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Identification of genetic loci 
affecting body mass index 
through interaction with multiple 
environmental factors using 
structured linear mixed model
Hae‑Un Jung1, Won Jun Lee1, Tae‑Woong Ha1, Ji‑One Kang2, Jihye Kim3, Mi Kyung Kim3,4, 
Sungho Won5, Taesung Park6, Ji Eun Lim2* & Bermseok Oh2*

Multiple environmental factors could interact with a single genetic factor to affect disease 
phenotypes. We used Struct‑LMM to identify genetic variants that interacted with environmental 
factors related to body mass index (BMI) using data from the Korea Association Resource. The 
following factors were investigated: alcohol consumption, education, physical activity metabolic 
equivalent of task (PAMET), income, total calorie intake, protein intake, carbohydrate intake, and 
smoking status. Initial analysis identified 7 potential single nucleotide polymorphisms (SNPs) that 
interacted with the environmental factors (P value < 5.00 ×  10−6). Of the 8 environmental factors, 
PAMET score was excluded for further analysis since it had an average Bayes Factor (BF) value < 1 
(BF = 0.88). Interaction analysis using 7 environmental factors identified 11 SNPs (P value < 5.00 ×  10−6). 
Of these, rs2391331 had the most significant interaction (P value = 7.27 ×  10−9) and was located within 
the intron of EFNB2 (Chr 13). In addition, the gene‑based genome‑wide association study verified 
EFNB2 gene significantly interacting with 7 environmental factors (P value = 5.03 ×  10−10). BF analysis 
indicated that most environmental factors, except carbohydrate intake, contributed to the interaction 
of rs2391331 on BMI. Although the replication of the results in other cohorts is warranted, these 
findings proved the usefulness of Struct‑LMM to identify the gene–environment interaction affecting 
disease.

Gene-environment interaction (GEI) studies evaluate the extent to which the phenotype was affected by the 
 interaction1. These studies help in our understanding of the complex human traits that are determined through 
the interaction of gene and  environment2. In addition, the gene identified through this analysis can help in 
discovering the biological pathways underlying the  phenotype3 and in increasing the accuracy of prediction of 
the disease incidence, calculated by the main genetic and environmental  effects2,4. Therefore, series of genome-
wide interaction studies (GWIS) have been progressed to identify the genetic loci interacted with environmental 
factors in diverse  traits5–7.

Obesity is a serious environment-related disease that affects many people across the world. Severely obese 
people have been reported to die 8 to 10 years earlier than those with normal weight. Moreover, obesity is strongly 
associated with diseases such as cardiovascular diseases, type 2 diabetes, and cancer. In the past 2 decades, the 
global incident rate of obesity has rapidly increased, and the prevalence of obesity is estimated to double in the 
next  decade8. Studies have demonstrated that body mass index (BMI), an index for obesity, is influenced by 
environments such as physical activity, nutrient intake, and diverse environmental exposure. Likewise, it is well 
known that BMI is affected by multiple genetic factors, which have been identified by series of genome-wide 
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association studies (GWAS)9. Among the GWAS single nucleotide polymorphisms (SNPs), the FTO locus is the 
strongest genetic variant and is recently reported to affect BMI through interaction with environmental factors, 
including physical activity, diet, and  smoking7,10–13.

Most of the interaction studies for obesity calculate the interaction between a single genetic factor or multiple 
genetic factors and a single environment  factor9,14–17. However, there is a possibility that the interaction of mul-
tiple environments and a single genetic factor can also affect the  phenotype7,18. Recently, the structured linear 
mixed model (Struct-LMM) analysis was reported to identify the genetic loci, characterized by the interaction 
of multiple environmental  factors18. Using this method, high-dimensional environmental data can be used in 
population cohorts to help understand the effects of genetic factors in a group on complex traits and  diseases18.

