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Abstract

Background: Beijing sub-pedigree 2 (BSP2) and T sub-lineage 6 (TSL6) are two clades belonging to Beijing and T
family of Mycobacterium tuberculosis (MTB), respectively, defined by Bayesian population structure analysis based on
24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR). Globally, over
99% of BSP2 and 89% of TSL6 isolates were distributed in Chongqing, suggesting their possible local adaptive
evolution. The objective of this paper is to explore whether BSP2 and TSL6 originated by their local adaptive
evolution from the specific isolates of Beijing and T families in Chongqing.

Methods: The genotyping data of 16 090 MTB isolates were collected from laboratory collection, published
literatures and SITVIT database before subjected to Bayesian population structure analysis based on 24-loci MIRU-
VNTR. Spacer Oligonucleotide Forest (Spoligoforest) and 24-loci MIRU-VNTR-based minimum spanning tree (MST)
were used to explore their phylogenetic pathways, with Bayesian demographic analysis for exploring the recent
demographic change of TSL6.

Results: Phylogenetic analysis suggested that BSP2 and TSL6 in Chongqing may evolve from BSP4 and TSL5,
respectively, which were locally predominant in Tibet and Jiangsu, respectively. Spoligoforest showed that Beijing
and T families were genetically distant, while the convergence of the MIRU-VNTR pattern of BSP2 and TSL6 was
revealed by WebLogo. The demographic analysis concluded that the recent demographic change of TSL6 might
take 111.25 years.
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Conclusions: BSP2 and TSL6 clades might originate from BSP4 and TSL5, respectively, by their local adaptive
evolution in Chongqing. Our study suggests MIRU-VNTR be combined with other robust markers for a more
comprehensive genotyping approach, especially for families of clades with the same MIRU-VNTR pattern.

Keywords: Mycobacterium tuberculosis, Local adaptive evolution, MIRU-VNTR, Bayesian population structure analysis,
Phylogenetic analysis

Background
Mycobacterium tuberculosis (MTB) and the other mem-
bers of the M. tuberculosis complex (MTBC), leading to
tuberculosis (TB) in animals and human, have caused es-
timated over 10 million new infections and 1.24 million
deaths in 2018 [1]. There is a strong association between
poverty and ill-health [2], and globally, developing coun-
tries and low-income countries are the major regions
where TB occurs, with the top eight TB high-burden
countries accounting for two-thirds of cases worldwide.
Among them, China has the second highest burden of
TB (9%), with 866 000 new cases and 40 000 deaths in
2018 [1]. Chongqing, a highly densely populated but his-
torically geographically relatively isolated mountainous
city, is one of the largest cities in southwest China. Com-
pared with other municipalities, the proportion of rural
population is significantly higher, so does its prevalence
of TB [3]. Therefore, Chongqing is one of the focuses of
TB control in China.
The global distribution of MTBC is characterized by

its distinct geographical regionalization [4], and MTB
consists of seven lineages, four of which, Indo-Oceanic
(lineage 1), East Asian (lineage 2) including W/Beijing
family, East African–Indian (lineage 3), and Euro-
American (lineage 4) including T family [5–7], are the
major contributors to TB in humans. Beijing family iso-
lates were reported to be distributed globally and more
pathogenic [8], and T family is distributed worldwide as
well [7]. More than 80% of the endemic MTB isolates in
China belong to Beijing and T families [9, 10].
Several recent studies suggested that the Bayesian

population structure analysis method based on the 24-
loci mycobacterial interspersed repetitive unit-variable
number tandem repeat (MIRU-VNTR) could divide each
family of MTB into more detailed clades [11–13]. The
global T family was divided into eight T sub-lineage
(TSL1–TSL8) by Bayesian population structure analysis
[12], while the Beijing family in China into five Beijing
sub-pedigree (BSP1–BSP5) [13]. Interestingly, the clade
distribution varies substantially with regions, especially
for BSP2 and TSL6, since 99.49% of BSP2 and 89.79% of
TSL6 isolates are distributed in Chongqing, compared
with that only 0.51% of BSP2 isolates were in Xinjiang,

and 4.08, 2.04 and 2.04% of TSL6 in Guizhou, Sichuan,
and Jiangsu province, respectively [12, 13].
The observation that a few evolutionary MTBC clades

