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Abstract

Background: Pancreatic cancer (PAC) is one of the most devastating cancer types with an extremely poor
prognosis, characterized by a hypoxic microenvironment and resistance to most therapeutic drugs. Hypoxia has
been found to be one of the factors contributing to chemoresistance in PAC, but also a major driver of the
formation of the tumor immunosuppressive microenvironment. However, the method to identify the degree of
hypoxia in the tumor microenvironment (TME) is incompletely understood.

Methods: The mRNA expression profiles and corresponding clinicopathological information of PAC patients were
downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, respectively. To
further explore the effect of hypoxia on the prognosis of patients with PAC as well as the tumor immune
microenvironment, we established a hypoxia risk model and divided it into high- and low-risk groups in line with
the hypoxia risk score.

Results: We established a hypoxia risk model according to four hypoxia-related genes, which could be used to
demonstrate the immune microenvironment in PAC and predict prognosis. Moreover, the hypoxia risk score can
act as an independent prognostic factor in PAC, and a higher hypoxia risk score was correlated with poorer
prognosis in patients as well as the immunosuppressive microenvironment of the tumor.

Conclusions: In summary, we established and validated a hypoxia risk model that can be considered as an
independent prognostic indicator and reflected the immune microenvironment of PAC, suggesting the feasibility of
hypoxia-targeted therapy for PAC patients.
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Background

Pancreatic cancer (PAC) is one of the most aggressive
and lethal malignancies. In data released by the Ameri-
can Cancer Society in 2019, PAC has a 5-year overall
survival rate of only 9% and is one of the tumors with
the lowest survival rate [1]. Despite the major advances
in surgical techniques and adjuvant medical therapy, it is
clear that the survival rate of PAC has not improved sig-
nificantly. Meanwhile, more and more studies have
shown that the high mortality and poor prognosis of
PAC are closely correlated to changes in the TME [2].
Recently, bioinformatics-based therapy has become a
promising tool in modern oncology. As such, it is press-
ing to apply to PAC and identify potential therapeutic
targets.

Hypoxia is an inherent feature in the microenviron-
ment of solid tumors, which can promote tumor survival
and also lead to tumor proliferation and metabolism [3].
It is well-known that PAC possesses a complex TME
that comprises myofibroblasts and immune cells [4].
Due to the strong association between hypoxia and fi-
brosis, PAC is also considered to be the most hypoxic
tumor. The highly hypoxic environment produces a
large extent of alterations in the tissue structure and
cells of PAC in the TME [5]. For example, hypoxia is an
important activator of pancreatic stellate cells (PSCs),
which not only exacerbates the deterioration of the
tumor hypoxic microenvironment [6] but also reduces
the migration of natural killer (NK) cells and CD4+ and
CD8+ T cells in the tumor stroma and accelerates the
differentiation of myeloid-derived immunosuppressive
cells to disrupt the balance of tumor immune micro-
environment [7].

It has been found that hypoxia was served as a primary
factor in the formation of tumor immunosuppressive
microenvironment, which enhances tumor immune eva-
sion by suppressing the anti-tumor immune responses
[8]. Generally, hypoxia promotes the development of im-
munosuppressive cell populations (MDSC, Treg cells,
M2-like macrophages, and immunosuppressive cyto-
kines) in the microenvironment but also reduces the kill-
ing, survival, and migration of effector cells ( NK cells,
CD4+ and CD8+ T cells), thereby impairing the regula-
tion of anti-tumor immunity [9]. In recent years, many
clinical trials have been performed on immunotherapy
for tumors, but the efficacy of clinical treatment
achieved on PAC are limited [10]. Although the specific
mechanism of PAC immunotherapy resistance is still
unclear, we believe that it is inseparable from the
“barren soil” caused by hypoxia.

In the present study, we downloaded the mRNA pro-
file data of PAC patients from the TCGA and GEO data-
base and extracted genetic data related to hypoxia to
construct a hypoxia risk model. We first conducted

Page 2 of 13

prognostic prediction for patients with PAC based on
this risk model. On this basis, we further searched for
the interrelation between hypoxia and tumor immune
microenvironment. In the future, this approach will be
crucial for researchers to develop new combination
treatment strategies.