In this study, we applied the Struct-LMM method to the Korea Association Resource (KARE), a well-known 
Korean population GWAS database, comprised of 8,840  participants19. A total of 8 obesity-related environmen-
tal factors, which could interact with multiple environmental factors for BMI, were examined on genome-wide 
genetic variants. These environments included estimated daily alcohol consumption, education, physical activity 
metabolic equivalent of task (PAMET), income, total calorie intake, protein intake, carbohydrate intake, and 
smoking status.

Materials and methods
Korean association resource (KARE) cohort. We utilized data from KARE for all the analyses. Par-
ticipants of KARE cohort were recruited from two regions in South Korea (Ansan and Ansung) from 2009 to 
2012 for the Korean Genome and Epidemiology Study. All study participants aged ≥ 40 years provided written 
informed consent, and approval was obtained from the institutional review board. The exclusion criteria were as 
follows: history of cancer, gender inconsistencies, cryptic relatedness, low genotype call rate (< 95%), and sample 
contamination (Fig. 1)19,20. 

From the 8,840 samples, 8,155 samples (with all the 8 environmental factors related to obesity) were selected. 
The distribution of the variables in the samples has been summarized in Table 1.

Genotype data. The KARE study utilized the Affymetrix Genome-Wide Human SNP Array GeneChip 
5.019. SNP imputation was performed using IMPUTE2 with the 1000 Genomes Project (haplotype phase 1)19. At 

Figure 1.  Diagram showing the study design. Left side of the diagram depicts the interaction between 8 
environmental factors and 5,908,111 single nucleotide polymorphisms (SNPs), and the right side of the diagram 
depicts the interaction between 7 environmental factors (without physical activity) and 5,908,111 SNPs. The 
numbers in the parenthesis indicate the SNPs excluded by the specified quality control. BMI body mass index.
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the baseline, genetic data was available for 6,461,358 SNPs in samples of 8,840 KARE participants. We performed 
quality control based on the following exclusion criteria: variants with missing genotype call rates > 0.05, minor 
allele frequency < 0.01, and Hardy–Weinberg equilibrium P value < 1.00 ×  10−6. Based on these criteria, 5,908,111 
SNPs were included in the study (Fig. 1).

Dataset for phenotype and environmental factors. The methods for the measurement of height and 
weight have been described in a previous  study20. BMI was calculated as weight (kg)/height  (m2). For analyses, 
BMI was transformed to normal distribution using Gaussian function in Struct-LMM.

The environmental factors used in Struct-LMM were selected based on previous studies on  BMI9,14,16,17. The 8 
environmental factors were alcohol  consumption9,  education14, physical  activity9,  income9, total calorie  intake16, 
protein  intake16, carbohydrate  intake16, and smoking  status17 (Supplementary Table 1).

The estimated daily consumption of alcohol (g/day) was calculated, as described  previously20. PAMET was 
obtained from each participant using a structured questionnaire that included four types of physical activities 
including sleeping, five different sedentary activities, non-sedentary activities, and only leisure-time physical 
 activity21. The total calorie intake, protein intake, and carbohydrate intake were calculated from a food frequency 
questionnaire (FFQ), as  described22,23.

For the Struct-LMM interaction analysis of alcohol consumption, the amount of alcohol consumption addi-
tionally increased in each group by 20 g/day from the 1st group (less than 20 g/day) up to the 6th group (> 100 g/
day)24. For education analysis, participants were divided into two groups, one with education no more than 
secondary school and another with education more than secondary school. The physical activity was analyzed 
from PAMET score as a continuous variable. For income analysis, participants were divided into groups based 

Table 1.  Basic characteristics of Korean Association Resource (KARE) participants included in this study, 
stratified by weight as a criterion. The numbers with percentile indicate mean and standard deviation (SD), and 
the numbers without percentile indicate the sample number in the variable.

