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Purpose: Magnetic resonance imaging (MRI) has great potential to improve prostate cancer diagno-
sis; however, subtle differences between cancer and confounding conditions render prostate MRI
interpretation challenging. The tissue collected from patients who undergo radical prostatectomy pro-
vides a unique opportunity to correlate histopathology images of the prostate with preoperative MRI
to accurately map the extent of cancer from histopathology images onto MRI. We seek to develop an
open-source, easy-to-use platform to align presurgical MRI and histopathology images of resected
prostates in patients who underwent radical prostatectomy to create accurate cancer labels on MRI.
Methods: Here, we introduce RAdiology Pathology Spatial Open-Source multi-Dimensional Integration
(RAPSODI), the first open-source framework for the registration of radiology and pathology images.
RAPSODI relies on three steps. First, it creates a three-dimensional (3D) reconstruction of the histopathol-
ogy specimen as a digital representation of the tissue before gross sectioning. Second, RAPSODI registers
corresponding histopathology and MRI slices. Third, the optimized transforms are applied to the cancer
regions outlined on the histopathology images to project those labels onto the preoperative MRI.
Results: We tested RAPSODI in a phantom study where we simulated various conditions, for example,
tissue shrinkage during fixation. Our experiments showed that RAPSODI can reliably correct multiple arti-
facts. We also evaluated RAPSODI in 157 patients from three institutions that underwent radical prostatec-
tomy and have very different pathology processing and scanning. RAPSODI was evaluated in 907
corresponding histpathology-MRI slices and achieved a Dice coefficient of 0.97 � 0.01 for the prostate, a
Hausdorff distance of 1.99 � 0.70 mm for the prostate boundary, a urethra deviation of 3.09 � 1.45 mm,
and a landmark deviation of 2.80 � 0.59 mm between registered histopathology images and MRI.
Conclusion: Our robust framework successfully mapped the extent of cancer from histopathology
slices onto MRI providing labels from training machine learning methods to detect cancer on MRI.
© 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American
Association of Physicists in Medicine. [https://doi.org/10.1002/mp.14337]
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1. INTRODUCTION

Despite advances in diagnosis and treatment, prostate cancer
remains the second leading cause of cancer-related death in
American men.1 Overdiagnosis of low-grade cancers that do
not require treatment and the underdiagnosis of aggressive
cancers are still major clinical dilemmas.2 magnetic reso-
nance imaging (MRI) can help address these problems.3 Up
to 50% of men with elevated PSA who would otherwise
undergo biopsy, can safely avoid prostate biopsy when a pre-
biopsy MRI is normal. This approach reduces the overdiag-
nosis of low-grade cancer and infectious complications of
biopsy. However, this is only true when MRI is interpreted by
world-leading experts.4 In practice, the lack of widespread
expertise and alarming levels of inter-reader variation greatly
reduce the potential of MRI to revolutionize prostate cancer
diagnosis.5 Even when using the recommended Prostate
Imaging-Reporting and Data System (PIRADS),6 both false
negatives and false positives are very common. MRI has yet
to supplant biopsy, which is still required to confirm the pres-
ence and aggressiveness of prostate cancer.7

In men diagnosed with prostate cancer on biopsy, radical
prostatectomy remains the most common treatment.8 The
resected prostate provides a unique opportunity to correlate
presurgical MRI with digitized histopathology images.
Developing a large dataset of prostatectomy cases via auto-
mated registration of histopathology images and MRI, where
cancer and Gleason grades are accurately mapped on MRI
has two potentially transformative applications. First, such
mappings can aid in improving existing MRI interpretation
schemes that are still affected by many false positives and
false negatives. Second, these mappings can facilitate the
development of machine learning methods to identify pros-
tate cancer on MRI by providing accurate cancer labels for
model training and validation.

Although numerous approaches for the radiology-pathology
registration in the prostate have been introduced (see section
“Prior Work” in the Suplementary Material), these approaches
have not been widely adopted and have not been carefully
tested by scientists outside the developer teams. Recent publi-
cations using histopathology images as a reference to improve
MRI and automatically detect cancer9–13 still require manual
approaches to align the histopathology to MR images; these
approaches are labor-intensive and subjective. The slow adop-
tion of previous methods is due to the challenges associated
with managing and registering the histopathology images and
MRI, the lack of open source methods, and the time constraints
associated with running these methods.