causing TB in humans are geographically restricted [14]
has led to our hypothesis that these variants might have
adapted to the environment inside local human host
[15]. Adaptive evolution refers to the process in which
organisms accumulate mutations to adapt to the local
environment, resulting in the existence of different pop-
ulations in their specific regions [16]. Evidence of local
adaptation has also been reported in Ghana by two inde-
pendent studies that lineage 5 of MTB was associated
with specific patient ethnicity [16, 17]. Moreover, it was
reported that the ancestral populations of MTB in China
showed low genetic diversity but with people immigrat-
ing, their descendants adapted to the local host environ-
ment in different regions, forming the distinct
geographical distribution of different evolutionary clades
eventually [14, 18]. Accordingly, we are reminded that
the distribution and epidemic of BSP2 and TSL6 may be
due to local adaptive evolution of the Beijing and T fam-
ilies in Chongqing.
In order to clarify whether BSP2 and TSL6 originated

by their local adaptive evolution from the specific clades
of Beijing and T families in Chongqing, the genotyping
data of 16 090 MTB isolates from laboratory collection
in China, published literatures and an open database
[19] were collected (Supplementary Table 1). The Bayes-
ian population structure analysis was implemented to
mold the consistent clades [12, 13]. The Spacer Oligo-
nucleotide Forest (Spoligoforest) analysis and the 24-loci
MIRU-VNTR-based minimum spanning tree (MST)
analysis were used to explore the phylogenetic pathways
of different families and their clades [20, 21] (Fig. 1).
Bayesian demographic history analysis based on the 24-
loci MIRU-VNTR data was applied to explore the most
possible recent demographic change of clade TSL6
(Fig. 1). The suspected historical events were then con-
sidered to speculate the particularity of the host environ-
mental stresses on the local adaptation of the two clades
in Chongqing. This study is instructive for deciphering
the biogeographic structure and evolutionary history of
MTB in Chongqing, China.
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Methods
Data collection
The study was based on genotyping and geographical
distribution data of a collection of MTB isolates
(n = 16 090) from China. These data were mainly col-
lected from the published literatures (n = 15 830), and
there were also a small collection from a key laboratory
of Sichuan University (n = 193) [13] and the SITVIT2
database (http://www.pasteur-guadeloupe.fr:8081/SIT-
VIT) (n = 67), respectively [19] (Supplementary Table 1).
In the collected data, spoligotype international types
(SIT) information of 12 674 isolates was available and
listed (Supplementary Table 2), and the 24-loci MIRU-
VNTR data of 2161 isolates amongst all the data col-
lected were available (Supplementary Table 3).

Bayesian population structure analyses
Bayesian population structure analyses were conducted on
the 1742 isolates of Beijing family and T family amongst
the above isolations with 24-loci MIRU-VNTR data (Sup-
plementary Table 4). The STRUCTURE software (version
2.3) (Pritchard Lab, Stanford University, Stanford, CA,
USA) [22] was used by implementing an admixture model
considering that the data originated from the admixture of
K ancestral populations at some time in the past. Posterior
estimates for the parameters of interest were computed by

using a Markov chain Monte Carlo (MCMC) algorithm in
ten parallel chains with a burn-in of 100 000 iterations
and a run length of 106. The delta K was calculated using
the program STRUCTURE HARVESTER by the Evanno
method [23]. Medians were calculated from 10 replicates
for K by using the FullSearch algorithm implemented in
CLUMPP 1.1.2 software (Stanford University, Stanford,
CA, USA) to guarantee the optimum clustering [24], and
a cutoff of 0.6 was fixed for clustering of isolates.

Phylogenetic inferences
The drawing of Spoligoforest (Fig. 2) used the spolTools
software (http://www.emi.unsw.edu.au/spolTools) and
the drawing of MST based on data of 24-loci MIRU-
VNTR (Fig. 3) used BioNumerics software 6.6 (Applied
Maths, Sint-Martens-Latem, Belgium). The identical
MIRU-VNTR haplotypes in the MST were pooled as a
single node representing a cluster, and the rate of clus-
tered isolates was considered as an indicator for the ex-
tent of recent transmission.

WebLogo of allele
WebLogo (http://weblogo.berkeley.edu/logo.cgi) [25]
was used to visualize main patterns of tandem repeats
for 24-loci MIRU-VNTRs and showed copy number

Fig. 1 The flow chart of data extraction and analysis process. MTB: Mycobacterium tuberculosis; Spoligotyping: Spacer Oligonucleotide typing;
MIRU-VNTR: Mycobacterial interspersed repetitive unit-variable number of tandem repeats; Spoligoforest: Spacer Oligonucleotide Forest; TSL: T
sub-lineage; BSP: Beijing sub-pedigree
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of 24 MIRU-VNTR loci in MTB clades BSP2, BSP4,
TSL5 and TSL6.