KARE cohort

Underweight Normal weight Overweight Obese

BMI < 18.5 (18.5 ≤ BMI < 23) (23 ≤ BMI < 25) (BMI ≥ 25)

Number of participants 146 2347 2138 3524

Males (%) 60.96% 51.34% 47.99% 47.21%

age (mean, SD) 56.35(9.74) 52.23(9.38) 51.56(8.73) 52.10(8.54)

Height (cm) (mean, SD) 160.66(7.73) 160.62(8.53) 160.33(8.47) 159.69(8.94)

Weight (kg) (mean, SD) 45.60(5.29) 55.29(6.55) 61.91(6.70) 70.06(8.88)

Body mass index (kg/m2) (mean, SD) 17.60(0.82) 21.37(1.16) 24.02(0.57) 27.42(2.07)

For estimated day consumption of alcohol (g/day) 
(mean, SD) 1.84(1.27) 1.78(1.13) 1.79(1.10) 1.78(1.13)

Education

Less than primary school 71 736 637 1214

Completed middle school 28 530 470 796

Completed high school 30 781 724 1020

Completed college 5 90 80 116

Completed university 12 183 195 319

More than university 0 27 32 59

PAMET (mean, SD) 11,288.22(7820.73) 10,029.26(6481.24) 9519.96(6069.51) 9271.68(6038.71)

Income

× < 500,000 won 55 465 349 611

500,000 won ≤ × < 1,000,000 won 23 396 340 504

1,000,000 won ≤ × < 1,500,000 won 21 345 318 548

1,500,000 won ≤×x < 2,000,000 won 18 333 310 479

2,000,000 won ≤ × < 3,000,000 won 17 446 382 652

3,000,000 won ≤ × < 4,000,000 won 7 226 251 365

4,000,000 won ≤ × < 6,000,000 won 4 102 144 222

6,000,000 won < × 1 34 44 93

Total calorie intake (kcal) (mean, SD) 1866.09(739.49) 1925.13(686.87) 1940.74(687.59) 1975.49(690.45)

Protein intake (g) (mean, SD) 61.75(30.15) 65.12(31.18) 66.49(27.62) 67.66(29.29)

Carbohydrate intake (g) (mean, SD) 332.10(134.90) 339.01(111.35) 340.36(119.58) 347.41(115.20)

Smoking status

Never 62 1294 1247 2178

Previous 22 340 343 588

Sometimes 10 64 51 99

Often 10 649 470 659
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on various levels of income, as shown in Supplementary Table 1. For the analysis of total calorie intake, protein 
intake, and carbohydrate intake, participants were divided into four groups, as shown in Supplementary Table 1. 
For smoking analysis, participants were divided into two groups, one with no or previous history of smoking 
and the other with current  smoking17.

Statistical analysis. SNP quality control was performed in PLINK v.1.9.0, as described  previously25. The 
gene-environment interaction on BMI for the eight environmental factors was analyzed by Struct-LMM v.0.3.118, 
adjusted for age, sex, and recruitment  area26.

We performed Manhattan plot drawing, box plot drawing, association analysis, residual value calculation, 
bar graph drawing, and correlation in R stats package version 3.5.1 (www.r-proje ct.org). For Manhattan plot 
drawing, qqman package was used for residual value calculation, while for association analysis, lme4 package in 
R stats package was used. We calculated the Bayes Factor (BF) for each environmental factor to explore the most 
relevant environments for GEI in Struct-LMM v.0.3.1. The Bayes Factor method used in Struct-LMM is a statisti-
cal method comparing two models, one with the environmental factors and another without the environmental 
factors, in order to assess which model is better by quantifying the power of each model.

We performed a gene-based genome-wide association analysis using the  MAGMA27 tool provided by  FUMA28 
through GWIS results calculated by Struct-LMM in this study.

Ethics approval and consent to participate. This study was performed in accordance with the World 
Medical Association Declaration of Helsinki. All participants provided written informed consent to participate 
in the  study19. Approval for the study was obtained from the Institutional Review Board (IRB) of Kyung Hee 
University (KHSIRB-19-387(EA), KHSIRB-20-077(EA)).

