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Abstract: This work aimed at studying the effect of a silica specific surface area (SSA), as determined
by the nitrogen adsorption method, on the viscoelastic and fatigue behaviors of silica-filled styrene–
butadiene rubber (SBR) composites. In particular, silica fillers with an SSA of 125 m2/g, 165 m2/g,
and 200 m2/g were selected. Micro-computed X-ray tomography (µCT) was utilized to analyze the
3D morphology of the fillers within an SBR matrix prior to mechanical testing. It was found with this
technique that the volume density of the agglomerates drastically decreased with decreasing silica
SSA, indicating an increase in the silica dispersion state. The viscoelastic behavior was evaluated
by dynamic mechanical analysis (DMA) and hysteresis loss experiments. The fatigue behavior was
studied by cyclic tensile loading until rupture enabled the generation of Wöhler curves. Digital image
correlation (DIC) was used to evaluate the volume strain upon deformation, whereas µCT was used
to evaluate the volume fraction of the fatigue-induced cracks. Last, scanning electron microscopy
(SEM) was used to characterize, in detail, crack mechanisms. The main results indicate that fatigue
life increased with decreasing silica SSA, which was also accompanied by a decrease in hysteresis loss
and storage modulus. SEM investigations showed that filler–matrix debonding and filler fracture
were the mechanisms at the origin of crack initiation. Both the volume fraction of the cracks obtained
by µCT and the volume strain acquired from the DIC increased with increasing SSA of silica. The
results are discussed based on the prominent role of the filler network on the viscoelastic and fatigue
damage behaviors of SBR composites.

Keywords: elastomer; fatigue; viscoelasticity; crack initiation; silica; specific surface area

1. Introduction

Over the last decades, much progress has been made in understanding the mechanisms
of the fatigue of filled rubber compounds [1,2]. The addition of fillers such as carbon black
(CB) and silica, also known as reinforcements, improve the mechanical properties [3–5].
At the same time, the addition of these fillers introduces a non-linear dependency upon
the dynamic strain amplitude [6,7]. This includes stress softening due to the Mullins effect,
Payne effect, and hysteresis. Hysteresis influences self-heating upon deformation and, thus,
the product’s mechanical performance [8]. The lifetime of a usual rubber product under
dynamic loading during operation consists of a crack initiation stage [9] followed by a crack
growth stage, which ultimately leads to the integrity loss of the product [10,11]. In styrene–
butadiene rubber (SBR), the identification of the mechanisms responsible for the fatigue
behavior requires knowledge about the composition of the butadiene microstructure [10].
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Understanding the mechanism of crack initiation and fatigue behavior is necessary for
enhancing compound durability to produce further improved products.

One approach to understanding fatigue behavior relies on performing fatigue testing
until fracture [12]. In this context, the end of product life can be defined as the number
of cycles needed to attain a certain level of stiffness loss [13] or the initiation of a crack
of a given size [12,13]. Many factors influence the material’s fatigue behavior, including
compound formulation, load history, and environmental factors, as well as the dissipative
behavior of the material [14]. The role of the latter is critical for understanding and
improving fatigue properties. The dissipative behavior includes softening due to the
Mullin’s effect [15,16] and strain-induced crystallization [17], as well as the material’s
viscoelasticity and hysteresis. It is known that elastomers have viscoelastic characteristics
resulting in the loss of energy during loading and unloading. The compound’s energy loss
contributes to hysteresis and the compound’s temperature rise. Hysteresis is an irreversible
process during which mechanical energy is transformed into heat [18,19].

Currently, precipitated silica is widely used as a reinforcing filler in tires [20]. However,
silica on its own is not effective as a reinforcing agent due to its limited chemical interaction
with rubber caused by the silica surface’s hydrophilic silanol groups. Therefore, silica is
used, along with a silane coupling agent, to reduce the filler–filler contact [21], as well as to
prevent the adsorption of curatives on the silica surface [22] and, consequently, to improve
the material’s mechanical properties. Dynamic mechanical analysis (DMA) has largely been
used to study the material’s viscoelastic properties with respect to strain, temperature, and
frequency [23]. In the case of filled elastomers, the filler–filler network is responsible for
the material’s non-linear viscoelastic behavior [8]. In a number of studies, the macroscopic
strain field of the samples was characterized using the digital image correlation technique
(DIC) [24,25], which helped access the volume change upon deformation [26,27]. In these
works, the volume change was correlated to the crack growth and the fatigue properties.