Specifically, the registration of histopathology images and
prostate MRI has the following challenges. Histologic process-
ing of the resected tissue causes artifacts, for example, deforma-
tions, shrinkage, and tissue ripping. Some of these artifacts
(e.g., deformation and shrinking) can be corrected through reg-
istration, while others (e.g., tissue ripping) are challenging to
correct and may result in discarding slices when such artifacts
are major. Furthermore, our method and many others14–16

assume slice-to-slice correspondence between histopathology

and MR images, which can be improved through the use of
customized 3D printed molds based on preoperative MRI.17

However, this approach requires a change in clinical protocol
that may not be present in the vast majority of institutions per-
forming radical prostatectomy. Finally, the acquired data are
different between the histopathology images and MRI.
Histopathology images provide a discontinuous serial stack of
colored images with a pixel size of 0.0005 mm and 4 lm thick-
ness, separated by roughly 5 mm spaces, while MRI has a typi-
cal resolution of 0.4 9 0.4 9 4.0 mm3.

Here, we introduce the RAdiology Pathology Spatial
Open-Source multi-Dimensional Integration (RAPSODI)
framework for the registration of histopathology slices and
preoperative MRI. RAPSODI includes a memory-efficient
registration methodology and a Graphical User Interface Plu-
gin to 3D Slicer.18 Our registration approach relies on the 3D
reconstruction of the histopathology specimen to create a dig-
ital representation of the tissue before gross sectioning. Next,
RAPSODI registers corresponding histopathology and MRI
slices. Finally, the optimized transforms are applied to the
cancer regions outlined on the histopathology images to pro-
ject those labels onto the preoperative MRI.

We evaluated our methodology using a digital phantom
where we simulated various artifacts resulting from the histo-
logic preparation of the excised tissue, for example, rotation
of the tissue when mounting on the glass slide or tissue
shrinkage. Moreover, we tested RAPSODI in 157 prostate
cancer patients that underwent radical prostatectomy from
three institutions.

Our approach makes the following contributions: (a) our
registration methodology combines a 3D reconstruction of
the histopathology specimen with 2D affine and deformable
registration of the corresponding histopathology and MRI
slices and was optimized for accurate alignment, (b) our
approach was tested in a digital phantom where the ground
truth is known as well as in the largest cohort considered to
date in a radiology-pathology registration study, and (c) to
the best of our knowledge, we are the first to release the
source code for the registration of histopathology and radiol-
ogy images in the prostate, which is essential to test the
reproducibility and robustness of the approach while allow-
ing wide adoption.

2. MATERIALS AND METHODS

2.A. Notations

Let M : R3 ! R be the T2-weighted (T2w) MRI with a
matrix size of K 9 L 9 M. Let H : R3 ! R3 be the stack
of histopathology slices obtained by stacking 2D histopathol-
ogy slices, Hi : R2 ! R3. H has dimensions W 9 H 9 D,
where D represents the number of slices, while W and H are
the width and height of the histopathology images. The index
i, is used to indicate either an axial slice within the MRI vol-
ume or an image in the histopathology stack. MPr and HPr

represent the prostate segmentation on MRI and histopathol-
ogy images, respectively.
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2.B. Data description

The study was approved by the Institutional Review Board
(IRB) of Stanford University (protocol number: IRB-44998,
title: “Characterizing the Radiologic Appearance and
Changes Induced by Diseases”). Informed consent was
waived for this retrospective study, according to our IRB pro-
tocol. Our study includes N1 = 116 subjects from Stanford
Hospital (Cohort C1), N2 = 16 patients from the “Prostate
Fused MRI Pathology” collection,19 The Cancer Imaging
Archive (Cohort C2, Table S3) and N3 = 25 patients from
the “Prostate MRI” collection,20 The Cancer Imaging
Archive (Cohort C3, Table S3). All subjects in our three
cohorts underwent radical prostatectomy.

MRI: Multi-parametric MRI exams were available for all
patients from 3 Tesla MRI scanners from different manufac-
turers. Our study utilized the axial T2w MRI, which is
acquired using a 2D Spin Echo protocol (Table S3). MRI
exams in Cohort C1 were available predominately from GE
scanners (GE Healthcare, Waukesha, WI, USA), with some
exceptions from Siemens (Siemens Healthineers, Erlangen,
Germany) and Philips (Phillips Healthcare, Amsterdam,
Netherlands) and were acquired with external body array
coils. The MRI exam for the patients in Cohorts C219 and
C320 were acquired using an endorectal coil either by a Sie-
mens scanner (Siemens Healthineers, Erlangen, Germany) or
Phillips scanner (Phillips Healthcare, Amsterdam, Nether-
lands). We used only the T2w MRI for the registration as it
provides the best soft tissue contrast and spatial resolution,
capturing anatomic features that help the registration with the
MRI, for example, the boundary between peripheral zone and
central gland or benign prostatic hyperplasia nodules.