Results
Association of environmental factors on BMI. The environmental characteristics of the 8155 partici-
pants, included in this Struct-LMM analysis, have been summarized in Table 1. The participants were categorized 
into four obesity groups, based on the BMI values stated by the World Health Organization (Asia–Pacific region) 
and the Korean Obesity  Society29. The average BMI of the participants was 24.61 (standard deviation = 3.12).

The relationship between the environmental factors was assessed using a correlogram (Supplementary Fig. 1). 
It was observed that PAMET and carbohydrate intake had relatively low correlation with other environmental 
factors, compared to the other 6 factors.

All the 8 environmental factors showed an association with BMI (P-value < 0.05). However, the asso-
ciations of alcohol consumption (P-value = 2.83 ×  10−2), education (P-value = 7.02 ×  10−3), protein intake 
(P-value = 9.94 ×  10−3), and carbohydrate intake (P-value = 1.02 ×  10−2) with BMI, were not valid after the Bonfer-
roni correction for multiple comparisons (P-value < 6.2 ×  10−3) (Supplementary Table 1). Alcohol consumption, 
income, total calorie intake, and protein intake were positively correlated with BMI, while education, PAMET, 
carbohydrate intake, and smoking were negatively correlated with BMI. The order of effect size of the 8 environ-
mental factors, regardless of positive or negative correlation with BMI, was as follows: protein intake classified as 
quartile (β = 0.81), alcohol consumption classified as 6 groups (β = 0.75), smoking status classified as smoker and 
non-smoker (β =  − 0.65), education classified as 2 groups (β =  − 0.21), total calorie intake classified as quartile 
(β = 0.15), carbohydrate intake classified as quartile (β = 0.08), income classified as 8 groups (β =  − 0.07), and 
PAMET as a continuous variable (β =  − 2.81 ×  10−5) (Supplementary Table 1).

Analysis of gene–environment interaction on BMI using Struct‑LMM. We performed the GEI test 
between the 5,908,111 SNPs and 8 environmental factors on BMI, using Struct-LMM adjusted for age, sex, and 
recruitment area. The study design has been depicted in Fig. 1. Based on the results, we did not find an associa-
tion of genome-wide significance with P-value < 5 ×  10−8, as shown in the Manhattan plot (Fig. 2). However, we 
found 7 potential associations with P-value < 5 ×  10−6 (Table 2).

For each potential genetic variant, we calculated the BF value of each environmental factor to examine the 
interaction reliability of the respective environmental factor on BMI, using the tool included in the Struct-LMM 
 program18. For rs2391333, showing the most significant interaction (P-value = 9.17 ×  10−8), the BF value of total 
calorie intake was the highest (BF = 8.43) among the 8 environmental factors, while the BF values of both carbo-
hydrate intake and PAMET were the lowest (BF < 0.01 each, Fig. 3). When the BF values of the environmental fac-
tors were added from all the 7 potential SNPs, the BF value of PAMET was the lowest among the 8 environmental 
factors (Fig. 3, Supplementary Table 2). To confirm whether this was true for other SNPs as well, we recalculated 
the BF value of the 8 environmental factors from 66 independent lead SNPs that showed an interaction associa-
tion with P-value < 5 ×  10−5 (Supplementary Table 3). A BF value < 1 indicates that the environmental factors, 
through the GEI, does not improve the test power of Struct-LMM model. In another word, the environmental 
factor does not help in identifying genetic factors affecting BMI through the interaction. When the BF from all 66 
SNPs were added, the BF value of PAMET was found to be the lowest compared to other environmental factors 
 (BFPAMET = 57.95). In addition, the average BF value of PAMET was < 1.  (BFPAMET average = 0.88,  BFAlcohol consumption 
average = 1.30,  BFEducation average = 2.78,  BFIncome average = 3.34,  BFSmoking status average = 1.17,  BFTotal calorie intake aver-
age = 1.41,  BFProtein intake average = 2.87, and  BFCarbohydrate intake average = 1.50) (Supplementary Table 3). Therefore, 
we analyzed the GEI again by Struct-LMM, after excluding PAMET.