Methods

Data acquisition

Clinical information and RNA-sequencing expression
date of 186 PAC patients were collected from the TCGA
(http://cancergenome.nih.gov/) as a training set. Subse-
quently, the corresponding information of 112 PAC pa-
tients from the GSE78229 and GSE57495 datasets were
downloaded from the GEO database as a validation set
(https://www.ncbi.nlm.nih.gov/geo/). The two chip data-
sets in GEO were combined for batch normalization,
and the combined result was used for further analysis.
Tumor immune gene set and hallmark gene set were
downloaded from TIP (http://biocc.hrbmu.edu.cn/TIP/)
and GSEA (https://www.gsea-msigdb.org/gsea/index.jsp)
respectively. All P values were subjected to multiple test-
ing, taking an adjusted P value < 0.05 as a threshold.

Construction of protein-protein interaction (PPIl) network
String Database was used to construct the PPI network
for downloaded hypoxia-related genes. R software lan-
guage was utilized to analyze the correlation of hypoxia-
related genes in the protein interaction relationship net-
work, and then screened them as key core genes based
on the number of interrelationships.

Constitution of a risk model

First, we performed univariable Cox regression analysis
on the hypoxia core genes to obtain prognostic-related
hypoxia genes. They were then analyzed by multivariable
Cox regression to obtain the genes for building the
model and their coefficients. The risk score of each pa-
tient was calculated according to the obtained genes,
and then patients were divided into low and high hyp-
oxia risk groups based on the median risk score. The
risk score formula was constructed as:

Risk score = Z;l (Exp;xCoe;)

where N = 4, Exp; indicated the expression level for
each hypoxia genes, and the Coe; indicated the corre-
sponding multivariable Cox regression coefficient.

Survival analysis

Overall survival (OS) analysis of PAC patients with low-
and high- risk groups was performed by Kaplan-Meier
method employing survminer and survival packages in
R. Univariate and multivariate COX regression analysis
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was carried out to determine whether the risk score can
be distinguished from other conventional clinical
features as an independent prognostic factor for PAC
patients. Bilateral P values less than 0.05 were consid-
ered statistically significant, and the hazard ratio (HR)
was calculated for 95% confidence intervals. A ROC
curve created by the survivalROC R package was used to
evaluate the accuracy and reliability of risk model for
predicting the patients’ OS.

To better assess the 1-, 3-, and 5-year survival prob-
abilities of patients with PAC, we utilized the total inde-
pendent prognostic factors to construct a nomogram.

Gene set enrichment analysis (GSEA)

GSEA was carried out in the enrichment of the MSigDB
Collection (h.all.v7.0.cymbols.gmt) to determine the
regulation of signaling pathways in the hypoxia gene set
between low and high hypoxia risk groups. Gene set per-
mutations were conducted 1000 times for each analysis.
P < 0.05 was considered statistically significant.

Evaluation of immune cell type components

CIBERSORT is a tool for evaluating the proportion of
various cell subtypes from a mixed cell samples through
RNA-seq expression profiles and is the commonly cited
method to estimate and analyze the immune cell infiltra-
tion [11]. We used CIBERSORT to evaluate the propor-
tion of 22 immune cell subtypes in the high- and low-
risk group, including CD8 T cells, resting memory CD4
T cells, and resting NK cells. The sum of the scores for
the total immune cell types in a sample is equal to 1.

Results

Characterization of hypoxia risk score to predict PAC
prognosis

We downloaded the hypoxia-associated gene set from
the GSEA (hallmark-hypoxia), which contains more than
200 genes involved in hypoxia regulation pathways. To
further understand the relationship between these
hypoxia-related genes, we utilized the string online data
(http://string-db.org) to conduct a network analysis of
protein-protein interactions for these genes, and then
extracted the most interconnected genes as core genes
(Fig. 1a). Results showed that the 50 genes with the
highest interaction levels were maintained, including
GAPDH, VEGFA, IL6, EGFR, JUN, HK1, LDHA, ENO1,
PGK1, ALDOA, indicating their crucial role in the hyp-
oxia regulation process (Fig. 1b).