Demographic history analysis of TSL6
The Bayesian approach [26] that assumed a stepwise
mutation model (SMM) [27, 28] was used to estimate
the posterior distribution of demographic and genea-
logical parameters [11]. The parameters of the clade
TSL6 (n = 48) was estimated by using 24-loci MIRU-
VNTRs with MCMC simulations implemented in the
Msvar 1.3 algorithm. The assumed demographic history
is based on a past population of size N1 that experienced
a change in size at some time ta in the past to reach
current effective population size N0. We tested hypoth-
esis of declining population (10− 2 and 10− 3 as a prior)
where expansion ratio R < 1 (R = N0/N1), of stable popu-
lation where R = 1 and of expanding populations (101 to
103 as a prior) where R > 1. The analyses were performed
assuming exponential demographic change. The prior
mutation rate value of each MIRU-VNTR locus ranged

between 1.55 × 10− 8 and 6.65 × 10− 8 per locus and per
generation, as claimed by previous studies [11, 20, 29].
The chain was run for 1.2 billion steps, with parameter
values recorded every 100 000 steps. The MCMC output
was analyzed using the software Tracer (GISUM group,
University of Málaga, Málaga, Spain) [30] to obtain the
posterior distribution and the effective sample size (ESS)
of all parameters (which were all above 168) after a
burn-in of 10%.

Results
Spoligoforest analysis
The evolution and genetic distance of the different MTB
families were demonstrated by the Spoligoforest (Fig. 2)
created with the available Spoligotyping data of the
collected isolates (n = 12 674). The Spoligoforest tree
showed that Beijing family and T family composed two
of the most predominant families of the isolates col-
lected. The collected Beijing family isolates showed a
low diversity of SIT, and the main Beijing family isolates

Fig. 2 Spoligoforest tree illustrating evolution of MTB isolates in China (n = 12 674). Different color represents different families; Numbers outside
parentheses represent the matched SIT ID in the Pasteur database; The numbers in parentheses are the quantity of isolates; Probable strain
phylogenetic pathways between spoligotypes, solid black lines represent links of weigh being 1.0, dashed lines represent links of weight between
0.5 to 1, dotted lines represent links of weight less than 0.5. MTB: Mycobacterium tuberculosis; SIT: Spoligotype international type; CAS: Central-
Asian family; H: Haarlem family; LAM: Latin American and Mediterranean family; EAI: East-African Indian family

Liang et al. Infectious Diseases of Poverty            (2020) 9:59 Page 4 of 9



belong to SIT1 (n = 9121, 94.37%). The collected T fam-
ily isolates were more diverse than Beijing family on SIT,
consisting of SIT53 (n = 689, 40.67%), SIT52 (n = 267,
15.76%), SIT334 (n = 90, 5.31%), SIT37 (n = 74, 4.37%),
etc. The Spoligoforest tree showed that Beijing family
and T family appeared as different aggregates.

The Bayesian population structure
Implementing of the Bayesian population structure
analyses divided the collected isolates of Beijing family
that with available 24-loci MIRU-VNTR data into six
STRUCTURE clades (n = 1490), while the collected T
isolates belong to six STRUCTURE clades (n = 252).
These STRUCTURE clades were defined and labeled in
accordance with previous researches (BSP1–5, BSPint
and TSL3–6, TSL8, TSLint) (Fig. 3b, Supplementary
Table 4). Note that BSPint and TSLint to represent
isolates in intermediate position among various clades
defined in evolution.

MST analysis based on 24-loci MIRU-VNTR
The MST reconstructed from the pooled data for avail-
able isolates with 24-loci MIRU-VNTR analysis data
(n = 2161) highlighted the phylogenetic pathway between
the different isolates mentioned previously (Fig. 3a), in-
cluding Beijing family (n = 1767), T family (n = 252),
Manu family (n = 302), Central-Asian family (CAS) (n =
18), Haarlem family (H) (n = 16), Latin American and
Mediterranean family (LAM) (n = 10), East-African In-
dian family (EAI) (n = 1) and others (n = 49). Despite
that they are genetically far apart, yet obvious intersec-
tions and overlaps between the Beijing family and the T

family in the MST were observed. The MST of available
isolates of different STUCTURE clades (n = 1742) indi-
cated that BSP2 and TSL6 are directly downstream of
the phylogenetic pathway of BSP4 and TSL5, respect-
ively (Fig. 3b). Moreover, the clades BSP3, BSP4, and
most of the BSP5, displayed a star-like shape of phylo-
genetic expansion in MST while BSP2 and TSL6
displayed a polycentric shape. In addition, the MST ana-
lysis and the WebLogo of allele copy number both
showed that BSP2 and TSL6 had the similar main pat-
terns of 24-loci MIRU-VNTR (Figs. 3b, 4, Supplemen-
tary Tables 4 and 5).