Second analysis of gene–environment interaction using 7 environmental factors. We per-
formed the GEI test between the 5,908,111 SNPs and 7 environmental factors (without PAMET) on BMI, using 
Struct-LMM adjusted for age, sex, and recruitment area (Fig. 1). We discovered 11 independent potential genetic 
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variants with P-value < 5 ×  10−6 (Table 3, Fig. 4). A variant, rs2391331, located within the intron of EFNB2 gene 
(Chr 13), showed a genome-wide significance (P-value = 7.27 ×  10−9).

We analyzed the interaction association of the other 6 potential variants identified from the analysis with the 
8 environmental factors, including PAMET. While three SNPs (rs12402440, rs59756727, and rs9512706) had 
lower P-values in the interaction test involving 7 environmental factors, the other 3 SNPs (rs7760212, rs668056, 
and rs5755279) had higher P-values (Supplementary Table 4).

Since waist and hip circumferences were also used as indices for obesity, we analyzed the interaction of 
rs2391331 with 7 environmental factors on both these traits by Struct-LMM analysis. Both the correlation 
between BMI and waist circumference was 0.76 (P value < 5.00 ×  10−16), and the correlation between BMI and 
hip circumference was also 0.76 (P value < 5.00 ×  10−16) in this study population. Results showed that rs2391331 

Figure 2.  Manhattan plots for genome-wide interaction study using eight environmental factors. The red line 
indicates the suggestive threshold (P value < 5.00 ×  10−6). The blue line indicates the genome-wide significance 
threshold (P value < 5.00 ×  10−8).

Table 2.  Interactions between individual single nucleotide polymorphisms (SNPs) and 8 environmental 
factors. aChromosomal positions are based on the 1000 Genomes Project’s haplotype phase 1 in NCBI 
build 37 (hg19). bMAF, minor allele frequency. cThe P value for the effects of interaction between genotypes 
and environmental factors on BMI was assessed by using a Struct-LMM with adjustment for age, sex, and 
recruitment area. The nearest gene to which the SNP is located.

Chromosome Nearest gene SNP ID Positiona Minor allele Major allele MAFb (%) P  valuec

1 GJB5 rs12402440 107,166,694 G T 20.91 4.03 ×  10−6

3 LOC100288428 rs59756727 7,656,037 A T 44.08 6.02 ×  10−7

6 SNRNP48 rs7760212 8,242,302 A G 32.02 7.47 ×  10−7

13 EFNB2* rs2391333 34,968,257 T C 41.42 9.17 ×  10−8

13 MTIF3 rs9512706 28,041,615 A C 19.87 3.94 ×  10−6

19 ZNF787 rs668056 56,595,733 T C 28.74 2.22 ×  10−6

22 ISX rs5755279 35,186,350 G A 23.91 3.21 ×  10−6
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interacted with the 7 environmental factors on waist circumference (P value = 1.50 ×  10−5) and hip circumference 
(P value = 6.00 ×  10−6) (Supplementary Table 5).

The Struct-LMM analysis examined the interaction of a genetic variant with multiple environment fac-
tors as a whole. Hence, we investigated the interaction of individual environmental factors with rs2391331 
using a fixed effect model of linear regression. As shown in Supplementary Table 6, rs2391331 showed inter-
action P value with protein intake (P-value = 1.64 ×  10−4), income (P value = 3.62 ×  10−4), total calorie intake 
(P-value = 6.27 ×  10−4), alcohol consumption (P-value = 2.90 ×  10−3), smoking status (P-value = 3.77 ×  10−3), educa-
tion (P value = 1.88 ×  10−2), and carbohydrate intake (P-value = 5.28 ×  10−1).