Histopathology: Following resection and fixation in for-
malin, the prostates in the Cohorts C1 and C3 were sectioned
using a patient-specific 3D printed mold built based on the
presurgical MRI. The gross sections for the prostates in
Cohort C2 were cut perpendicular to the urethra from the
apex to the mid gland. Mounting of the 5 lm thick tissue on
the glass slide can cause rotation as well as left-right flipping.
An expert indicated the gross rotation angle and whether the
slice requires left-right flipping. The whole-mount slices
(Cohorts C1 and C3) and quadrants (Cohort C2) were stained
using Hematoxylin & Eosin (H&E) and digitized at 20x mag-
nification (pixel size 0.5 lm) for Cohorts C1 and C2 and at
low resolution for C3. Frozen sections are only rarely used
during prostatectomy at our institution (Cohort C1). When it
is performed, additional tissue is excised from tissue remain-
ing in the body rather than from the prostate itself. Therefore,
no artifacts from frozen section are present within the excised
gland. Pseudo-whole mounts were generated for the images
in Cohort C2 by the dataset authors and were achieved by
stitching adjacent quadrants as described in Ref. 21. These
pseudo-whole mounts were made available by the authors of
the dataset and were used without any further processing for
the registration with MRI by RAPSODI. The quadrants must
be stitched to form pseudo-whole mounts to achieve registra-
tion with the MRI slices.

Cancer labels: Our expert genitourinary pathologist (CK,
14 yr of experience), outlined the extent of cancer on the
histopathology images in Cohort C1. The cancer regions for
the histopathology images in Cohorts C2 and C3 were
labeled at their source institutions. The authors of the Cohort
C2 also provided the cancer labels relative to the MRI which
were obtained using landmark-based registration when align-
ing histopathology images and MRI.21 For the subjects in
Cohort C3, cancer regions were available as sharpie outlines
marked directly on the glass slide.

Other labels: The registration of histopathology and MR
images relies on the prostate segmentation on both modalities
and slice-to-slice correspondences between MRI and
histopathology images. To evaluate the registration, we used
corresponding anatomic landmarks. Segmentations of the
prostate, urethra, and anatomic landmarks were initially per-
formed by trainees (WS, JBW, SJSC, and JCT) with 6+
months experience in this task and were carefully reviewed
by our experts (CK, PG — a body MR imaging radiologist
with 14 yr of experience, MR — an image analysis expert
with 9 yr of experience). Two hundred fifty-seven matching
anatomic landmarks, for example, benign prostate hyper-
plasia nodules, ejaculatory ducts, predominant features (fig.
S3 Row 4), were picked on both histopathology and radiol-
ogy images for a subset of 12 subjects from Cohort C1. Slice
correspondences between MRI and histopathology images
were initially identified by trainees (NCT, JBW, WS), and
subsequently confirmed by experts (MR, GS – a urologic
oncologist with 13 yr of experience), and validated by a mul-
ti-disciplinary team.

Labels: Our expert pathologist (CK) outlined cancer on
histopathology images, while our experts (MR, CK, JBW,
SJCS, NCT, and PG) outlined the prostate on MRI and/or
histopathology images. Two hundred fifty-seven matching
anatomic landmarks, for example, benign prostate hyper-
plasia nodules, ejaculatory ducts, predominant glands, were
picked by prostate imaging experts (MR and NCT) on both
histopathology and radiology images for a subset of 12 sub-
jects. The urethra was outlined by our experts (MR and WS).
Slice correspondences between the MRI and histopathology
were identified by experts (MR, NCT, JBW, and WS) and
confirmed by the urologist, and validated by a multi-disci-
plinary team of radiologists, pathologists, and urologists.

2.C. Radiology-pathology registration

Our approach is summarized in Fig. 1 and described below:

Preprocessing: We applied the prostate masks, MPr and
HPr onto M and H, respectively, to exclude the structures
outside the prostate from image registration. The gross rota-
tion angles or left-right flipping were applied.
3D Histopathology Reconstruction: We registered Hi rela-
tive each other. We selected the middle slice Hi; i ¼ M

2 as
fixed image and registered Hi�1 to Hi, Hi�2 with Hi�1, etc.,
as well as Hiþ1 to Hi, Hiþ2 with Hiþ1, etc. With the excep-
tion of slice i ¼ M

2 , all histopathology images will have
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corresponding rigid transforms from the registration with the
adjacent slice, T H

Rig.
2D Registration: We registered Mi with Hi, for ∀i 2 [1,D],
by optimizing affine T M

Aff and deformable T M
Def transforms

using a registration based on a multi-resolution pyramid with
three layers (shrinking factors: 16, 8, and 4; smoothing sigma:
4, 2, and 1 pixels). The affine registration only used the prostate
masks during the optimization with sum of square differences
as scoring function. The deformable registration was based on
free-form deformations22 with Mattes mutual information as a
scoring function. The affine registration used a gradient descent
optimizer with a learning rate of 0.01 and 250 iterations per res-
olution layer, while, the deformable registration employed a
LBFGSB optimizer with ten iterations per resolution layer.
Mapping Cancer onto MRI: A composite transform of
T H

Rig, T
M
Aff and T M

Def is applied to deform the histopathology
image as well as the cancer label and the anatomic landmarks
into the coordinates of the T2w MRI.

