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Simple Summary: Lameness is a highly prevalent clinical condition that causes movement disorders
in dairy cows worldwide. With an estimated global population of one billion dairy cows, producing
522 million metric tons of milk per year, this problem affects food availability as well as the global
economy. While grass is considered to be the best support surface for cattle, in many places it cannot
be used, particularly when climate conditions are too harsh for grass to grow or be maintained. In
this paper, we investigate whether grass is the best surface to prevent lameness. The answer to
this question is fundamental to establishing better farming practices for cattle welfare. We built
an integrative analysis of functional ranges to establish the minimum and maximum movement
capacities that a cow has, according to the surfaces to which it is subjected in free housing systems.
Using this analysis, we identified many aspects that make a grass surface the healthiest option
for cattle. However, when grass is not available, this type of strategy can help to find the best
characteristics for other possible surfaces. Our study applies movement analysis to one of the most
critical problems in the world of livestock management and contributes towards finding the balance
between animal welfare and production.

Abstract: Lameness is a painful clinical condition of the bovine locomotor system that results in
alterations of movement. Together with mastitis and infertility, lameness is the main welfare, health,
and production problem found in intensive dairy farms worldwide. The clinical assessment of
lameness results in an imprecise diagnosis and delayed intervention. Hence, the current approach to
the problem is palliative rather than preventive. The five main surfaces used in free housing systems
in dairy farms are two natural (grass and sand) and three artificial (rubber, asphalt, and concrete).
Each surface presents a different risk potential for lameness, with grass carrying the lowest threat. The
aim of the present study is to evaluate the flooring type influences on cows’ movement capabilities,
using all the available information relating to kinematics, kinetics, behavior, and posture in free-
housed dairy cows. Inspired by a refurbished movement ecology concept, we conducted a literature
review, taking into account kinematics, kinetics, behavior, and posture parameters by reference to
the main surfaces used in free housing systems for dairy cows. We built an integrative analysis
of functional ranges (IAFuR), which provides a combined welfare status diagram for the optimal
(i.e., within the upper and lower limit) functional ranges for movement (i.e., posture, kinematics,
and kinetics), navigation (i.e., behavior), and recovery capacities (i.e., metabolic cost). Our analysis
confirms grass’ outstanding clinical performance, as well as for all of the movement parameters
measured. Grass boosts pedal joint homeostasis; provides reliable, safe, and costless locomotion;
promotes longer resting times. Sand is the best natural alternative surface, but it presents an elevated
metabolic cost. Rubber is an acceptable artificial alternative surface, but it is important to consider
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the mechanical and design properties. Asphalt and concrete surfaces are the most harmful because of
the high traffic abrasiveness and loading impact. Furthermore, IAFuR can be used to consider other
qualitative and quantitative parameters and to provide recommendations on material properties
and the design of any surface, so as to move towards a more grass-like feel. We also suggest the
implementation of a decision-making pathway to facilitate the interpretation of movement data
in a more comprehensive way, in order to promote consistent, adaptable, timely, and adequate
management decisions.

Keywords: animal science; movement ecology; biomechanics; dairy cows; lameness; movement
analysis approach

1. Introduction

Domestic cattle, Bos taurus and Bos primigenius indicus, are considered important assets
for animal produce. Their metabolism transforms low-quality forage into highly energetic
tissues and secretions, such as fat, muscle, and milk [1]. This effective system has been
managed by humans since domestication in southeastern Turkey about 10,500 years ago [2].
Beef and dairy cow production constitute important economic activities worldwide [3,4].

The world census is more than 1.4 billion cattle heads, meaning there is roughly one
cow for every five people on the earth [4]. Of these cattle heads, one billion are dairy
cattle, which produce 522 million metric tons of milk per year [3], a highly appreciated
nutritional beverage in human societies [1,3,4]. Therefore, there is a need to generate
the necessary knowledge to understand the dynamics of animal production and welfare,
aiming for a sustainable balance between the two, as Willham (1986) pointed out [5]. Cattle
locomotion is recognized as an important indicator of overall animal welfare [6], and it
directly influences milk production [7].

Movement analysis of individual dairy cows is frequently described in the relevant
literature using the following parameters:

(1) The posture of the limb, static joint angle analysis in the forelimb, hindlimb, or both
combined [8–10].

(2) Kinematics of locomotion, which is based on spatial and temporal gait parameters [11–14]
and the variation of joint angles [8–10].

(3) Kinetics at the hoof and load distribution on the contact surface with the soil (i.e., the
sensory plate) and at the phalanges by using finite element modeling [15,16].

(4) The behavior of the individual cow and its choice of activities, such as getting up or
lying down [17,18], and the amount of displacement (using global positioning system
tracking) [19].

Lameness is a painful clinical condition of the bovine locomotor system that results
in alterations of movement, gait deviation, and abnormal postures. This bovine health
problem determines behavior and animal welfare losses (i.e., discomfort) [20]. Lameness,
together with mastitis and infertility, is considered one of the main welfare, health, and pro-
duction problems in intensive dairies worldwide [21–23], and its economic impact has been
estimated at USD 500 per cow [6]. Lameness is a multifactorial condition. It is the result
of an interaction between housing design, farm management, nutrition, infectious agents,
and genetic predisposition. Claw disorders account for around 90% of all lameness inci-
dents [22,23]. There is a wide variability of lameness prevalence between farms, geographic
zones, and housing systems [22]. Cook (2016) reported that the average prevalence of lame-
ness is close to 25% for all production systems worldwide [24]. For example, in European
countries, the prevalence of bovine lameness is 30%, and in the New York/Pennsylvania
area of the USA, it is over 50%; while in South America, a prevalence of 30% in Brazil, 40%
in Uruguay, 23% in Argentina, and 30% in Chile have been reported [21–24].
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Currently, there are two ways to detect lameness in dairy cows, by visual scoring [20]
and via automatized systems [25]. However, although both methods might provide an
early diagnosis, these indicators are rarely used in large-scale farming [20], and they do not
allow for the early detection of this dysfunction. Hence, the two detection methods do not
provide a preventive solution.

There are three main causes of bovine lameness in free housing systems [9,23,26]:

(i) Low stall hygiene, which increases the risk of sliding, leading to injuries, and it boosts
the risk of infections [9,23];

(ii) Metabolic acidosis, as a consequence of a carbohydrate-rich diet [26];
(iii) Mechanical imbalance, such as an increase in high loads at the joints, and/or acceler-

ated hooves wear, due to hard and abrasive surface stall flooring [9].

Among these causes, hard and abrasive surfaces are recognized in the relevant litera-
ture as the main factor inducing bovine lameness [27]. One clear signal that shows this is
true is that about 80% of dairy cows housed at facilities with stalls that have fully slatted
flooring and bare concrete solid floors are reported to be subject to at least one or more
hoof disorders (i.e., line and sole diseases) [28]. Therefore, flooring type is a highly relevant
factor to be considered in decisions, where the objective is to optimize the management
and production process. This factor needs to be considered in order to find the balance
between disease control and milk production at the lowest cost.