Gene‑based genome‑wide association analysis. In order to validate the previous results of Struct-
LMM and also identify the causative genes, we performed a gene-based genome-wide association analy-
sis using the  MAGMA26 tool through GWIS results calculated from Struct-LMM (Supplementary Fig.  3). 
SNPs were mapped to 17,535 protein-coding genes, making the genome-wide significance level as defined at 
P-value = 2.85 ×  10−6 (0.05/17,535). Three genes of EFNB2 (Chr 13), DOCK4 (Chr 7), and ZNF787 (Chr 19) met 
the genome-wide significance level, and the P-value of 3 genes were as follows: EFNB2 P-value = 5.03 ×  10−10, 
DOCK4 P-value = 6.79 ×  10−7, and ZNF787 P-value = 2.34 ×  10−6 (Supplementary Table  7). The SNPs with the 
highest GEI P-value in the gene locus were as follows: [DOCK4—rs3801778 (GEI P-value = 8.90 ×  10−5)], 

Figure 3.  Interaction Bayes factor values of environmental factors for 7 potential single nucleotide 
polymorphisms (SNPs). Bayes Factor shows evidence of environmental factors that explain GEI at potential 
SNP.
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[EFNB2—rs2391331 (GEI P-value = 7.27 ×  10−9)], and [ZNF787—rs642776 (GEI P-value = 3.00 ×  10−6)]. We 
summarized the BF values of each environmental factor for rs3801778 and rs642776 in Supplementary Table 8. 
Further, we investigated the expression quantitative trait loci (eQTL) information using Genotype-Tissue 
Expression (GTEx) version  830. We could find eQTLs of LD-linked proxy SNPs  (r2 > 0.8) from rs2391331 and 
rs642776, and summarized the results in Supplementary Table  9. The proxy SNPs, rs10508174, rs11069646, 
rs7983579, and rs7327929 for rs2391331 are associated with EFNB2 gene in the pituitary or testis. The proxy 
SNPs, rs7250351, rs1007851, rs6509982, rs493717, and rs35766803 for rs642776 are associated with ZNF787 

Figure 4.  Manhattan plots for genome-wide interaction study using 7 environmental factors. The red line 
indicates the suggestive threshold (P value < 5.00 ×  10−6). The blue line indicates the genome-wide significance 
threshold (P value < 5.00 ×  10−8).

Table 3.  Interactions between individual single nucleotide polymorphisms (SNPs) and 7 environmental 
factors. aChromosomal positions are based on the 1000 Genomes Project’s haplotype phase 1 in NCBI build 
37 (hg19). bMAF is minor allele frequency. cThe P value for the effects of interaction between genotypes 
and environmental factors on BMI were assessed by using a Struct-LMM with adjustment for age, sex, and 
recruitment area. The nearest gene to which the SNP is located.

Chromosome Nearest gene SNP ID Positiona Minor allele Major allele MAFb (%) P  valuec

1 GJB5 rs12402440 34,968,257 G T 20.91 4.02 ×  10−6

1 C1orf110 rs12405096 162,926,260 T C 41.78 4.60 ×  10−6

1 RAB3GAP2* rs74565497 220,415,930 G A 8.12 4.82 ×  10−6

3 LOC100288428 rs59756727 8,242,302 A T 44.08 1.81 ×  10−7

6 SNRNP48 rs7760212 7,656,037 A G 32.02 8.62 ×  10−7

8 MSRA* rs117301188 10,070,612 A C 9.62 4.70 ×  10−6

8 RSPO2* rs7833349 108,966,199 T C 24.70 3.81 ×  10−6

13 MTIF3 rs9512706 28,041,615 A C 19.87 2.91 ×  10−6

13 EFNB2* rs2391331 107,157,709 C T 42.90 7.27 ×  10−9

19 ZNF787 rs668056 56,595,733 T C 28.74 2.87 ×  10−6

22 ISX rs5755279 35,186,350 G A 23.91 4.65 ×  10−6
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gene in fibroblast cells, esophagus, or skin, and the proxy SNPs, rs6509982 and rs35766803 for rs642776 are 
associated with TMEM190 gene in the lung.