Based on microscopic approaches, some studies showed that rubber compounds
contain heterogeneities that were responsible for crack initiation [28] and led to loss of the
compound’s stiffness. Upon loading, crack precursors cause local stress fields and tend to
facilitate crack growth [29]. The heterogeneities responsible for the detriment of properties
were considered as crack precursors [28,30]. Hao Guo et al. [31] investigated the crack
precursors by means of tensile and tear tests, showing that a comparative study of crack
precursors can be performed using scanning electron microscopy (SEM).

In many studies, the fatigue behavior of these compounds has been investigated
by means of structural characterization techniques, including SEM [32], micro-computed
X-ray tomography (µCT) [33–35], and small-angle X-ray scattering [36]. Huneau et al. [2]
investigated the fatigue crack initiation on CB-filled natural rubber and revealed that the
predominant crack initiation sites were around CB agglomerates. The authors concluded
that debonding occurred at the rubber–CB interface, mainly around the CB agglomerate’s
poles in the stretching direction, as the main mechanism of initiation. This is mainly due
to the limited interfacial adhesion between the CB agglomerates and the rubber matrix.
Crack initiation due to ZnO particles was also reported in the same work. They observed
two mechanisms of crack initiation: one due to the matrix–ZnO debonding (interfacial
separation) and one due to the fracture of a ZnO inclusion.

An hourglass-shaped sample geometry was widely used to understand fatigue crack
initiation. This is mainly for the strain gradient induced by the geometry, promoting crack
initiation under the surface of the sample’s median section [37]. Such surface cracks can be
investigated using SEM, a technique that provides a high spatial resolution and chemical
contrast. However, a critical drawback of using SEM is that only surface information can
be retrieved, whereas several cracks are likely to be initiated in the bulk.

µCT has become a promising technique in investigating crack initiation and growth in
the bulk of filled rubber compounds subjected to fatigue loading. Marco et al. [38] used
µCT to study the initiation and growth of cavities on polychloroprene rubber. In their
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work, information about the percentage of cycle required for the observation of early cavity
initiation and damage parameters like porosity and defect volume density was proposed.

Our previous studies on fatigue crack initiation in silica-filled SBR revealed that the
cracks were initiated in the bulk and on the sample surface [24]. This finding required
the use of techniques capable of analyzing crack initiation in these two regions, as the
combination of SEM for surface analysis and µCT for bulk analysis. In addition, to our best
knowledge, fatigue crack initiation mechanisms and fatigue life in silica-filled elastomers
have never been investigated as a function of silica specific surface area (SSA). Therefore,
in this work, the influence of silica SSA on the viscoelastic and fatigue properties of
silica-filled styrene–butadiene rubber (SBR) composites was examined. Concerning fatigue
testing, Wöhler curves were generated, whereas fatigue-induced damage mechanisms were
observed using SEM and µCT. On the other hand, DMA and hysteresis loss experiments
were performed to understand the compound’s viscoelastic properties. This work’s main
finding showed that an increase in silica SSA decreases the fatigue end life due to a decrease
in the silica dispersions state, which also drastically influences viscoelastic properties.

2. Experimental Section
2.1. Materials, Mixing and Curing

The compound formulations in units of parts per hundred parts of rubber (phr) are
presented in Table 1. The amounts of silane Si266 (Evonik Corp., Parsippany, NJ, USA)
and accelerators were adjusted for the three compounds based on the silica’s SSA to have
a similar SBR/silica contact area and adsorption behavior on the silica surface [39,40].
Note that the Brunauer–Emmett–Teller (BET) method was used with nitrogen (N2) as a
gaseous adsorbate to determine the silica SSA. For this study, rubber sheets of dimensions
100 mm × 100 mm × 2 mm, as well as hourglass samples (geometry depicted in Figure 1),
were prepared by compression molding and transfer molding, respectively. The samples
were cured at 170 ◦C for 10 min.

Table 1. Compound formulations.