Flooring Types

There are five main types of floors in free housing systems in dairy farms, and each one
displays unique characteristics. In basic terms, a “good flooring surface” (i.e., the one with
minimal lameness prevalence) must be neither too hard, nor too soft, too abrasive, or too
slippery. In terms of the latter, flooring is best when it naturally regulates water retention
by having an optimal soak range. All of these conditions affect pedal health as they affect
the floor’s mechanical performance, including facilitating appropriate movement (i.e., no
injuries due to sliding), the frictional level (i.e., the ability to cause dangerous abrasions),
and/or the loading optimal range (i.e., injury from impacted joints). The prevalence of
lameness using each of the five main flooring types can be summarized as follows.

(1) Grass presents with a 1 to 22.5% prevalence [29–31], and it also reduces the clinical
signs of lameness in affected animals, which are transferred to this substrate type [32].
This surface prevents sliding, while allowing the homogeneous distribution of the
load in the cow’s feet [8,14]. However, pasture systems can expose cows’ feet to several
infectious agents, and muddy conditions could affect the incidence or prevalence of
lameness in pasture-based herds. Ranjbar et al. (2016) report that the average daily
rainfall is a risk factor associated with the prevalence of lameness (odds ratio: 1.06;
95% confidence interval: 1.02 to 1.09) [23].

(2) Sand shows a 5 to 21.5% prevalence of lameness [33]. This surface usually maintains
its dry condition, but it generates peak loads at the hooves. Hence, a higher walking
effort is required by the animal [27,34].

(3) Rubber has a 5 to 27.9% prevalence of lameness [35]. Its unfavorable characteristics
under humid conditions make it a high-risk surface for injuries [10], but it does
provide reasonably good mechanical load absorption [16]. Rubber flooring decreases
slipping and the number of strides and it helps to alleviate pain and reduce wear on
the feet.

(4) Asphalt has a prevalence of lameness between 13.3 and 40.9% [10,36]. Under wet
conditions, asphalt becomes more slippery than rubber [36]. Therefore, it is the most
abrasive surface of all, and it is also very rigid, which intensifies loads [14,36].

(5) Concrete presents with a 19.8 to 68.4% prevalence of lameness. It is highly slippery
under wet conditions, and when covered with slurry, it is abrasive. It is also the most
rigid of all of the flooring types [9,22]. An animal’s wellbeing is under the worst
possible condition with this type of flooring [9,13].
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For detailed information on the prevalence according to surface type (Table S1).
Asphalt and concrete are the two surfaces with the highest levels of lameness preva-

lence reported. These are also the two most commonly used flooring type surfaces due to
their low maintenance cost and durability, notwithstanding that this means higher losses
of their valuable assets [28,37,38]. Note that locomotor disorders account for 40% of the
unassisted deaths and euthanasia in dairy cows. The cows end up being severely health
compromised in order to maintain production levels [37]. The aim of this study is to assess
whether there is a way of reducing bovine losses caused by lameness and its associated
diseases while keeping maintenance costs low.

In order to answer this question, we review the biomechanical characteristics of
cow movements and posture, detecting the parameters that fall outside of the functional
boundaries of all five of the different surfaces described herein [30,39]. Hence, it will be
possible to improve management systems, including better-designed surfaces, in order to
prevent losses, thereby improving animal welfare and production.

Functional boundaries for movement and posture are wide because the animal’s
movements are ubiquitous, and its individual variability presents particular patterns of
speed, angles, directions, and magnitude of forces for canonical activity modes at rest,
foraging, dispersal, and migration [40,41]. Motion and navigation capacity are regulated
by the internal state of the animal (i.e., its physiological and psychological condition),
as well as by external environmental factors (i.e., topography, climate, the existence of
predators, etc.). These components interact with each other, shaping an organism’s lifetime
movement path [42]. We undertook this broad-scoped analysis using the movement ecology
(ME) concept, which has linked the biomechanical and behavioral basis of movement to
fitness [40,42]. This conceptual framework unifies descriptive and predictive models to
determine the ecological (environmental) and evolutionary consequences of movement by
addressing the questions: why, how, when, and where to move? [42]. This inspirational
approach allows us to: (i) explore the effects of the substrate characteristics on the functional
boundaries for movement and posture and (ii) suggest a conceptual model derived from
the resultant movement parameters (i.e., the integrative analysis of functional ranges;
IAFuR) to define the optimal properties that an environment should have (e.g., artificial
surface design).

The present study performs an IAFuR for biomechanical parameters inspired by the
ME concept (see Material and Methods) This approach could be applied to study the
impact of various substrate characteristics (i.e., external factors) on movement possibilities
(i.e., motion and navigation capacities for a movement path) as an indicator of the health,
functionality, welfare, and production of free-housed dairy cows (i.e., their internal state).
The main questions considered in this study are: (i) what is the movement range for the
main flooring types used? and (ii) why is grass the best surface to prevent lameness? We
hypothesized that the possibilities of movement are particular for each type of surface used,
while grass has an optimal functional range for the cattle in free-housing systems. The
aim of the present review is, by means of a bibliographic search, to qualitatively evaluate
the flooring type influences on the movement capabilities using the posture, kinematics,
kinetics, and behavior parameters of dairy cows in free-housing systems.

2. Materials and Methods

A literature review was carried out during the months of September 2017 and De-
cember 2018, taking into account kinematics, kinetics, behavior, and posture parameters
according to the main surfaces used for free housed dairy cows. The Spanish and English
language versions of Google Scholar, SciELO, Medline, and VetMed Resource search en-
gines were used as selection criteria according to the following key concepts, in addition to
the relationship between them using boolean operators: “vacas lecheras”, “dairy cows”,
[and] “cojera”, “lameness” [and] “sistemas de estabulación libre”, “free housing systems”
[and] “tipo de suelo”, “floor type” [and] “locomoción”, “locomotion” [or] “movimiento”,
“movement” [or] “cinemática”, “kinematic” [or] “cinética”, “kinetic” [or] “conducta”, “be-
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havior” [or] “postura”, “posture”. as selection inclusion criteria, we considered titles
and/or abstracts that mentioned movement indicators and at least one of the surfaces of
interest (i.e., grass, sand, rubber, asphalt, or concrete) in dairy cow free-housing systems. In
addition, the publications selected had to include information on units of measurement of
at least one of the indicators defined as movement parameters (i.e., posture, kinematics,
kinetics, or behavior parameters; see details in Figure 1).
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Figure 1. Schematic view of animal posture, behavior, kinetic, and kinematic parameters. (A). Pos-
ture and behavior analysis. Behavior is evaluated in two phases. First, when the animal is in a
standing position, three posture parameters are recorded: (1) hip angle position relative to the back,
(2) joint angle at the wrist, and (3) joint angle at the ankle. Second, measurements were taken as
the time budget used for lying down in a resting position against the time standing up (hours per
day). (B). Kinetics are estimated by the load distribution through the whole hoof. This could be
measured with a force platform or modeled using a computer simulation (Finite Element Analysis),
both expressed as Von Misses stress (N/mm2) (illustrative image modified from Hinterhofer et al.,
2005) [16]. (C). Kinematics of the stride are characterized by its length (distance of one gait cycle,
in meters), step length (distance between the hind or anterior right leg vs. the left, in meters), and
anterior vs. posterior leg overlap, which, if positive, indicates that during a stride, the advance of the
anterior limb in relation to the posterior limb on the same side is greater than 0 cm. FLH: front left
hoof; RLH: rear left hoof; FRH: front right hoof; RRH: rear right hoof (modified from Telezhenko,
2009) [11]. (D). Kinematics of the gait cycle are established by the gait speed (distance per unit of time,
in m/s), the cadence (steps per unit of time, in steps/s), and the time of the support and balancing
phases during the gait cycle. Source: own illustration based on the articles cited.