BF of gene–environment associated variant. The BF of environmental factors for the 11 potential 
SNPs were calculated (Fig. 5, Supplementary Table 10). For the most significant variant, rs2391331, all the envi-
ronmental factors (except carbohydrate intake), showed BF value > 1, thus indicating the evidence of interaction. 
The interaction BF values of rs2391331 were as follows: protein intake (BF = 5.28), income (BF = 4.59), total calo-
rie intake (BF = 4.12), alcohol consumption (BF = 2.85), smoking status (BF = 2.63), and education (BF = 1.41) 
(Supplementary Table  10). Additionally, we investigated the interaction of individual environmental factors 
with the 10 potential SNPs using a fixed effect model of linear regression (Supplementary Table 11–20). As a 
result, the most significant P-value (P-value = 7.65 ×  10−7) was observed with total calorie intake interacted with 
rs11730118, which also showed the highest BF value (BF = 10.12) among the 11 potential SNPs of Struct-LMM 
analysis (Fig. 5, Supplementary Table 10, and Supplementary Table 16).

Box plots showed distribution of the in sample estimated allelic effect size on BMI considering environmental 
factors for 11 potential variants with GEI (n = 8155, unrelated individuals of Korean population) (Supplementary 
Fig. 2).

Discussion
In this study, we performed an interaction test between multiple environmental factors and genetic variant, using 
Struct-LMM at a genome-wide  level18. The identified genetic variant, rs2391331 was significantly associated with 
the interaction of 7 environmental factors in a Korean population cohort, KARE (P-value = 7.27 ×  10−9). Of the 7 
environmental factors, protein intake was the most influential environmental factor for rs2391331, and the least 
influential environmental factor was carbohydrate intake (Fig. 5).

A certain genetic variant may affect a trait through multiple environmental factors, as shown in FTO and 
MC4R31–33. The genetic variant of FTO showed interactions with diverse environmental exposures such as physi-
cal activity, diet, and alcohol consumption. The effect size of FTO variants on BMI was reduced by the increased 
physical activity but increased by the decreased physical  activity10. Struct-LMM was modelled to identify such 
interactions with multiple environmental factors, which may not be identified otherwise. As shown in Supple-
mentary Table 6, rs2391331 could not be identified as a genome-wide significant variant through the conven-
tional fixed effect model approach, which used a single environmental factor. While protein intake, income, total 
calorie intake, alcohol consumption, and smoking status showed statistical significance after multiple correction, 
none of these environmental factors showed a genome-wide significance for the interaction with rs2391331 
(P-value < 5.00 ×  10−8). Therefore, unless the Struct-LMM model was applied, rs2391331 could not be identified 
through the genome-wide interaction study.

Another advantage of the Struct-LMM analysis is that it provides a rank about which environmental 
factor is more reliable for the interaction with the genetic variant, using BF values. As shown in Fig. 5 and 
Supplementary Table 10, the BF values for rs2391331 indicated that the ranking was in the order of protein 
intake (BF value = 5.28), income (BF = 4.59), total calorie intake (BF = 4.12), alcohol consumption (BF = 2.85), 
smoking status (BF = 2.63), education (BF = 1.41), and carbohydrate intake (BF < 0.01). When we investi-
gated the interaction of individual environmental factors with rs2391331 using a fixed effect model of lin-
ear regression, the P-values of environmental factors were in the order of P-value, as follows: protein intake 
(P-value = 1.64 ×  10−4), income (P-value = 3.62 ×  10−4), total calorie intake (P-value = 6.27 ×  10−4), alcohol con-
sumption (P-value = 2.90 ×  10−3), smoking status (P-value = 3.77 ×  10−3), education (P-value = 1.88 ×  10−2), and 
carbohydrate intake (P-value = 5.28 ×  10−1) as shown in Supplementary Table 6. The order of P-value of each 
environmental factor was the same as the one of BF value obtained by Struct-LMM. In case of rs2391331, all 6 
environmental factors (except carbohydrate intake) had a rather consistent effect on BMI through the interaction.