To build a hypoxia risk model that can predict the
prognosis of PAC patients, we carried out univariate and
multivariate Cox regression analysis on 50 hypoxia core
genes in the TCGA training dataset (Tables 1 and 2). In
the univariate Cox regression analysis, we confirmed 16
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hypoxia genes associated with patient’ OS (Fig. 1c). In
the following multivariate Cox regression analysis, the
final 4 genes with a P value < 0.05 were chosen to estab-
lish the prognostic model, including PGK1, ENO3,
LDHA, and PGM1 (Fig. 1d). The formula to calculate
the risk score is defined as follows:

Risk score = (-0.484 x PGK1) + (-0.799 x ENO3)
+ (1.026 x LDHA) + (0.415 x PGM1)

There was no significant correlation among the four
hypoxia-related genes selected by us (Fig. 1e, f).

Prognostic efficacy of the hypoxia risk score in PAC
patients

Studies have found that hypoxia can exacerbate the
aggressiveness of tumors, so we further assessed the
efficacy of hypoxia risk score on the prognosis of
PAC. In the heatmap (Fig. 2a), we found that the ex-
pression of three hypoxia-associated genes in the
high-risk group was significantly increased for both
TCGA and GEO databases, indicating that PAC pa-
tients in the high-risk group may be more prone to
form a hypoxic TME. Meanwhile, our research data
found that hypoxia risk score was increased accom-
panying higher patient risk level (Fig. 2b), and the
mortality rate of patients in the high-risk group was
remarkably higher than that in the low-risk group
(Fig. 2¢, d). Besides, we used Kaplan-Meier analysis to
estimate the prognostic value of hypoxia risk score in
PAC patients. The results showed that high risk score
was obviously associated with bad prognosis in the
TCGA cohort, which was further validated from the
GEO cohort (Fig. 2e).

Moreover, we created a nomogram to further calculate
the survival probability of each patient more accurately.
Set the scoring criteria according to the regression coeffi-
cient of all independent factors, and then the score value
of each independent factor was given to calculate the total
scores in each individual. The 1-, 3-, and 5-year survival
probabilities of each individual was achieved via the func-
tion conversion relationship of total scores (Fig. 2f).

Hypoxia risk score shows great feasibility for prognosis
evaluation

We carried out the received operating characteristic
(ROC) curve to further assess the predictive accuracy
and reliability of hypoxia risk score for the survival rate.
In the TCGA cohort, the area under ROC curve (AUC)
was 0.701 at 1 year, 0.758 at 3 years, and 0.884 at 5
years, respectively, demonstrating the predictive power
of our risk model (Fig. 3a). We further validated this re-
sult in an independent cohort using GEO (Fig. 3b).
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Fig. 1 Characterization of hypoxia risk score to predict prognosis of PAC. a Protein—protein interactions among 200 hypoxia-associated genes. b
The 50 genes with the highest interaction degrees were extracted. ¢ Sixteen hypoxia genes associated with patient’ OS were confirmed by
univariate Cox regression. d Four hypoxia-related genes were chosen to establish a hypoxia risk model by multivariate Cox regression. e, f
Spearman correlation analysis of four hypoxia genes in the TCGA and GEO databases

survival in patients with PAC. First, univariate Cox re-
gression analysis showed that tumor grade, N stage, age,
and hypoxia risk score were associated with OS in

We applied univariate and multivariate Cox regression
analysis to examine whether the hypoxic risk score could
be an independent prognostic factor for predicting
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Table 1 A total of 16 hypoxia-related genes significantly associated with overall survival according to univariate Cox regression
analysis. Hazard ratio (HR); low 95% confidence interval of hazard ratio (HR.95 L); high 95% confidence interval of hazard ratio

(HR95H)

Id HR HR.95L HR.95H P-value
HK1 1610 1.104 2.348 0.013
SLC2A1 1.265 1.095 1461 0.001
PGM1 2409 1494 3.886 0.0003
ENO1 1627 1204 2200 0.002
SDC4 1.595 1.237 2.056 0.0003
PGK1 1.504 1.100 2.055 0.010
CAV1 1.343 1.106 1631 0.003
SERPINET 1.190 1.015 1.396 0.032
ENO3 0423 0220 0815 0.010
GCK 0.646 0467 0.894 0.008
LOX 1.341 1.097 1.639 0.004
CDKN1A 1433 1.003 2.046 0.048
HK2 1314 1.102 1.568 0.002
UGP2 2.323 1.260 4.283 0.007
EGFR 1516 1.167 1.968 0.002
LDHA 2113 1.521 2937 0

TCGA cohort (Fig. 3c). Then, multivariate Cox regres-
sion analysis indicated that hypoxia risk score was inde-
pendently correlated with unfavorable overall survival of
PAC patients, which could act as an independent prog-
nostic factor in PAC (Fig. 3d). Similarly, validation result
of the GEO cohort also demonstrated that hypoxia
risk score can be used as an independent prognostic
factor (Fig. 3e, f).