Of a total of 246 eligible articles, 58 met the initial selection criteria. However, only
13 of these articles presented quantitative data on movement analysis parameters according
to flooring types. The information in the articles was summarized by reference to the
countries in North America (n = 8), Europe (n = 3), Asia (n = 1), and Oceania (n = 1).
Of these, three research papers studied grass surfaces (41 Holstein cows and 1 Fleckvieh
cow), sand flooring was studied in four (36 Holstein, 1 Fleckvieh, and 340 cows from
Wisconsin, USA, a breed was not specified), and rubber flooring was analyzed in 10 research
papers (299 Holstein and 120 cows from Wisconsin, USA, a breed was not specified), nine
investigations centered on concrete surfaces (610 Holstein cows and 1 Fleckvieh cow).
Among the articles relating to concrete surfaces, two considered the humidity (soak range)
generated by the accumulation of excrement. Asphalt surfaces were analyzed in five
publications (260 Holstein cows and 1 Fleckvieh cow). Rubber flooring was subject to
comparative analysis in five publications, with the coefficients of friction being considered
as factors within the type of surface in one article (see Supplementary Material). Parameters
used to analyze movement are detailed in Figure 1.
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2.1. Integrating Parameters

As the data reveal a variety of parameters all contributing to a description of cow wel-
fare, we decided to analyze them in the light of the movement ecology concept with added
considerations (Figure 2). In this integrative view, individuals can be characterized by:
their internal state, their movement capacity (how to move?), and their navigation capacity
(where to move?). All of these factors, but particularly the internal state, are modified
by external factors, which are a series of biotic and abiotic environmental conditions that
influence the movement of a given individual [42]. The internal state is a multidimensional
vector that answers the question: why move? This considers the physiological and psy-
chological characteristics of the organism in relation to the energy gain (e.g., its search for
food), looking for security (e.g., escaping from predators), learning (e.g., following adults),
and reproducing (e.g., finding a partner) [43–45].
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Figure 2. Bovine lameness was analyzed using a refurbished movement ecology concept methodology
(modified from Nathan et al., 2008) [42]. This perspective allows a comprehensive view that can be
assessed by functional parameters that contribute to bovine welfare, which aids production. Both
the anatomical structure of the hoof and the animal’s psychological and physiological condition are
defined as the internal state, which, in turn, is modified by, and introduces certain modifications to,
the external factors. In particular, floor characteristics (an external factor) have an important effect on
the cattle internal state (see thick arrow), exemplified here in the prevalence of pain-related lameness.
Animal droppings can affect the surface frictional and soak status of the flooring, modifying the
external factors to a lesser degree. Movement parameters (manifestations of the cow’s internal state)
define the movement, navigation, and recovery capacities, and are indicators of function. To answer
the question: why is the grass the best surface to prevent lameness? We explore the functional
boundaries of each of these parameters according to the floor type. In sum total, along the animal’s
life cycle, and as seen in the current study that focuses on housing systems, a movement pathway is
determined, ensuring the animal’s welfare and conditioning its milk production capacity. Source:
own creation inspired on the article cited.

These organism characteristics have been widely recognized by The World Organiza-
tion for Animal Health (2008) [46]. This organization established that welfare means to keep
animals healthy, comfortable, well-nourished, safe, and able to express innate behavior
whilst not suffering from unpleasant states such as pain, fear, and distress. Fraser et al.
(1997) [47], and later Von Keyserlingk et al. (2009) [48], highlighted this view specifically
for dairy cows, referring to: (i) animal functioning (e.g., milk production), (ii) feelings
(e.g., pain as an internal state), and (iii) the ability to live a reasonably natural life (e.g.,
movement and navigation capacities by reference to external factors). Therefore, all of
these factors must be considered as a whole and as a single problem to be addressed in the
practice of farming.
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Within the framework of ME, the resting time (pause) length is considered by means
of stops according to aspects of space and time, which are used to evaluate the fitness of
wild animals [42]. This break time is highly important for the recovery capacity, and it
raises a new question: when to move? Our approach to this question incorporates two
elements that are associated with the link between recovery and internal state: (i) analysis
of the energy expenditure of locomotion and (ii) its application to a pre-established context
for the movement pathway of domestic animals (i.e., dairy cows in free-housing systems).

Movement, navigation, and recovery capacities are defined by the posture, behavior,
kinetic, kinematic, and energetic parameters. With the results we obtained, we established
functional ranges with a view to assessing wellness and health in the context of dairy cows.
The scheme is seen in Figure 2.

2.2. Finding the Functional Ranges for the Movement Parameters in Dairy Cows

The functional ranges (either optimal or non-optimal) are a qualitative representation
of the relationship between movement, navigation, and recovery capacities in which we
superimpose the minimum and maximum values for the movement pathway during the
life cycle, highlighting the functional boundaries achieved in the best-case situation. If
the functional range is completely within these limits (i.e., within the functional bound-
aries), we call it the optimal functional range (i.e., the possibilities of movement on the
hypothetical best-documented surface; see Graphical Abstract). A range partially outside
of the boundaries is a suboptimal functional range. When the range of capacities is com-
pletely outside the functional boundaries, it is a non-optimal functional range. Although
it is known that the impact of being outside the optimal range is verified in the higher
prevalence of lameness (Figures S1–S12), the purpose of the IAFuR is to determine the
movement profile in each case, as well as to identify the main consequences of using
alternative surfaces to grass.

Figure 3 represents a theoretical outline of animal welfare, understood as movement,
navigation, and recovery adaptive responses, according to usual, fragmented, intervened,
and disturbed environmental conditions, established as habitats for the study of animal
dispersal [49]. It should be noted that this proposal is in an early stage of development, so
for this paper, specific lines of evidence were used (i.e., movement parameters according to
surface) to weigh and integrate results (Figures S1–S12), as well as to argue the beneficial
properties of alternative surfaces to grass, if required (see Section 3.2). This approach does
not prevent the possibility of considering, in the future, quantitative data proposals, in-
cluding additional factors such as animal size, breed, climate, and management conditions,
among other documented factors [13,21–23].