Our approach was developed using the Insight Toolkit
(ITK)23 and its Simple ITK API in python. The approach is
available as a 3D Slicer python plugin18 (Fig. S4) or as a
stand-alone application to be run in batch mode (https://
med.stanford.edu/rusulab/research.html). We measured the
performance of the approach on an Intel i7-8700 CPU,
3.70 GHz, 64 GB Memory Computer.

2.D. Digital phantom for radiology-pathology
registration

We created a digital phantom to assess the quality of the
alignment when ground truth exists. The phantom is used to
simulate artifacts known to affect histopathology sample

preparation. We constructed the phantom by first outlining the
prostate, peripheral zone, cancer, and urethra in a 3D T2w MRI
[Figs. 2(a)–2(c)]. Then, we synthesized the phantom T2w MRI
by filling the segmented regions with the average intensities
from the input T2w image [Fig. 2(d)]. Moreover, we created
the pathology phantom based on the histopathology images
already registered to the T2w MRI (data not shown), by averag-
ing their color intensities within the segmented regions
[Figs. 2(e)–2(f)]. Our simulations included Gaussian noise on
both the MRI and histopathology phantom slices.

Using the T2w and pathology phantoms, we tested three
conditions: (a) the influence of the rotation angle when
mounting the tissue slice on the glass slide, (b) the influence
of shrinkage caused by fixation of the tissue during histology
processing, and (c) the influence of imperfect slice corre-
spondences between the MRI and histopathology slices, for
example, Figs. 2(d) and 2(e) have a perfect correspondence,
while Figs. 2(d) and 2(f) are 2 mm apart from each other in
out-of-plain direction.

To evaluate RAPSODI, we used multiple conditions, for
example, rotation, scaling, or imperfect slice correspon-
dences. When a random rotation of r was assigned to the
histopathology phantom, it resulted in applying a random
angle ranging between �r and r to each slide and running ten
experiments with different noise and random angle condi-
tions to assess the mean and variance in performance. When
rotations were applied alone, no translation or scaling was
applied. When a shrinkage factor s is applied, all histopathol-
ogy slices are shrunk by s relative to their original appear-
ance. Moreover, we also apply a random translation of 5% in
x or y directions. Thereby, the experiments that include rota-
tion and shrinkage also include random translation, and when
combined with the imperfect slice correspondences are close
representations of real data.

FIG. 1. Summary of our approach. First, we align the serial histopathology slices relative to each other to reconstruct the three-dimensional histopathology vol-
ume. Second, we register the histopathology slices relative to the T2w magnetic resonance imaging using rigid, affine, and deformable transforms. Finally, we
map the extent of cancer from the histopathology images onto the radiology images. [Color figure can be viewed at wileyonlinelibrary.com]
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2.E. Quantitative evaluation

The accuracy of the registration was evaluated using the
Dice similarity coefficient, which assesses the overlap of the
prostate outlines on T2w MRI and of the registered
histopathology reconstruction:

DiceðH;MÞ ¼ 1
D

XD

i¼1

2� jHPr
i \MPr

i j
jHPr

i j þ jMPr
i j

(1)

where D is the number of slices in the histopathology speci-
men, HPr

i represents the slice i in the prostate segmentation
on histopathology, while MPr

i represents the slice i in the
prostate segmentation on MRI.

Additionally, we evaluated the Hausdorff distance24 (a
measurement of how far two subsets of a metric space are
from each other) between the prostate boundary to assess
boundary deviation after registration:

Hausdorff PrðH;MÞ ¼
1
D

XD

i¼1

maxfsuph2HPr
i
infm2MPr

i
dðHPr

i ;MPr
i Þ;

supm2MPr
i
infh2HPr

i
dðHPr

i ;MPr
i Þg

(2)

where sup and inf represents the supremum and infimum
operators, D represents the number of slices, and i is the slice
index. The Hausdorff distance estimates the distance between

the prostate borders (outlined on MRI and histopathology
images), allowing us to estimate the registration error at the
prostate boundary, without the need for corresponding land-
marks.

Moreover, we evaluated the landmark distance:

DistðLH ;LMÞ ¼ 1
X

XX

j¼1

jLH
j ;LM

j j2 (3)

where j:j2 represents the Euclidean distance of the center of
mass of the jth landmark LH

j on histopathology and center of
mass of the jth landmark LM

j on MRI, while X represents the
number of landmarks. Similarly, we computed the urethra
distances on the slices where the urethra was visible on both
MRI and histopathology images.