Compound 1 Compound 2 Compound 3

N2 Silica specific surface area, BET (m2/g) 125 165 200

SBR SE SLR 4602 * 100 100 100
Antioxidant 2.5 2.5 2.5

Oil Vivatec 500 25 25 25
Activator Stearic Acid 3 3 3

Silica Hi-Sil 315 ** 90 - -
Ingredients (phr) Silica Zeosil 1165 MP *** - 90 -

Silica Zeosil Premium 200
MP *** - - 90

Silane Si266 6 7.2 9
ZnO 2.5 2.5 2.5

Sulfur 1.4 1.4 1.4
Accelerator 1.8 2.3 2.88
Accelerator 2.5 3.2 4

Total phr 234.7 237.1 240.28

* Trinseo, Berwyn, PA, USA; ** PPG, Monroeville, PA, USA; *** Solvay, Paulínea, SP, Brazil.

The hourglass-shaped samples (Figure 1) were used to perform fatigue testing. The
advantage of choosing this sample geometry is that the crack initiation zone is well localized.
Indeed, when deformed, the sample’s median section experiences large surface strains in
comparison to the strains experienced in the bulk region. For the sake of simplicity, we
refer to the compounds with a silica SSA of 125 m2/g, 165 m2/g, and 200 m2/g as C1, C2,
and C3, respectively.
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2.2. Tensile Testing

The uniaxial tensile testing was carried out using dumbbell-shaped samples (ISO-37-2
type-2) cut out from rubber sheets with a thickness of 2 mm. These samples were tested
with an electro-mechanical machine (Instron 5967, Norwood, MA, USA) with a load cell
capacity of 1 kN. All the tests were performed at 21 ± 2 ◦C and at a grip separation rate
of 200 mm/min. Stress and strain were measured continuously up to integrity loss. Each
sample’s strain energy density was calculated by integrating the stress–strain curve.

2.3. Critical Tearing Energy

For each compound, tear testing was performed using a nicked angle tear speci-
men [31]. The measurement was carried out with the Instron 5967 machine at a testing rate
of 500 mm/min. The tear strength was calculated based on the following equation:

Ts =
F
d

(1)

where Ts is the tear strength (N/mm), F is the maximum force at rupture (N), and d is the
thickness of the sample (mm).

The crack precursor size of the samples can be calculated based on the equation [31]:

C0 =
Ts
√

1 + εb
πσbεb

(2)

where C0 is the crack precursors size (µm) and σb and εb are the stress (MPa) and strain (%)
at break obtained from the quasi-static testing, respectively.

2.4. Hysteresis and Volume Strain

To compare the hysteresis loss of the different compounds, the hourglass specimen
samples were subjected to cyclic loading with the Instron 5967 machine at a crosshead speed
of 200 mm/min. The tests were displacement-controlled, and the samples were subjected
to 100%, 130%, and 150% of local nominal strain. The local nominal strain is defined as
the strain experienced by the median section of the hourglass sample during quasi-static
deformation and was measured using an optical extensometer DIC. In order to measure
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the hysteresis loss, at first, the Mullins effect was eliminated by exposing the sample to
10 cycles, whereas the hysteresis loss was measured during the 10th cycle. In particular,
the hysteresis loss was calculated by integrating the force versus displacement [19]. The
utilized optical extensometer was based on stereo 3D digital image correlation (3D-DIC),
which enables the strain components at the surface of the hourglass sample to be obtained.
To perform 3D-DIC measurements, the sample was initially sprayed with white paint to
create a stochastic speckle pattern. Images of the samples were recorded upon deformation
with the help of a pair of 6-megapixel Schneider cameras. Post-processing was performed
using Aramis GOM Correlate (Version 2018, Braunschweig, Germany) software. The
true strain was obtained at the surface of the median section of the sample along in the
radial and longitudinal directions. The logarithmic volume strain, which is defined as the
logarithmic ratio between the current volume and the original volume of the sample at the
median section, was computed using the equation [26]:

ln
(

∆V
V0

)
= ln(λL) + 2 ln(λR) (3)

where ∆V and V0 are the difference in the volume at a given time and initial volume,
respectively, and λL and λR are the stretch ratio along the longitudinal and radial directions,
respectively.