For movement capacity, we established the natural surfaces (grass and sand) as a
reference and the synthetic surfaces (rubber, asphalt, and concrete) as comparison values to
answer the question of how the results were obtained for the comparison values vs. the
results reported for the reference. We also considered the effect of friction and humidity as
complementary factors of the synthetic surfaces.

The functional ranges for the navigation and recovery capacities were in accordance
with our qualitative interpretation of research on cattle behavior and metabolic cost (energy
requirements) [50–54]. In dairy cows, the navigation capacity is directed by the farmer’s
housing decisions. However, since these are free-housing systems, cattle preferences [50]
and movement opportunities, according to surface types [51], are analyzed. These indi-
cators indirectly affect the behavior parameter with respect to grazing, hydration, and
socialization patterns. The recovery capacity is determined by an energetic cost analysis (a
move–stop approach) for walking and grazing on different types of flooring [52,53] and the
relationship between animal movement and the static–dynamic energy landscapes [54].
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Figure 3. The methodology used for the integrative analysis of the functional ranges for movement,
navigation, and recovery capacities according to different environmental conditions. The functional
integration diagram for welfare status (above) and the quality of the movement parameters (below)
are shown for each environment. (A). Usual habitat. Food resources, places of protection, and usual
environmental conditions in which all capacities are completely within the functional boundaries,
which is understood as the optimal functional range (OFR). (B). Fragmented habitat. There are
sufficient resources and adequate protection sites; however, these are dispersed in the habitat. The
navigation capacity is non-OFR. The movement capacity is in the OFR with respect to posture and
kinematics and in the non-optimal functional range (non-OFR) with respect to kinetics. This is called
sub-OFR. The recovery capacity presents as within the sub-OFR. (C). Intervened habitat. There are
limited resources, places of protection, and adequate environmental conditions. The navigation and
recovery capacities present are in the non-OFR. The movement capacity is in the sub-OFR; in the
Non-OFR for kinematics, kinetics, and metabolic cost; in the OFR only for posture. (D). Disturbed
habitat. There are limited resources, scarce places of protection, and unpredictable environmental
conditions. The movement, navigation, and recovery capacities are present in the non-OFR. The
dotted lines represent the upper (UFB) and lower functional boundaries (LFB).

3. Results and Discussion
3.1. The Optimal Functional Ranges: Which Are the Movement Boundaries for Each
Flooring Type?

The aim of the present study is to evaluate the influences of different flooring types on
the movement ecology capacities using biomechanical parameters in dairy cows (Figure 2).
We developed an integrative analysis of functional ranges (Figure 3) for (i) posture, kine-
matics, and kinetics as indicators of movement capacity; (ii) behavior as an indicator of
navigation capacity; (iii) metabolic cost as an indicator of recovery capacity (Table 1).

3.1.1. Why Is the Grass the Best Surface to Prevent Bovine Lameness?

Grass is recommended for the functional recovery of healthy locomotion in dairy
cows and is established as a model reference or “gold standard” [8,14,32]. It presents
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optimal functional ranges for movement, navigation, and recovery capacities (Table 1 and
Figure 3B).

• Movement capacity: Two studies evaluated movement capacity using posture, kinetic,
and kinematic parameters in grass [8,14]. Herlin and Drevemo (1997) determined the
angle posture of the fore and hind limb while the animals were standing. They found
a trend of narrow ranges in the proximal shoulder and hip joints (10◦–30◦), middle
ranges in the elbow, stifle, carpus, and tarsus (40◦–50◦), and wide ranges in the distal
fetlock (80◦–100◦) [8]. An optimal surface allows for movement in the joint surfaces
during the resting posture of dairy cows, which provides lubrication and mechanical
support for the joints [55]. Alsaaod et al. (2017) report a higher speed (1.2 m/s) and
“confidence” of movement when considering the acceleration at the beginning (7.8 g)
and at the end (2.4 g) of the support phase on grass compared to rubber surfaces and
asphalt [14].

• Navigation capacity: Smid et al. (2018) [50] found that cows spent more time outdoors
on the grass (90 ± 6%, n = 12) compared with sand surfaces (44 ± 6%, n =12). In
addition, the grass was considered, together with sand, to be the most comfortable
surface for a lying, resting posture, and it provides the comparative advantage of free
grazing, which is associated with optimal wellbeing [50].

• Recovery capacity: The grass surface has a lower locomotion cost than artificial
surfaces because it causes lower stress levels (253 ± 229 N/cm2) compared to hard
surfaces (719 ± 631 N/cm2, n = 1) [16], and it allows for greater vertical acceleration of
the hoof in the move towards a standing phase (7.8 ± 0.5 g vs. 6.8 ± 0.5 g, n = 24) [14].
This implies that, during the support to swing transition on the grass (the sequencing
of the limbs’ forces during a redirection phase), the acceleration of the push-off is more
efficient and timely (before the support of the rear limb), minimizing the collisional
energy losses, which conserves kinetic energy by altering the direction of the center
of mass velocity vector to match a more parallel push-up of the limb [56]. This
mechanism conserves the energy of the center of mass, reducing the amount of work
that an animal’s muscles must perform [57].

In summary, grass is the optimal surface for free-housing systems in dairy cows
because: (a) it mechanically provides a wide joint range, which boosts joint homeostasis,
(b) it allows reliable and safe movement patterns while lowering metabolic costs, and (c) it
promotes a longer resting time that is associated with adequate annual milk production and
a lower prevalence of lameness with a range of 1% to 22.5% [29,31,36,58,59]. An interesting
question that arises from these results is, do these indicators remain in poorly maintained
pasture compared to well-managed indoor systems? Although we do not have direct
evidence about the movement parameters according to different types and quality of grass,
if we hypothetically analyze the mechanical properties of the surface, poorly maintained
pasture would lose the optimal balance of the hoof horn wear and growth, in addition to
the natural claw load [14]. Therefore, the grass surface property, in this case, could resemble
asphalt (i.e., higher abrasion) affecting the claw conformation [12], as well as concrete (i.e.,
lower load distribution), causing slipping and “stiff” gait [9,10].

