaccounted during control design. Lower settling times 
for a unit step indicates faster convergence of MOU to target when 
a new target value is encountered. High gain, high phase margins, 
and low settling times are desirable properties for a CLAD design.

Analysis of CLAD performance
The controller performance was analyzed using the sequence 
of data {(yk, uk)} where yk and uk, respectively, denoted the 
MOU value and the infusion rate at the time-point tk (say, pre-
scribed in minutes), where k ∈ {1, . . . , K} with k = 1 and k = K de-
noting the beginning and the end of a temporal segment. Using 
this data and the definition of instantaneous performance er-
ror, ek = 100(yk − ytar)/ytar, several CLAD performance metrics 
that are typically used in literature can be calculated (28, 39, 
61, 62). The metrics that we analyze are: median absolute per-
formance error (MDAPE), median performance error (MDPE), 
wobble (Wob), and divergence (Div). These are defined as fol-
lows:

Inaccuracy, MDAPE (%) = median[{|ek|, k = 1, . . . , K}], (32) 

Bias, MDPE (%) = median {ek, k = 1, . . . , K}
􏼂 􏼃

, (33) 

Wobble, Wob (%) = median {|ek − MDPE|, k = 1, . . . , K}
􏼂 􏼃

, (34) 

Divergence, Div (%/min) =
􏽐K

k=1 |ek|tk − (
􏽐K

k=1 |ek|)(1/K)(
􏽐K

k=1 tk)
􏽐K

k=1 t2
k − (1/K)(

􏽐K
k=1 tk)2

.

(35) 

The MDAPE is a measure of the inaccuracy in CLAD perform-
ance for the entire analysis period. The MDPE is a measure of 
the bias in the MOU target tracking, with a positive (or, a nega-
tive) value indicating that the MOU lies mostly above (or, be-
low) the target value. Wobble is a measure of the 
intra-session time-related variability, with a high wobble value 
indicating a higher degree of oscillation of the controlled MOU 
about its target. Divergence characterizes any linear trend in 
the performance error over time, with a positive value suggest-
ing that the MOU is gradually diverging away from the target, 
whereas a negative value suggesting a gradual converging of 
the MOU towards the target. Additionally, we also report the 
average (denoted by uavg) and dispersion (as measured by 

standard deviation and denoted by ustd) of the infusion rates 
across the K data-points.
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