3. RESULTS

3.A. Phantom study

The phantom study is used to assess the average perfor-
mance and variability of RAPSODI under conditions known to
affect the tissue during the histopathology preparation. We ran
our registration approach for 480 different conditions, to esti-
mate the trends of the evaluation metrics as well as their varia-
tions. Figure 3 and Fig. S1 summarize our results in which we
tested the effect of the rotation of histopathology slices while
mounting on glass slides (range: 0–40∘), and the effect of
shrinkage (range: 0–30%) when perfect slice correspondences

(a) (b) (c)

(d) (e) (f)

FIG. 2. Radiology-pathology digital phantom. The expert annotation of the prostate (orange), peripheral zone (blue), urethra (yellow), and cancer(red) on three-
dimensional (3D) T2 magnetic resonance imaging (MRI), shown in the (a) axial; (b) sagittal; (c) 3D views, were used to create a digital phantom of the prostate:
(d) slice in the MRI phantom, (e) corresponding slice in the pathology phantom, and (f) imperfect corresponding slice that is 2 mm apart from (d) in the sagittal
plane (yellow and orange are the outlines of the urethra and prostate(d)). Note the urethra misalignment (inset) and the border differences (arrow). [Color figure
can be viewed at wileyonlinelibrary.com]
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exist between the histopathology and the MR images in the
phantom. Our approach is able to perfectly recover rotation
angles ranging between 0 and 20∘ or shrinkage of 0–10% when
applied alone (Fig. 3 and Fig. S1), indicated by the perfect �
1 Dice coefficient and the subpixel error. When combined,
either using 20% shrinkage and random rotation or using 20∘

rotation and shrinkage, subpixel accuracy was observed for
angles ranging between 0 and 15∘ or shrinkage of 0–5%.
Beyond these conditions, RAPSODI is still able to recover
induced rotation and shrinkage, yet with some errors as the
starting conditions are far from the correct solution.

Moreover, the limitations of the registration may be
observed when perfect correspondences are lacking between
the histopathology and MRI slices (Fig. S1). Not surprisingly,
the landmark and prostate border deviation are as large as
four pixels (1.6 mm), as these features are not perfectly
matching. Yet, we can observe the relative stability of the
approach for rotations ranging 0–30∘ and shrinkage factors up
to 30%, as the induced rotation and shrinkage are properly
recovered.

3.B. Qualitative results

We applied RAPSODI to register the histopathology slices
and T2w MRI in our radical prostatectomy cohorts of 157
patients. Figure 4 shows the qualitative results for a subject in
Cohort C1 that had a Dice Coefficient of 0.98. Figure S2
shows the same slice as Fig. 4 Row 2, with progressive trans-
parency from right to left and left to right to emphasize the
alignment of the two modalities (see Movie S1). The qualita-
tive and quantitative evaluation suggests that proper align-
ment was obtained.

The accurate registration allowed us to map the extent of
two cancer foci with different Gleason groups25 (Fig. S2, yel-
low — Gleason group 1; green — Gleason Group 3).
Although the higher grade cancer is visible on MRI, it
appears smaller than the histopathology projected lesion,
confirming previous work showing that MRI underestimates
cancer size.26 The fusion enabled the mapping of the Gleason
Group 1 cancer (yellow), which is not visible on MRI, and
would have been otherwise difficult to outline.

Figure S3 shows a subject in Cohort C2 for which the
alignment of the prostate achieved a Dice coefficient of 0.95
and a Hausdorff distance of 3.14 mm on the prostate bound-
ary. The histopathology images (Fig. S3 Column 1) were reg-
istered with the MRI (Fig. S3 Column 3), and the cancer
outline (red) was mapped onto MRI (Fig. S3 Columns 4 and
5) from the registered histopathology images (Fig. S3 Column
2). The public dataset includes the cancer annotation for this
subject already mapped from the histopathology images onto
MRI by the dataset authors.21 The cancer annotations obtained
via RAPSODI overlaps well with the labels provided by the
dataset authors (Fig. S3 Columns 5), with a Dice overlap of
0.53 and a Hausdorff Distance of 3.54 mm. The relatively low
overlap indicated by the Dice coefficient may be accounted by
the relatively small size of the tumor, and the misalignment of
the regions in the apex slice (Fig. S3 Row 1).

3.C. Quantitative results

An improvement in the alignment of the histopathology
images and the T2w MRI can be observed across the different
steps of our framework (Fig. 5). Statistically significant differ-
ences in Dice coefficients and Hausdorff distances were
found between the input, and the results of the registration
performed using RAPSODI (Mann-Whitney test is statisti-
cally significant for a < 0.05). These statistically significant
differences suggest that both affine and deformable registra-
tions are required to facilitate an accurate alignment. The ure-
thra [Figs. 5(g)–5(i)] and the landmark deviations showed no
statistically significant differences.