Despite this, overall, it presents the best indicators of wellbeing (Figure 4A). However,
grass is not always available as a surface for free-housing systems, either for climatic or
economic reasons, so it becomes important to have alternative surfaces that could obtain as
much as possible the best standards of animal welfare, while also improving production
benefits and costs.
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Figure 4. Integrative analysis of functional ranges for postural, behavioral, and locomotion indicators
in dairy cows according to different types of surfaces evaluated. (A). A graphical representation of
the lameness prevalence for each type of surface, as found in the literature, using a 95% confidence
interval plot; average seen as a bold line. Points represent the result recorded for each study (see Table
S1). The red dotted line represents the average prevalence of reported lameness [24,36]. Welfare status
diagrams for: (B). grass, (C). sand, (D). rubber plus friction increment, (E). asphalt, (F). concrete plus
soak increment. The optimal functional range is represented by the dashed lines and the functional
range of each surface by the hatched area. The profile for the movement indicators for each type of
soil is shown below each scheme. OFR: optimal functional range; sub-OFR: suboptimal functional
range; non-OFR: non-optimal functional range.

3.1.2. Sand Is the Best Alternative Natural Surface, but it Presents High Metabolic Cost and
Management Challenges

• Movement capacity: It results in being very similar to grass, because it allows a natural
locomotor behavior, efficient strides, and no significant slipping risk [60,61].

• Navigation capacity: On a sand surface, only the stand-up/lie-down locomotive be-
havior of dairy cows is considered as an indicator of navigation capacity, because
it answers the questions: when and where to move? [42]. Contrary to the normal
condition found in the ME concept [42], the animals certainly are not really free to
move wherever they want; indeed, they are kept in a closed environment. Therefore,
most spatial distribution is led and controlled by the farmer, but even within this
restriction, the animal still can decide to stand up or lie down. Sand surface presents,
along with grass, the best conditions, having a longer time in a lying position posture
(12.4 ± 7 h/day vs. rubber 10.7 ± 5 h/day, n = 208) and less time in a standing pos-
ture (11.5 ± 6 h/day vs. rubber 13.2 ± 6 h/day, n = 208) [61], as well as equivalent
lying/standing time parameters to the grass “gold standard”. A greater time of lying
behavior optimizes milk production through increases in the blood diffusion at the
udder (around 5 L/min) compared with a standing animal (around 3 L/min), plasma
concentration of the growth hormone, rumination frequency (reducing ruminal acido-
sis), and avoidance of chronic stress in the animal, according to the negative changes
in the response of the hypothalamic–pituitary–adrenal axis [62–64]. The longest stand-
ing times are associated with the appearance of pedal pathologies, consequent of
lameness [65,66].



Animals 2022, 12, 496 11 of 20

• Recovery capacity: Sand is a substrate, which reduces the hoof output kinetics; hence,
the animal requires a greater effort to break the inertia when walking. Dijkman and
Lawrence (1997) [52] reported that the energy expenditure for the locomotive work
of cattle and buffalo can be two times higher on incompetent substrates (i.e., mud)
vs. concrete (3.34 J/m/kg vs. 1.69 J/m/kg, n = 6). This higher locomotion effort
limits, in the long term, the capacity to travel long distances, because that requires
greater muscle activation [44,54,57,67]. That situation triggers suboptimal ranges in
kinematics and metabolic indicators (Figure 4C).

Sand appears to be the best natural alternative housing surface next to grass, as
it presents excellent results in navigation and acceptable ranges in movement capacity
(Figure 4C). Accordingly, the prevalence of lameness, from 5% to 21.5%, is nearly as low
as grass [33,36,61,68–70]. Nevertheless, it presents the inconvenience of causing a higher
metabolic cost for movement.

With respect to management, however, implementation poses strategical challenges.
The frequent need for sand renewal implies finding solutions for good access to natural
sources of sand, and it requires special manure handling, which is time/money consum-
ing [60,61].

Thus, it is relevant to continue to search for artificial alternatives that could mimic
the benefits of the natural surfaces on cattle wellbeing. This analysis also provides crucial
information for the future engineering of artificially improved soil surfaces.

3.1.3. Rubber Is an Acceptable Artificial Surface, but the Friction Property Is a
Notable Weakness

Ten investigations evaluated movement parameters on rubber surfaces (Table 1),
including posture [10], kinematics [10,12,14,34,71,72], and kinetics [14,16,73].

• Movement capacity: The increased friction did not affect limb posture during the
support phase of the walking cycle [10]. Though, the speed appeared lower than
that recorded on sand (1.01 ± 0.02 m/s vs. 1.12 ± 0.02 m/s, n = 36) [34] and also on
grass (1.1 ± 0.01 m/s vs. 1.2 ± 0.01 m/s, n = 24) [14]. Although these differences
were statistically different, in all cases, the speed exceeded the documented biological
threshold (>0.97 m/s) [34]; in addition, the stride length presented an optimal func-
tional range on all surfaces (Figures S3–S12). The optimal rubber friction range was
0.4 < µ < 0.5, but over the 0.5 value, speed decreased even more (0.81 ± 0.05 m/s vs.
0.85 ± 0.05 m/s, n = 5) [10]. The overall stress accumulation in the hoof was similar
when walking on rubber to the one found on concrete [73]. In addition, the rubber
registered lower acceleration magnitudes when unloading body weight on limbs than
the ones registered in grass (6.2 ± 0.5 g vs. 7.8 ± 0.5 g, n = 24) [14]. This reflects how the
cow´s gait behavior was being carried out under “Low Confidence”, as it is referred to
in the literature. Surely, this unnatural feeling is produced by a proprioceptive reaction
response to substrate competence (i.e., different mechanical properties) [67]. However,
the step efficiency remained equivalent to the one observed on natural flooring types
because the thoracic/pelvic foot overlap was found to be similar to sand (0.2 ± 1.5 cm
vs. 1.7 ± 1.5 cm, n = 36) [34], and the stride length was greater than on concrete
(1.55 ± 0.05 m vs. 1.4 ± 0.05 m, n = 645) and asphalt (1.55 ± 0.05 m vs. 1.48 ± 0.07 m,
n = 645) [71].

• Navigation capacity: It was assessed through behavioral studies [24,27,62]. The lying
time, as well as the frequency of postural transitions, was found to be higher than
on concrete surfaces (12.3 ± 0.3 h/day vs. 10.4 ± 0.4 h/day, n = 16) [62]. How-
ever, it presented a suboptimal functional range for the slightly shorter time for
lying (11.7 ± 0.2 h/day vs. 12.1 ± 0.2 h/day, n = 120), milking (2.6 ± 1 h/day vs.
3.2 ± 1 h/day, n = 120), feeding (4.1 ± 1 h/day vs. 4.7 ± 1 h/day, n = 120), and drink-
ing (2.3 ± 0.5 h/day vs. 2.4 ± 0.5 h/day, n = 120), while showing a slightly higher
standing time compared to sand (12.4 ± 4 h/day vs. 12 ± 3 h/day, n = 120) [24,27],
Table 1 and Figures S6 and S12). From the biological point of view, these results
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guarantee a longer rumination time compared to hard and abrasive surfaces (i.e.,
asphalt and concrete) [53]. In addition, a functional range for welfare and production
indicators was shared (Figures S6, S12 and Figure 4).