GSEA identifies hypoxia signaling pathways

We carried out the GSEA to further study signaling
pathways activated by hypoxia-related genes in the
high-risk group. The results showed that more genes in
the high-risk group of the TCGA dataset were signifi-
cantly enriched in multiple pathways such as hypoxia,
TGF-B signaling, epithelial-mesenchymal transition,
and mTORCI1 signaling (Fig. 4a). They were all associ-
ated with the processes including tumor metastasis,
proliferation, and anti-apoptosis. This result was vali-
dated by GEO datasets, which completely echoed the
result (Fig. 4b).

Analysis of immune cells in the high and low hypoxia risk
group for PAC

Increasing studies indicated that hypoxia plays an in-
tegral role in tumor immune tolerance. It promotes
the formation of the immunosuppressive microenvir-
onment by means of abnormal immune cell activa-
tion, secretion of immunosuppressive factors, and

downregulation of immune cells to protect tumor
cells from immune cell attack.

The CIBERSORT method was utilized to analyze
the infiltration of 22 subpopulations of immune cells
between the low- and high-risk groups of PAC pa-
tients. The results obtained from 186 PAC patients
in TCGA and 112 patients in GEO were summarized
in Fig. 5a. It was demonstrated that the proportion
of immunosuppressive cells (M2 macrophages),
resting memory CD4+ T cells, and resting NK cells
(Fig. 5b—d) was significantly higher in the high hyp-
oxia risk group. Besides, the levels of CD8 T cells,
plasma cells, and naive B cells (Fig. 5e-g) were
significantly reduced in PAC patients with high-risk
score.

Thus, it can be seen that targeting hypoxia research is
very important for future immunotherapy for tumor
patients.

High hypoxia risk tended to an immunosuppressive
microenvironment

Tumor immunotherapy is a therapy that restores and
enhances the host’s immune system to recognize and
eradicate cancer. Immunotherapy involves a series of
immune-related cell mediated tumor killing processes.
Next, we examined the expression level of genes un-
favorably regulating these processes in high- and low-
risk groups. We then downloaded gene signatures on
the Tracking Tumor Immunophenotype website (http://
biocc.hrbmu.edu.cn/TIP/index.jsp) [12].
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Table 2 Details of the 4 hypoxia-related genes significantly associated with overall survival used to build the hypoxia risk model.
Hazard ratio (HR); low 95% confidence interval of hazard ratio (HR.95 L); high 95% confidence interval of hazard ratio (HR.95H)

Id HR HR.95L HR.95H P-value
PGM1 1514 0.872 2630 0.140
PGK1 0.616 0.360 1.055 0.078
ENO3 0450 0237 0.856 0.015
LDHA 279 1612 4.833 0.0002

The results showed that the expressions of VEGFA,
HAVCRI1, CXCL8, MICB, and ICAM1, which were posi-
tively associated with hypoxia risk score, were signifi-
cantly higher in the high-risk group (Fig. 6a—g), and the
analysis found that most of them were related to the
regulation of HIF-1a. For the present study, most of the
immunosuppressive cytokines and immune checkpoints
were not found to present a significant increasing trend
in the high hypoxia risk group. We thought this might
indicate that they are not the main drivers of the
hypoxia-induced immunosuppressive microenvironment
in PAC.

We further analyzed the expression of genes that posi-
tively regulating T cells, dendritic cells, and Myeloid-
derived suppressor cells (MDSCs). As seen in Fig. 6h, i,
the expression of regulatory genes of most anti-tumor
immune effector cell was obviously downregulated in
the high hypoxia risk group, including T cell regulatory
genes CCL21, CXCR5, and CCR7 and dendritic cell
regulatory genes CCL21, CCL4, and CCR7. Conversely,
MDCS cell regulatory genes CXCL5 and CXCR2 were
significantly upregulated in the high-risk group (Fig. 6j).
This further confirms that the activity of effector cells in
the immune microenvironment of PAC patients with
high-risk score is reduced, while the immunosuppressive
cell is increased.