The comparison of results across the three cohorts indi-
cated that RAPSODI produces consistent results, with Dice
coefficients of 0.96–0.98 on the prostate border, and Haus-
dorff distances averaging 1.84–2.57 mm (Table S2). The sub-
jects in Cohorts C2 and C3 have MRIs acquired using an
endorectal coil, which causes larger deformations of the pros-
tate. Thereby, the input data and affine registration results
show worse alignment, specifically in Cohort C2 compared
to Cohort C1. However, similar metrics are evaluated after
the deformable registration in RAPSODI, suggesting that our
approach generalizes even for larger deformations, such as
those induced by an endorectal coil.

An additional evaluation was possible in Cohort C2, since
the authors of the dataset19 have provided the mapped cancer
obtained via landmark-based registration.21 Thereby, we com-
pared the mapped cancer from RAPSODI with those pro-
vided by the dataset authors, and we observed a Dice
coefficient of 0.55 � 0.14 and deviation of 2.58 � 1.34 mm
computed on the center of mass. The relatively reduced align-
ment of the cancer labels may be attributed to the general
misalignment error, which is within 3.1 mm inside the pros-
tate and 2 mm on the prostate border. This misalignment can
have a significant effect on the value of the Dice coefficient
for regions of small size, such as the cancer, yet visually the
alignment appears correct (Fig. S3 Column 5).

Due to the use of stitched histopathology images, and
of endorectal coil MRI, larger deformations needed to be
recovered when aligning the histopathology images to
MRI in the patients in Cohort C2. The pseudo-whole
mounts can have stitching artifacts that are absent in the
whole-mount histopathology images. For example, the
pseudo-whole mount images are stretched in the anterior–
posterior direction, for example, slice C1234 of patient
aaa0054. The results presented here are obtained with the
same parameters for all patients, from all cohorts, yet reg-
istration parameters such as scaling in the affine parame-
ters can be modified, and the number of iterations
increased further to allow recovery of large deformations
(data not shown).

Unlike the subjects in the Cohorts C1 and C2, the
histopathology images in the subjects in Cohort C3 were
scanned at low resolution, having all slices scanned in the
same image.20 This lower resolution has not affected the abil-
ity of RAPSODI to align the histopathology images to the
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MRI, indicating that our approach is robust to different
histopathology scanning conditions.

4. DISCUSSION

Here, we introduced the RAPSODI framework that
enables the registration of histopathology and MR images in
the prostate. RAPSODI first reconstructs the histopathology
volume, followed by a slice-to-slice alignment between the
corresponding histopathology and T2w images. As shown in
prior studies in the prostate27,28 and other organs,29–31 the
reconstruction ensures the consistent stacking of the
histopathology slices relative to each other, independent of
the MRI, which results in a better initialization in the reg-
istration with the MR images. Unlike prior studies27–31

that performed 3D registrations which are prone to

overfitting due to a large number of degrees of freedom.
RAPSODI performs the registration between MRI and
corresponding histopathology images after reconstruction
thus combining the benefits of the 2D registration to
reduce the degrees of freedom with the 3D reconstruction
to maintain 3D consistency.

Although numerous automated approaches for the regis-
tration of radiology and histopathology images have been
proposed previously (see detailed discussion in the Supple-
mentary material), manual registration approaches are still
employed, even in recent publications.9–13 These manual
approaches can generate subjective results and are tedious to
use. They either rely on the user’s expertise to identify and
pick corresponding landmarks in the histopathology images
and MRI9,10,13 or use cognitive alignments. Such cognitive
alignments rely on a radiologist to directly outline the cancer

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 3. RAPSODI results for the registration of histopathology and T2w magnetic resonance imaging slices in the digital phantom in terms of (a)–(d) Dice coef-
ficient, (e)–(h) Hausdorff distance, and (i)–(l) urethra deviation. (a, e, and i) Effect of the rotation (X-axis) on the quantitative metrics when no shrinkage is
applied; (b, f, and j) Constant 20% shrinkage is applied along with a randomly assigned rotations; (c, g,and k) Effect of tissue shrinkage, while no rotation was
applied; (d, h, and l) A rotation angle of 20∘ is applied along with the shrinkage. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 47 (9), September 2020

4183 Rusu et al.: Aligning prostate MRI and histopathology 4183

www.wileyonlinelibrary.com


region on MRI, with the help of a pathologist for radical
prostatectomy cases,11,17 yet such annotations are known to
show smaller lesions that observed on pathology26 and are
unable to capture MRI invisible lesions.