The genetic variant, rs2391331 was located in the first intron of EFNB2 gene (Chr 13). EFNB2 is the ligand 
of erythropoietin-producing hepatocellular kinases (EPH), the largest family of receptor tyrosine  kinases34, 35. 
We performed the gene-based genome-wide association analysis and verified that at the gene level EFNB2 was 
also statistically significant for the interaction with the 7 environmental factors (Gene-set P-value = 5.03 ×  10−10) 
(Supplementary Table 7). Further, we found that LD-linked proxy SNPs for rs2391331 were associated with 
EFNB2 gene in the pituitary, or testis (Supplementary Table 9). EFNB2 has been reported to be associated with 
schizophrenia and ankle injury through the genome-wide association study. Also, several studies have shown 
the association of this gene hypertension and type 2 diabetes; however, there have been no reports regarding 
the connection of EFNB2 with obesity-related  traits36–38. Recently, it was reported that smooth muscle-specific 
deletion of EFNB2, using SM22Δ-Cre, resulted in lower body weight, reduced vascular smooth muscle cell 
proliferation, wall, and enlarged arterial  diameter39. More recently, it has been reported that the expression of 
EFNB2 is enriched in proopiomelanocortin (POMC) neurons, a major regulator of energy balance and glucose 
homeostasis and the loss of EFNB2 in POMC-expressing progenitors mildly impairs gluconeogenesis and food 
intake in  mice40. We do not know yet whether how this report would be related to the findings in this study. 
Further studies are required to investigate the functional analysis of EFNB2 related to obesity.

Additionally, we found 4 publications related to the GEI on BMI in which studies 96 SNPs were  reported18,41–43. 
We tested the 96 SNPs for replication using the Struct-LMM in this study population, however we could not find 
any significant interaction under the multiple correction criteria (P-value < 0.05 / 96) (Supplementary Table 21). 
We may provide the reasons for the failure of replication as follows. First, our sample size (N = 8,155) may not be 
enough for replication. It is generally accepted that for GEI studies, the bigger sample size is recommended than 
the size for  GWAS2. Second, the ethnicity of our sample (East Asian population) is different from the ethnicity 
of previously mentioned 4 studies (3 studies in European  population18,41,43; 1 study in African and Hispanic 
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Figure 5.  Interaction Bayes factor values of environmental factors for 11 potential single nucleotide 
polymorphisms (SNPs). Bayes Factor shows evidence of environmental factors that explain GEI at potential 
SNP.
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 population42). The effects of environmental factors are supposed to be discordant between different ethnical 
backgrounds, making it hard to produce a replication. Third, there may be a limitation in obtaining the precise 
environmental data. The environmental data acquired from self-reported questionnaire (i.e., dietary intakes, 
alcohol, smoking, sociodemographic factors, and physical activities) may be prone to responder  bias9.

There are several limitations to our study. First, as mentioned above, we analyzed the GEI in obesity with 
a small sample size, which can affect the statistical power and lead to imprecise or incorrect estimates of the 
magnitude of observed  effects44. In addition, the number of environmental factors investigated was small. While 
Struct-LMM analysis has good detection power, even if more than 10 environmental factors are analyzed, a 
smaller number of environmental factors reduces the detection power of this  method18. Lastly, the results of 
rs2391331 were not validated in other cohorts or ethnicities. Although it is not easy to find cohorts with all the 
diverse environmental factors similar to this study, replication of the results in other cohorts is warranted.

In conclusion, we performed multiple environments-gene interaction analysis to identify potential SNPs of 
BMI in a Korean cohort. A genome-wide significant interaction of rs2391331, located in the EFNB2 locus, was 
identified and the interaction on BMI was influenced by 6 environmental factors, namely protein intake, income, 
total calorie intake, alcohol consumption, smoking status, and education.
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