• Recovery capacity: The rubber friction property played a relevant role on locomotion.
Faced with a low coefficient of friction, µ < 0.4, the gait becomes unstable, so the cow
must increase cadence with a shorter stride length to maintain a certain speed [10]
(Figure S4). The increase in friction generated an increased swing phase of the gait but
decreased the accumulation of elastic potential energy to develop the next step [44,57].
Therefore, friction outside the optimal range generated a higher metabolic walking
cost, and it was less safe.

The bovine lameness prevalence range on rubber surfaces is between 5% and
27.9% [22,35,68–70,74,75]. Most studies report values around 20% (Figure 4A, Table S1)
as well as a lower annual milk production than that of sand (11027 ± 240 kg/cow/year,
n = 119 vs. 11785 ± 240 kg/cow/year, n = 89) [24], with no significant difference to the one
reported for hard and abrasive surfaces such as asphalt (7535 ± 745 kg/cow/year, n = 193
vs. 7286 ± 1778 kg/cow/year, n = 239) and concrete (7535 ± 745 kg/cow/year, n = 193 vs.
7889 ± 1179 kg/cow/year, n = 213) [71].

This artificial surface makes bovines less confident [76]. Despite this, rubber remains
an interesting alternative surface to the natural ones, if the following considerations are
observed: (i) providing optimal mechanical properties of friction, stiffness (Young’s modu-
lus), and deformation, and (ii) landscape design with elements that help to familiarize the
animal (for more details see Section 3.2.1. Surface Material Properties).

3.1.4. Asphalt Is a Harmful Surface: Highly Abrasive for the Hooves

Four studies were found that analyzed the movement capacity using indicators of
kinetics [73] and kinematics [14,71,72].

• Movement capacity: The asphalt surface presented the lowest stress values at the hoof
and foot compared to rubber (40 ± 2 N/cm2 vs. 57 ± 2 N/cm2, n = 16) and concrete
(40 ± 2 N/cm2 vs. 66 ± 2 N/cm2, n = 13) [73]; in addition, a lower “confidence”
was reported vs. grass, measured by the acceleration of the foot during the support
phase (6.8 ± 0.5 g vs. 7.8 ± 0.5 g, n = 24) [14]. This situation can be explained by
proprioceptive mechanisms, which trigger the animal to walk with greater caution
and insecurity, decreasing speed (1.3 ± 0.5 m/s vs. 1.4 ± 0.5 m/s, n = 40) [14,72] and
stride length (1.48 ± 0.05 m vs. 1.55 ± 0.05 m, n = 645) [71], in addition to increasing
the variability in stride length (4.3 ± 0.5 cm vs. 4 ± 0.5 cm, n = 40) [72]. The data
reported for the movement capacity, added to the high abrasive component, vs. rubber
and concrete surfaces, modifying hooves conformation (reduced claw sole concavity),
greater rates of claw wear (5.3 ± 0.3 mm/mo vs. rubber 1.4 ± 0.2 mm/mo vs. concrete
1.6 ± 0.3 mm/mo, n = 23), and lower claw net growth (−0.2 ± 0.4 mm/mo vs. rubber
2.5 ± 0.2 mm/mo vs. concrete 2.5 ± 0.4 mm/mo, n = 23) [12], supporting the inference
that it is an uncomfortable surface for the cow.

• Navigation capacity: We can only hypothesize that cows may have a reduced lying
time, and an increased standing time, since they were not directly recorded in the
investigations found [62–64]. However, compared to rubber, a higher alteration of
rumination times and milk production have been reported, which point to a subop-
timal lying/standing time (7286 ± 1778 kg/cow/year vs. 7535 ± 745 kg/cow/year,
n = 645) [71].

• Recovery capacity: When walking with greater caution, the metabolic cost is higher,
since the optimal speed threshold would not be reached [44], negatively affecting the
recovery capacity (Figure 4E). It would be interesting for future research to quantify
the impact of this surface on the specific indicators of behavior and movement cost, in
order to evaluate the magnitude of this impact.
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Table 1. Summary of the reviewed literature, the methodology, and the main findings in the light of
the integrative analysis of functional parameters.

Reference
Methodology

Main Findings
N Between-

Group Besign
Floor Types

(Time)
Movement Parameters
(Measurement Units)

[8] 10 Independent Grass (4) vs. concrete
(6).(30 weeks)

ROM at the shoulder, elbow,
carpus, MCP, hip, knee, tarsus,

and MTP (degrees).

• OFR for shoulder, carpus, hip, stifle, and tarsus posture
on concrete.

• Sub-OFR for elbow, MCP, and MTP posture on concrete.

[9] 6 Repeated

Soak increment on
concrete: dry vs. wetted

vs. shallow slurry vs.
deep slurry.(2 weeks)

Speed (m/s), step length (m), and
cadence (step/min). ROM at the
elbow, carpus, MCP, knee, tarsus,

and MTP (degrees).

• Sub-OFR for all posture parameters, speed, step length,
and cadence on soak concrete.

• Non-OFR for step length and cadence on shallow
slurry concrete.

• Non-OFR for speed on shallow slurry concrete. Non-
OFR for speed, step length, and cadence on deep
slurry concrete.

[10] 5 Repeated
Friction (µ) increment
on rubber: µ =0.33 vs.
µ =0.74.(2 weeks)

Speed (m/s), step length (m), and
cadence (step/min). ROM at the
elbow, carpus, MCP, knee, tarsus,

and MTP (degrees).

• Sub-OFR for elbow, carpus, MCP, stifle, and MTP pos-
ture, speed, step length, and cadence on high fric-
tion rubber.

• Non-OFR for step length and cadence on high fric-
tion rubber.

[13] 30 Repeated
Concrete (dry) vs.
concrete (soak).(20

weeks)

Stride length (m), asymmetry for
step width (m), asymmetry for

step length (m), and overlap (m).

• Sub-OFR for overlap on soak concrete.
• Non-OFR for stride length, asymmetry for step width,

and asymmetry for step length on soak concrete.

[14] 24 Repeated Grass vs. rubber vs.
asphalt.(48 weeks)

Speed (m/s), stride length (m),
foot load, and toe-off

confidence (g).

• OFR for stride length on rubber and asphalt.
• Sub-OFR for toe-off confidence on rubber.
• Non-OFR for speed and foot load confidence on rubber

and asphalt.

[16] 1 Repeated Soft (rubber) vs.
hard (concrete).

Stress total (N/cm2). (Dissected
limb model)

• Non-OFR for stress total on concrete.

[27] 120 Independent Sand (60) vs. rubber
(60).(52 weeks)

Time of lying, standing, milking,
feeding, and drinking

(hours/day).

• Sub-OFR for lying, standing, milking, feeding, and
drinking time on rubber.

[34] 36 Repeated

Sand vs. rubber vs.
concrete(instant

response,
10 m walkways)

Speed (m/s), step length (m),
stride length (m), and

overlap (mm).