We first evaluated RAPSODI in a digital phantom and
showed that our framework can recover the rotation of the
histopathology slices resulting from glass slide mounting
when these angles are within 15∘ from the correct solution
and with tissue shrinkage up to 10%. Correcting for large
rotation angles can be achieved prior to applying RAP-
SODI either using automated approaches, for example, by

aligning the major axis of the data,28 or having an expert
user indicating an angle, as was done in our study. The
tissue shrinks during fixation with a factor that is outside
our control. The affine transform helps identify the shrink-
age factor, yet the accuracy of the registration declines as
the initial conditions are further away from the optimal
solution.

Prior automated registration of histopathology images
with presurgical prostate MRI has been performed in proof-
of-concept studies, which usually only include a small num-
ber of subjects, often < 20 (Table S1), due to the use of

FIG. 4. Qualitative results showing the registration for all the histopathology slices from apex to base in one subject in Cohort C1. (Column 1) Input histopathol-
ogy slices with cancer outlines (red); (Column 2) histopathology slices registered to magnetic resonance imaging (MRI); (Column 3) corresponding T2w MRI
with cancer outlines obtained via RAPSODI; (Column 4) overlay of the registered histopathology images and corresponding T2w MRI. [Color figure can be
viewed at wileyonlinelibrary.com]
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intermediate images not routinely acquired for patients, for
example, blockface pictures,32 ex vivo MRI15,16,32,33 or exter-
nal fiducials.33 RAPSODI uses clinical images and only
relies on preoperative MRI and histopathology images for
patients undergoing radical prostatectomy. RAPSODI was
successfully used to register histopathology images with T2w
MRI in the 157 subjects, achieving a prostate boundary error
within 2 mm and an interior error within 3.1 mm. Through
the use of prostate segmentation during registration, we
emphasize the importance of the prostate border, resulting in
a better alignment compared to the interior landmarks. More-
over, picking the landmarks used for evaluation can be chal-
lenging as we sought to capture 3+ landmarks/slice.

We acknowledge the following limitations of our
approach. Although the registration approach is fully auto-
mated, similar to existing approaches, some manual interven-
tions are needed to either segment the prostate on both MRI

and histopathology images, to identify slice correspondences
between the histopathology and T2w MRI or to correct the
gross rotation of the histopathology slices. Yet, numerous
techniques, for example,34,35 have been developed to auto-
matically segment the prostate on MRI, thereby the segmen-
tation of the prostate can be automated (beyond the scope of
the current paper). Unlike other approaches,14 RAPSODI
does not rely on landmarks for the registration, but only uses
them to evaluate the accuracy of registration.

The registration assumes that a slice-to-slice correspon-
dence exists between the histopathology and MR images.
While this is improved using 3D printed molds,17 which is
routinely done for the patients undergoing radical prostate-
ctomy at our institution, small slice misalignment is possi-
ble due to the shrinking of the prostate during fixation
and shifting in the mold during slicing. Such misalignment
is occasionally observed at the base and apex of the

(a) (b) (c)

(d) (e) (f)

(g)(h) (i)

FIG. 5. Quantitative evaluation of RAPSODI; (a)–(c) prostate Dice similarity coefficients, (d)–(f) Hausdorff distance on prostate boundary; (g–i) the urethra
deviations. (a, d, and g) Cohort C1; (b, e, and h) Cohort C2; (c, f, and i) Cohort C3; ns — nonsignificant: 0.05 < P <= 1.00; ****P <= 0.0001 [Color figure
can be viewed at wileyonlinelibrary.com]
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prostate. The digital phantom allowed us to study the
effect of such misalignment and showed that a perfect reg-
istration alignment could not be obtained in this situation,
yet the induced shrinkage and rotations are well recovered.
Although our study includes patients for which the
resected specimens were sectioned with (Cohorts C1 and
C3) or without (Cohort C2) using 3D printed molds, we
were unable to see a difference in alignment between the
subjects in these different cohorts. The sectioning without
3D printed molds was likely done carefully by experienced
histology technologists who were able to preserve the
alignment with the MRI, even without using a 3D printed
mold (Fig. S3).

The registration runtime for our approach is 0.5–4 min
and depends on the resolution of histopathology images as
well as the number of slices in each case. This runtime is lim-
iting for a Graphical User Interface execution, yet it is accept-
able when running the approach in batch mode. Deep
learning methods36 can also be used to perform the registra-
tion with similar accuracy yet with a considerable reduction
in runtime, but require such traditional registration methods
to create the ground truth data.

Although MR image quality can vary, we were able to seg-
ment the prostate on MRI and perform the registration of
histopathology and MR images in all cases. The affine regis-
tration is only influenced by the prostate segmentation, while
the deformable registration is constrained to be rather stiff
and not very elastic to limit possible overfitting. Thereby, we
anticipate that the quality of the MRI will have little effect on
our registration as long as the prostate boundary is clearly
visible on the T2w MRI.