Discussion

Intratumoral hypoxia is a common characteristic of the
TME, but also a prominent biological feature for PAC
[3]. The hypoxic microenvironment of tumors is consid-
ered to be the main mechanism leading to tumor resist-
ance to various treatments such as radiotherapy,
chemotherapy, and immunotherapy [13, 14]. Immuno-
therapy refers to killing tumor cells by improving the an-
titumor immune responses of tumor patients, which is a
promising tumor treatment method. Inhibition of
immune checkpoint to enhance immune cell-mediated
tumor Kkilling has shown a promising result in many
cancers (e.g., melanoma, colorectal cancer), but the
effect in some solid tumors including PAC is disappoint-
ing [15, 16]. The existence of this phenomenon has been
a subject of active debate. However, the potential effect
of hypoxia as a key microenvironmental factor on the
treatment of PAC is still being explored.

The risk model in our research was constructed by
four hypoxia-related genes, and most of them were
highly upregulated under hypoxic conditions. It was
found that hypoxia-inducible factor 1/2a (HIF1/2a) can
activate the expression of LDHA in PAC to achieve the
purpose of promoting the proliferation and metastasis of
PAC cells [17]. PGK1, a major enzyme in glycolysis, has
been reported overexpressed in numerous malignancies.
Studies have demonstrated that PGK1 is directly regu-
lated by HIF-1a and acts as a promoter of metastasis in
gastric cancer and colon cancer [18, 19]. Similarly,
PGM1 was also shown to be upregulated under hypoxic
environment [20]. In fact, hypoxia-associated signature
for predicting the diagnosis, prognosis, and immune
landscape has been used in a variety of tumors. For ex-
ample, a hypoxia model developed by Zhang et al. could
be regarded as a potential biomarker for diagnosis, prog-
nosis, and recurrence of hepatocellular carcinoma [21].
And Mo et al. showed that the hypoxia-related gene sig-
nature could be considered as a prognostic factor and
may guide the choice of immunotherapy in lung adeno-
carcinoma [22]. In this study, our hypoxic risk model
composed of four genes can also be flexibly applied to
PAC’s analysis.

Numerous studies have shown that hypoxia may in-
duce tumor immune escape in a range of ways, including
(A) reduce the activity of effector cells (NK cells, CD4+
and CD8+ T cells), (B) decrease the production and re-
lease of effector cytokines, (C) support the activity of im-
munosuppressive cells (Tregs, M2-like macrophage and
MDSC), and (D) induce the expression of immunosup-
pressive cytokines.

The activation of NK cells and cytotoxic T lympho-
cytes (CTLs) is a crucial step in the tumor immune
response. Accumulating evidence suggests that the
low infiltration degree of NK cells, CD4+, and CD8+
T cells is a biomarker of poor prognosis and adverse
clinical outcomes [23, 24]. However, it has been
shown that hypoxia can suppress the activity of ef-
fector T cells and NK cells, which could result in de-
creased immune function. For example, hypoxia will
enhance the process of glycolysis and glutamine de-
composition, which will cause elevated levels of lac-
tate production in the TME [25]. However, the acidic
microenvironment not only inhibits the activity of T
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cells and the release of cytokines but also prevents
NK cells from secreting TNF-a, IFN-y, perforin, and
granzyme B [26, 27]. Our data illustrated that for pa-
tients in high-risk group, CD8+ T cells were de-
creased while resting NK cells and resting memory
CD4+ T cells were increased, suggesting the forma-
tion of tumor immunosuppressive microenvironment.