• Sub-OFR for step length and stride length on rubber
and concrete.

• Non-OFR for speed and overlap on rubber and concrete.

[61] 208 Independent Sand (89) vs. rubber
(119).(36 weeks)

Time of lying, standing, milking,
feeding, and drinking

(hours/day).

• Sub-OFR for lying, standing, milking, feeding, and
drinking time on rubber.

[71] 645 Independent
Rubber (193) vs. asphalt

(239) vs. concrete
(213).(24 weeks)

Stride length (m). • Non-OFR for stride length on asphalt and concrete.

[72] 40 Repeated Rubber vs. asphalt vs.
concrete.(20 weeks)

Speed (m/s), stride length (m),
and asymmetry for step

length (m).

• Sub-OFR for speed on concrete and stride length on as-
phalt and concrete.

• Non-OFR for speed and step length asymmetry on as-
phalt, and step length asymmetry on concrete.

[73] 45 Independent
Rubber (16) vs. asphalt

(16) vs. concrete (13).
(27 weeks)

Pressure at the claw and foot
(N/cm2).

• Sub-OFR for pressure at the claw on concrete.
• Non-OFR for pressure at the claw on asphalt.
• Non-OFR for pressure at the foot on asphalt and concrete.

[77] 16 Repeated Rubber vs. concrete.
(3 weeks)

Time of lying and standing
(hours/day). Frequency of lying

and standing (times/day).

• Sub-OFR for standing time on concrete.
• Non-OFR for lying time, lying frequency, and standing

frequency on concrete.

OFR: optimal functional range as contrasted with grass “the gold standard”; sub-OFR: sub-optimal functional
range; non-OFR: non-optimal functional range. MTC: metacarpophalangeal joint (forelimb fetlock angle); MTC:
metatarsophalangeal joint (hindlimb fetlock angle); µ = friction coefficient. Between-group design: (i) repeated:
the same individuals were evaluated on each surface; independent: different groups of individuals were eval-
uated between each surface. For the definition of movement parameters, see Figure 1. For graphic details, see
Figures S1–S12.
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The alteration on movement parameters that this surface generates, given its high
abrasion and the discomfort it causes to the animal, makes the use of this surface in
free housing of dairy cows not recommended. This situation is confirmed with a high
prevalence of lameness, which fluctuates between 13.3% and 40.9% [33,35,36], Figure 4A.

3.1.5. Concrete Is a High Impact and the Most Damaging Surface

Nine investigations analyzed the effect of a concrete surface on movement, navigation,
and recovery capacities [8,9,12,13,16,71–73,77].

• Movement capacity: Concrete has been studied according to differences in soak range.
Walking speed (0.65 ± 0.05 m/s vs. 0.81 ± 0.05 m/s, n = 6), stride length (1.6 ± 0.01 m
vs. 1.7 ± 0.01 m, n = 30), and cadence (0.39 ± 0.05 steps/min vs. 0.58 ± 0.05 steps/min,
n = 6) decreased as the floor soak increased [9,13]. These indicators favored the ap-
pearance of foot lesions, hemorrhages, dermatitis, and sole erosions, which present
lameness as a functional consequence [74,75]. There is a high metabolic cost of locomo-
tion, which makes them prone to pedal lesions given the repetitive mechanical impact
over time. The posture was analyzed in two European studies developed in Hol-
stein cows (Table 1). Suboptimal functional ranges compared to grass were observed
on joint stiffness at the hip (198 ± 6◦ vs. 201 ± 4◦, n = 17), metacarpo–phalangeal
joint (60 ± 60◦ vs. 166 ± 60◦, n = 17), and metatarso–phalangeal joint (171 ± 55 vs.
162 ± 48◦, n = 6; 186 ± 24◦ vs. 183 ± 25◦, n = 17) [8].

A slight negative impact was observed when a higher level of humidity and depth
given by the amount of slurry was added: metacarpo–phalangeal joint (176 ± 20◦ vs.
174 ± 20◦, n = 6) and metatarso–phalangeal joint (171 ± 55◦ vs. 162 ± 48◦, n = 6) [9], Table 1.
Indeed, numerical values did not show significant differences, but clinically, it affected
the aplomb of the animal. Vermunt and Greenough (1994) [66] established that, during
weight bearing, a minimal decrease in the angle of the knee and the tarsus generated joint
stress increase. A straight hock posture is an adaptive mechanism to avoid slipping on soak
surfaces [9].

Among the kinetic variables, the evaluation of the contact effect of the hoof on different
surfaces stands out, reporting that hard surfaces such as asphalt and concrete have axial
stress up to three times higher than flooring considered soft, such as grass and sand [16].
This situation is mainly due to the smaller contact surface, increasing the pressure at the
hooves (65 ± 4 N/cm2 vs. 53 ± 4 N/cm2, n = 178) [73].

The question remains, which hard artificial surface is the best? Telezhenko et al.
(2008) [73] reported that when the asphalt presents a µ near the ideal (0.4–0.5), it represents
an advantage over concrete because the vertical ground reaction force distribution at the
hoof zones is more homogeneous on asphalt (lateral claw 56 ± 3.7%; medial claw 44 ± 3.7%,
n = 16) vs. concrete (lateral claw 65 ± 4.3%; medial claw 35 ± 4.3%, n = 13). Haufe et al.
(2009) [71] reported that, in asphalt, the stride length is significantly higher (1.48 ± 0.07 m
vs. 1.4 ± 0.05 m, n = 645), making asphalt preferable over concrete since it boost a more
secure and efficient locomotion.

• Navigation capacity: The concrete surface registered the shortest lying down time
(10.4 ± 0.4 h/day vs. 12.3 ± 0.3 h/day, n = 16) and longer standing up times
(12.4 ± 4 h/day vs. 12 ± 3 h/day, n = 16) when compared to rubber surfaces [77].
These two behaviors negatively compromise the welfare and production indicators,
due to the decrease in rumination time, increased lactic acid metabolism, stress, and
high mechanical pressure on the hooves, which is sustained over time and is a potential
risk for hoof integrity [53].

• Recovery capacity: Movement indicators suggest poor performance on a concrete surface,
a situation that worsens with slippery floors (increased soak). A non-optimal functional
range in the overlap feet parameter (37 ± 1 mm vs. 171 ± 1 mm, n = 36) [34], stride length
(1.48 ± 0.07 m vs. 1.4 ± 0.05 m, n = 645) [71], and cadence (0.39 ± 0.05 steps/min vs.
0.58 ± 0.05 steps/min, n = 6) [9], and a suboptimal step length variability (3.4 ± 0.5 mm
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vs. 4.1 ± 0.4 mm, n = 40) [72]. These parameters cause a negative impact on joint
health [51]. It is difficult to conserve the body and limbs’ mechanical energy, as well as
their energy exchange between potential, kinetic, and elastic energies [57].