Our study includes 157 patients from three institutions,
covering a wide range of image acquisition protocols: using
MRI acquired via either surface or endorectal coils from three
different manufacturers, various histopathology preparations
(whole-mount vs quadrants stitched in pseudo-whole
mounts), or different histopathology scanning resolution. To
date, this work represents the largest study and the only study
to evaluate registration in a digital histopathology-MRI pros-
tate phantom. Compared to previous approaches outlined in
Table S1, our quantitative results place us close to the method
by Kalavagunta et al.14 in terms of the Dice similarity coeffi-
cient. The latter approach relies on heavily annotated datasets
that include the border of the transitional zone and the periph-
eral zone as well as other landmarks. Such landmarks are
used during registration resulting in better landmark align-
ment, yet the approach is labor-intensive and requires identi-
fying matching landmarks in the pathology images and MRI,
which can be challenging.

Through the registration of corresponding histopathology
and MR images, RAPSODI allows for mapping the extent of
cancer from histopathology onto MR images. This provides
ground truth labels (“answer keys”) for the location and extent
of cancer on MRI in patients who underwent radical prostatec-
tomy. The availability of these “answer keys” has three clinical
applications. First, they can be used as a training tool for radi-
ologists. Second, they can be used to improve existing prostate

MRI reading schemes, for example, PIRADS. Third, creating
a large database of cases with MRI and ground truth cancer
labels allows the training of machine learning models to auto-
matically detect the extent of cancer on MRI, which in turn
can assist radiologists when reading new prostate MRI studies.
Models trained with labels mapped from histopathology
images onto MRI have benefits compared to using labels man-
ually outlined by radiologists, as they capture cancer borders
more accurately and may be able to detect lesions on MRI that
are invisible to radiologists.

5. CONCLUSIONS

RAPSODI aims to register histopathology and MR images
with the goal of mapping cancer labels from histopathology
images onto T2w MRI, thus creating careful and objective
spatial labels on preoperative MRI. Such mapping may help
develop advanced image analysis tools to predict prostate
cancer reliably and its aggressiveness on MRI, can help
improve current MRI interpretation schemes, and can help
validate novel MRI protocols and other imaging techniques.
Better imaging accompanied by better interpretation schemes
can have a high impact on reducing overdiagnosis of low-
grade cancers, the underdiagnosis of aggressive cancers, and
infectious complications of biopsy.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Figure S1. RAPSODI results for the registration of
histopathology and T2w MRI slices in the digital phantom
where an imperfect correspondence between the
histopathology and T2w MRI slices exist (they are 2 mm
apart from each other in the Sagittal and coronal planes, for
example, Fig. 2d and 2f): (a and b) Dice coefficient; (c and d)
Hausdorff distance; (e and f) urethra deviation. (a, c, and e)
Experiment where only the rotation angle was varied between
0 and 40∘; (b, d, and f) The histopathology images were
shrunk by 0–30% of the original size.
Figure S2. Overlay of registered histopathology and T2w
images (same as slice as shown in Fig. 4 Raw 2).
Histopathology shown with a progressive transparency from
(a) right-left, and (b) left-right with cancer outlines (green —
Gleason Group 3, yellow— Gleason group 125).
Figure S3. Qualitative results showing the registration for all
the histopathology slices from apex to base in subject
aaa0059 from Cohort C2. (Column 1) Input histopathology
slices with cancer outlines (red); (Column 2) Histopathology
slices registered to MRI; (Column 3) Overlay of the
registered histopathology and corresponding T2w MRI with
histopathology images shown transparent. (Column 4)
Corresponding T2w MRI with cancer outlines obtained via
RAPSODI (red) or provided by dataset authors (blue);
(Column 5) Close-up into the cancer region with outlines
shown at the same resolution as the T2w MRI. Asterisk (*) in
row 4 indicates predominant features seen on both
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histopathology images and MRI that could be used as
landmark to assess the registration.
Figure S4. Slicer Interface.
Table S1. Summary of previous approaches (not exhaustive).
We excluded publications with <2 subjects, only synthetic
data, or manually intensive approaches. All summarized
methods require as input the in vivo presurgical T2 weighted
MRI, digitized serial histopathology images, and the
segmentation of the prostate on MRI and histopathology
images; Additional input requirements are listed here;

Abbreviations: TPS — Thin Plate Spline; NA — Not
available
Table S2. Quantitative results for the three cohorts and
aggregated for all subjects in our study.
Table S3. Data Summary: Abbreviations: T2-weighted MRI
(T2w), hematoxylin & eosin (H&E), relaxation time (TR),
Echo Time (TE) ; MRI matrix size: K 9 L 9 M, histology
matrix size: W 9 H, * estimated, pseudo-whole mount:
stitched adjacent quadrants; # : number; Pr: prostate, Lm:
landmarks, Ure: urethra, Ca: cancer
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