The recent demographic change of TSL6
The SMM in the Msvar 1.3 algorithm deduced the most
probable past demographic history of TSL6 in China
(Fig. 5). In the result, ta = 2.0463 (log scale), which com-
puted that the past demographic history of TSL6 clade
in China might have taken 111.25 years while the muta-
tion rate per locus and per generation was 7.24 × 10− 7.

Discussion
The logical local adaptive evolution of BSP2 and TSL6 in
Chongqing
In this study, our phylogenetic analysis suggested the
clades BSP2 and TSL6 might evolve from BSP4 and
TSL5, respectively, and this was consistent with the re-
cent studies by Reynaud and Zheng [12, 13]. However,
according to the geographical distribution (Supplemen-
tary Table 4) and the results of the recent study by
Reynaud and Zheng, the main epidemic region of TSL5
was in Jiangsu province [12], while BSP4 in the mainland

Fig. 3 MSTs illustrating the phylogenetic pathways. The MST connects each genotype based on degree of changes required to go from one
allele to another; The lines denotes the number of allele changes between two patterns: less than three changes (solid lines), four changes (gray
dashed lines) and five or more changes (gray dotted lines); The size of the circle is proportional to the quantities of isolates sharing same pattern.
MST: Minimum Spanning Tree; CAS: Central-Asian family; H: Haarlem family; LAM: Latin American and Mediterranean family; EAI: East-African
Indian family; TSL: T sub-lineage; BSP: Beijing sub-pedigree
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of China was epidemic in Tibet [13]. Therefore, BSP2
and TSL6 might be caused by the genetic polymor-
phisms generated after the entry of extraneous isolates
into Chongqing from Tibet and Jiangsu.
It was observed that the phylogeny of BSP2 and TSL6

isolates appeared in the polycentric shape in MST, indi-
cating that the evolutionary expansions of BSP2 and
TSL6 were drastic [20] (Fig. 3b). Considering that the

expansion and evolution of MTB were mainly caused by
human activities such as migration [18, 20, 28], the
emerging of BSP2 and TSL6 might result from a drastic
historical event. Our Bayesian demography analysis
showed that stepwise mutation of TSL6 has lasted about
111 years (Fig. 5), which was likely to be started from the
1900s. Back to Chinese history, as a result of the forced
sign of the “Treaty of Shimonoseki” in 1895, five trading

Fig. 4 WebLogo of allele copy of 24 MIRU-VNTRs loci of clades BSP2, BSP4, TSL5, and TSL6. MIRU-VNTR: Mycobacterial interspersed repetitive unit-
variable number of tandem repeats; TSL: T sub-lineage; BSP: Beijing sub-pedigree

Fig. 5 Demographic analysis and dating estimates of clade TSL6. ta, time elapsed since last expansion in years (log scale); R = N0/N1, median value
of expansion ratio; μ, mutation rate per locus and per generation. All estimates correspond to median values, followed by 95% highest posterior
densities indicated in parentheses. TSL: T sub-lineage
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ports were opened up [31]. Suzhou in Jiangsu province
became the trading port due to its sea location while
Chongqing became one of the first batches of inland
commerce ports opened to foreigners. The British,
French, German, American and Japanese consulates
were stationed in Chongqing during 1890–1904, and
many densely populated industries sprung up in Chong-
qing during this period. Frequent commercial traffic
along the trade routes at that time could likely carry
TSL5 isolates from Jiangsu to Chongqing, where TSL5
might survive and present stably because it was reported
that T family could coexist well with other families [14].
The Tea-horse Ancient Road, which connected south-
west to west China from the Tang dynasty to the early
20 century [32], might make great contribution to the
appearance of BSP4 in Chongqing at a much earlier time
than TSL5 did, leading to BSP4 becoming an aboriginal
clade in this area as in most other regions in China,
since a few upstream in the phylogenetic pathway of
MTB clades in southwestern and central China came
from Tibet [33]. We would speculate that BSP4 might
have undergone a certain degree of local adaptive evolu-
tion in Chongqing before the entrance of TSL5, there-
fore only demographic analysis for TSL6 was performed
in this study. Besides, the success of MTB as a pathogen
was largely depend on the host adaptation and selection
[14], so the arrival of the Europeans and the emergence
of densely populated industries might exert an impact
on the original host environment and thus created a new
hosting type. Hence the isolates of TSL5 and BSP4
might have to start to adapt to this new host environ-
ment actively. Moreover, the research of Liu et al.
proved that the various clades of MTBC in China
evolved from the ancestors with very low genetic diver-
sity [18] so that distinct genetic polymorphisms of clades
of MTB might result from local adaptive evolution [14].
Giving the above evidence, BSP2 and TSL6 clades could
be originated from BSP4 and TSL5 by their local adap-
tive evolution in Chongqing.