Concrete is considered one of the most commonly used types of surfaces in live-
stock management due to its long-term durability and ease of cleaning [11,12]. However,
on this surface, the highest prevalence of lameness is reported (ranging from 19.8 to
68.4%) [22,29,35,58,59,69,74]. Several claw disorders are observed more frequently under
this type of flooring. Overall, this surface shows the worst indicators of movement, naviga-
tion, and recovery capacities; it generates insecurity, high metabolic cost, and hoof stress,
Figure 4A.

3.2. The Integrative Analysis of Functional Ranges Provides Directions for an Artificial
Surface Engineering

In places where there is high weather variability (either too cold/hot, or too dry/wet),
it is impossible to implement a grass surface [78]. Therefore, it is useful to think about the
conditions set at the very base of the refurbished Movement Paradigm, the so called “Exter-
nal Factors” (i.e., substrate quality), in order to achieve a protocol established on movement
parameters for adaptable decision making. Optimal functional ranges of movement, navi-
gation, and recovery capacities can be approached by specific modification of the substrate;
this allows an improvement of the animal “Internal State” (Figure 2, refurbished Movement
Ecology Paradigm). The present study, based on the current available information (Results
and Figures S1–S12), indicates the best mechanical, design, and handling property choices
to take into account for artificial surface design.

3.2.1. Surface Material Properties

The recommended elasticity for an artificial surface allows a deformation between
3.3 mm for 250 kg [34] and 10 mm for 400 kg [79]. The friction coefficient should be set
between 0.4 and 0.5 µ, as in rubber [10,79], allowing a safe and efficient gait with the least
wear on the hoof [72,80].

Heat flux inherent material property must be thoroughly evaluated as well, because
heat balance depends on the metabolism of the animal, the climatic conditions, and the
time of exposure to the substrate [54]. Heat stress, at an initial stage, causes an increased
grazing movement, but then there is later activity decrease due to exhaustion [81], thereby
affecting recovery capacity. Ruunaniemi et al. (2005) [79] obtained data for seven types
of rubber that showed a wide material performance. Some of these materials were best
for cold climate (seasonal) because they lost heat slowly, while others were best for hot
weather because the heat flux was as much as three-fold faster. Hence, it is important to
choose well which material and for how long it is best to implement it.

Future research should focus on the interaction of friction, elasticity, and heat flux on
the animal’s internal state and its various movement parameters. Tuning these properties
would also reduce erosion due to high traffic, while allowing an optimal functional range
for movement (i.e., posture, kinematics, and kinetics) and navigation capacities (i.e., lying
down position) [8,14,27].

3.2.2. Desired Surface Design

Surface design must facilitate an adequate ability to clean and durability [82]. It has to
include an effective drainage system (e.g., slope control and well-placed sand/gravel belts)
to keep an appropriate soak range (graphical abstract). The construction of a thorough
surface plan design will allow a safe and efficient movement of the animal in free-stalls:
preventing falls, improving metabolism, reducing diseases, ameliorating behavioral stress,
etc. This results in an overall improvement in cow welfare (i.e., movement pathway)
leading to a better production (Figure 5) [9].
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Figure 5. Decision-making processes in bovine lameness by an adaptable strategy based on an
integrative analysis of functional ranges. The conventional surfaces’ (i.e., grass, sand, rubber, asphalt,
and concrete) impact on the movement parameters (i.e., posture, kinematics, kinetics, and behavior) is
evaluated by the IAFuR. The information of movement capacities drives two possibilities of decision
making: (i) for optimal functional ranges of all movement capacities, a state of wellbeing with high
production is favored and (ii) for suboptimal and non-optimal functional ranges, it is necessary
to develop a new alternative surface by evaluating specific material and design properties for the
animal’s requirements. This external factor changes (i.e., surface’s engineering) will modify the
internal state (i.e., lameness risk over time), capacities, and pathway of the animal’s movement, which
will be evaluated by a new IAFuR decision-making process. OFR: optimal functional range; sub-OFR:
suboptimal functional range; non-OFR: non-optimal functional range; t’: sub-OFR and non-OFR
over time.

4. Conclusions

In the present work, we constructed an integrative analysis of functional ranges
(IAFuR), based on an adapted version of the Movement Ecology Paradigm, to evaluate the
movement parameters involved in the risk of lameness in cows on five different surfaces
used in free-housing systems: two natural (grass and sand) and three artificial (rubber,
asphalt, and concrete). Grass provides the optimal functional range, as the so called “gold
standard floor”. Sand is the best natural alternative surface but presents elevated metabolic
expenditure and managing cost. Rubber is an acceptable artificial alternative surface, but it
is important to consider the mechanical and design properties. Asphalt and concrete are
the most harmful surfaces due to the high abrasiveness and loading impact.

In light of the IAFuR, we were also able to provide recommendations to improve the
material properties and design of an artificial surface, taking into account the elasticity,
friction coefficient, and heat flux, as well as adequate visual and proprioceptive charac-
teristics that facilitate the animal’s movement confidence given by a grass-like feel. All
of these ideal characteristics improve cow welfare and will, as a consequence, enhance
its production.

Movement parameters, as well as any other either qualitative or quantitative measur-
able factor, can be analyzed interacting together in the IAFuR. Therefore, assessments on
the overall animal pathway (movement through the animal’s life cycle) considering the
random approach [42,83–85], could also be integrated to the IAFuR.

Limitations of the study are the reduced number of analyzed studies that met the
biomechanical inclusion criteria and variations in the studies design and baseline charac-
teristics of the animals involved. Further experimental comparison research is needed for
adequate evaluation of the biomechanical properties of the different flooring types used in
dairy farms.

In spite of this, and in a more general perspective, IAFuR can be used to tackle
multifactorial research/clinical problems, including complex environmental factors in:
(i) applied sciences such as veterinary medicine, rehabilitation, occupational science, and
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sport; (ii) ecophysiological and paleobiological interpretations; (iii) the development of
innovative engineering and biomimetic materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12040496/s1, Table S1: Documented prevalence of dairy cow
lameness according to floor type; Figure S1. Posture parameters for grass and concrete surfaces;
Figure S2. Posture parameters for concrete surface (soak factor); Figure S3. Posture parameters for
rubber surface (friction factor); Figure S4. Kinematics parameters for rubber (friction factor) and
concrete (soak factor) surfaces; Figure S5. Behavior parameters for rubber and concrete surfaces;
Figure S6. Behavior parameters for sand and rubber surfaces; Figure S7. Kinematics parameters for
sand, rubber and concrete surfaces; Figure S8. Kinetics parameters for rubber, asphalt and concrete
surfaces; Figure S9. Kinematics parameters for rubber, asphalt and concrete (soak factor) surfaces;
Figure S10. Behavior parameters for sand and rubber surfaces; Figure S11. Kinematics and Kinetics
parameters for grass, rubber and asphalt surfaces; Figure S12. Kinematics parameters for rubber,
asphalt and concrete surfaces.
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