In a recent study, three independent studies conducted
by MD Anderson Cancer Center, INSERM, and Lund

University all proposed that the appearance of B cells
and tertiary lymphoid structures in tumor tissues is asso-
ciated with better prognosis of patients undergoing im-
munotherapy [28-30]. The researchers speculate that B
cells in the front line of anti-tumor may produce anti-
bodies to effectively fight tumor cells and may also act
by supporting CD8+ T cells [28]. Moreover, the study of
Lee et al. [31] demonstrated that knockout of the HIF-
la gene in the PAC mouse model resulted in elevated
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expression levels of B cells chemokine, suggesting that
hypoxia reduces the penetration of B cells in tumors,
which is also consistent with our findings. In summary,
although both anti-tumorigenic and pro-tumorigenic ef-
fects of B cells have been reported, it is still an indisput-
able fact that the result of hypoxia-induced B cell
reduction in PAC patients may have a negative impact
on the patient’s prognosis and immunotherapy.

TAMs originate from the response of macrophages in
the blood to tumor signals and can be divided into M1
type and M2 type. Activation of the M2 phenotype has
been proved to promote tumor angiogenesis and tumor
cell metastasis through secretion of angiogenic factors
(VEGF-A, IL-6, MMP) and immune suppressive factors
(IL-10, TGE-P) [32]. Previous studies have shown that
hypoxia develops a functionally immunosuppressive
microenvironment by stimulating the differentiation of
macrophages into M2 type [33]. In this study, we ob-
served a significantly higher proportion of the M2-like
phenotype in the high hypoxia risk group, suggesting
that this hypoxia risk model has the ability to predict the
immune microenvironment.

Furthermore, we analyzed the genes that were signifi-
cantly increased in the high hypoxia risk group,

including VEGFA, CXCL8, HAVCR1, MICB, and
ICAM]1, and found that they were all related to the regu-
lation of HIF-la [34—37]. Studies have found that
VEGFA affects the response of effector T cells and the
development of lymphocytes by promoting suppressive
immune cell populations, which is closely related to hyp-
oxia and immunosuppressive TME [38—40]. Meanwhile,
Chao et al. [41] found that CXCLS8 inhibits the function
of CD8+ T cells via increasing the expression of PD-L1
on the surface of macrophages to participate in the for-
mation of the immunosuppressive microenvironment of
gastric cancer. However, the immune-related regulatory
role of CXCL8 in PAC is unclear. In addition, ICAM-1
and HAVCR-1 are both overexpressed in various cancers
and are related to the malignant potential of tumor cells
[36, 42]. It is known that HIF-1 is an important regulator
of the TME. Due to the specific hypoxic TME of pancre-
atic cancer, the expression of HIF-1a in PAC tissue is
higher than that of other solid tumors [43, 44]. There-
fore, HIF-1a seems to be implicated in the construction
of an immunosuppressive microenvironment under hyp-
oxia in PAC.

Recently, increasing studies observed that immune
checkpoint plays a crucial part in tumor immune evasion
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A

and the formation of tumor immunosuppressive micro-
environment [45]. Indeed, immune checkpoint blockade
therapy has achieved remarkable results in some tumors
but has little effect on PAC. Thus, it was proposed that
PD1, PDL1, and CTLA4 are likely not the primary im-
mune checkpoint molecules involved in immune sup-
pression of PAC [5]. Consistent with this evidence, our
data showed that associated immune checkpoint mole-
cules were not significantly higher in the high hypoxia
risk group. Taken together, we speculate that immune

checkpoint may not be the major factor contributing to
the immunosuppressive microenvironment in PAC
under hypoxic conditions.

In this study, we successfully establish a 4-gene-based
hypoxia risk model that effectively predicts the progno-
ses of patients with PAC. Here, our model served as an
independent prognostic factor for PAC patients and de-
scribes how hypoxia status disrupts the immune micro-
environment in PAC. However, it is undeniable that the
interaction between hypoxia and the tumor’s immune
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microenvironment is complex, and more independent
cohorts and functional experiments are needed to con-
duct a deeper discussion. We still believe this study will
provide insights into the potential value of hypoxia-
targeted therapies and help to design unconventional
combinatorial methods to enhance the efficacy of PAC
therapies.

Conclusions

By combining bioinformatics tools and related algo-
rithms, we established and validated a hypoxia risk
model to predict the prognosis of patients with pancre-
atic cancer and explored the changes in the tumor im-
mune microenvironment under hypoxic conditions. This
study found that patients with high hypoxia risk are

associated with poor prognosis and the formation of an
immunosuppressive microenvironment, which could
bring new insights to tumor treatment.
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