The convergence of the pattern at MIRU-VNTR of BSP2
and TSL6
A distinct feature of BSP2 and TSL6 isolates was the
similar pattern of 24-loci MIRU-VNTR (Fig. 4). Our re-
sult indicated that some isolates from the BSP4 and
TSL5 clades evolved to give a similar 24-loci MIRU-
VNTR pattern during their local adaptive evolution in
Chongqing, initiating the formation of BSP2 and TSL6
(Fig. 3). There are clear differences between the 24-loci
MIRU-VNTR repeat patterns of BSP4 and T5, which of
BSP2 and TSL6, however, are similar in all loci (Fig. 4).
Local adaptive evolution is a common phenomenon
among MTB, and the host environment of MTB in dif-
ferent regions are complex and diverse [14]. The

convergence of MIRU-VNTR might have satisfied the
need of the isolates to adapt to the local host environ-
ment. Like most of satellite DNA, MIRU-VNTR loci can
affect some traits via regulating the expression of up-
stream and downstream genes or others through quanti-
tative changes of repeats [34–40]. For example, the
repeat number of QUB26 could directly affect the ex-
pression of Rv3610, thus its over-expressed product,
FtSH, a membrane protein of MTB, could significantly
affect the growth and viability of MTB [35–37]. Al-
though the changes in the number of repeats at the
MIRU-VNTR loci in local adaptive evolution and their
effect on MTB traits remain to be further studied, it is
reasonable to propose that the convergence of 24-loci
MIRU-VNTR repeat patterns may indeed lead to the
similarity of the growth and virulence traits of MTB iso-
lates. Filliol et al. confirmed that MIRU-VNTR were
based on a limited number of loci, and the markers used
evolved rapidly with a tendency to converge [41], there-
fore the convergence of MIRU-VNTR patterns might be
one manifestation of the local adaptive evolution of
BSP2 and TSL6, which may also be true in other clades.

The limitations of 24-loci MIRU-VNTR in discriminatory
power
Our results showed that similar MIRU-VNTR pattern
could occur in the different clades of Beijing and T fam-
ilies in Chongqing (Figs. 3, 4, Supplementary Table 5),
although Spoligotyping showed that they were genetic-
ally distant (Fig. 2, Supplementary Table 4), indicating
the insufficient discriminatory power of 24-loci MIRU-
VNTR on genotyping of specific clades of Beijing and T
families. Murase et al. exhibited that the discriminatory
power of particular MIRU-VNTR loci varied depending
on the specific strain background [42]. Moreover, the
properties of molecular markers required to address at
both local and global levels of bacterial diversity are un-
likely to be met by one single marker, hence, the 24-loci
MIRU-VNTR should be combined with robust markers
for comprehensive genotyping, especially for some clades
like BSP2 and TSL6. The robust single nucleotide poly-
morphisms (SNP) markers can be used to construct high
resolution and reproducible phylogenies [5]. Spoligotyp-
ing and genotyping methods based on large sequence
polymorphisms (LSP) have been started to be applied on
the classification of MTB in various lineages [43], and
the core genome multi-locus sequence typing (cgMLST)
based Whole Genome Sequencing analyses facilitate the
discrimination of longitudinal MTBC outbreaks of high
resolution [44]. From what have been known, the com-
bination of 24-loci MIRU-VNTR and the robust makers
can lead to the potent and universal comprehensive
genotyping approach, and MIRU-VNTR loci should be
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used in a lineage-dependent manner for epidemiological
purposes.

Conclusion
By the analyses of Bayesian population structure, phylo-
genetic pathway, and demographic history, it was re-
vealed that BSP2 and TSL6 clades could be originated
from BSP4 and TSL5 by their local adaptive evolution in
Chongqing, although this may need further verification
by applying whole genome sequencing to accumulate its
robustness. Our results suggest MIRU-VNTR be com-
bined with other robust markers for a more comprehen-
sive genotyping approach, especially for families with
clades of the same MIRU-VNTR pattern.
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