2.5. Dynamic Mechanical Analysis

The viscoelastic properties of the samples were measured using DMA in shear mode
in the linear viscoelastic regime. Isothermal frequency sweeps at various temperatures
covering both the glass transition and the rubber plateau were considered to construct
master curves with respect to the time–temperature superposition principle [41]. The
storage modulus (G’) and loss modulus (G”) were recorded, and the loss tangent (tan δ)
was calculated. The loss tangent, which is defined as the ratio of the loss modulus (G”)
to the storage modulus (G’), describes the amount of energy converted into heat (viscous
part) to that recovered during the cyclic strain (elastic part).

The Payne effect measurements shown in this work were carried out using DMA
in tension mode. These tests were performed at a constant frequency of 10 Hz with the
dynamic strain sweep ranging from 0.01% to 10% at 21 ◦C.

2.6. Fatigue Testing and End of Life Criteria

Fatigue behavior was studied from hourglass-shaped samples. Displacement-controlled
fatigue tests were performed applying a maximum local strain of 100%, 130%, 150%, or 200%
and unloading the sample to a minimum local strain of zero. The tests were conducted
using a servohydraulic fatigue testing system (Instron 8872, Norwood, MA, USA) equipped
with a load cell of 5 kN. The sinusoidal displacement at the frequency of 2 Hz was used and
carried out at a room temperature of 21 ± 2 ◦C. The end of the fatigue life (Ni) of samples
was determined as the number of fatigue cycles, at which the derivative of the load as a
function of the number of cycles is not constant anymore. At the end, the Wöhler curves
were generated [2,42]. The interrupted fatigue tests were performed for several percentages
of Ni. Only thereafter these fatigued samples were utilized for microscopic characterization.

2.7. Scanning Electron Microscopy

An SEM Quanta FEG 200 (FEI, Eindhoven, The Netherlands) was used to study the
morphology of the cracks initiated on the sample surface. This SEM was operated in low
vacuum mode, which allowed the analysis of samples without the need for any conductive
coating. Interrupted fatigue samples were used for SEM observation. Before observing the
sample by SEM, it was mounted onto a miniature tensile machine (Kammrath & Weiss,
Schwerte, Germany), which was placed inside the SEM chamber. For facilitating the
observation of the initiated cracks, samples were stretched with a displacement of 2 mm.
Energy-dispersive X-ray spectroscopy (EDX Genesis XM 4i, EDAX Inc., Mahwah, NJ, USA)
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was used to verify the elemental nature of the crack initiation sites. Crack precursor size
was obtained using SEM observations and was defined as the length of all the individual
cracks detected on the sample surface.

2.8. Micro-Computed X-ray Tomography

A laboratory micro-computed X-ray tomograph (µCT) EasyTom 160 manufactured by
RX Solutions (Chavanod, France) was employed for 3D imaging of the SRB composites
(rectangular cuboid samples of dimension 2 mm × 2 mm × 5 mm and hourglass samples).

The hourglass samples were observed prior to, as well as after, mechanical testing,
whereas the cuboid samples were only investigated prior to any mechanical testing. In
the second case, the hourglass-shaped samples were stretched in the µCT with an applied
displacement of 2 mm using a Deben CT5000 (Suffolk, UK) miniature mechanical testing
device to reopen the cracks. To fully image the median section of the hourglass specimen,
the source-to-object distance (SOD), as well as the source-to-detector distance (SDD), were
adjusted in such a way as to obtain a voxel size of almost 9 µm. The acquisition parameters
are summarized in Table 2. Following the 3D volume reconstruction with the Xact64
software (Version 2021, RX Solutions, Chavanod, France), a 3D image analysis of µCT
projections was performed using the Avizo software (ThermoFisher, Waltham, MA, USA).
Following subvolume extraction, a median filter was used to denoise the data. Next,
following a segmentation step, only agglomerates and cracks with a size larger than
2.5 times the voxel size were considered for the analysis, given the error in determining the
shape characteristics of the agglomerates and cracks [24]. The volume of the initiated cracks
was calculated with respect to several stages of Ni. A region of interest of 2 mm in height
in the median section (highlighted in Figure 1) of the hourglass sample was considered for
the volume fraction measurement.

Table 2. µCT parameters.

Acquisition Parameter Hourglass Sample Cuboid Sample

SOD (mm) 35 7.75
SDD (mm) 497 329

Voxel size (µm) 9 3
X-ray source voltage (kV) 45 40
X-ray source current (µA) 165 160

Frame rate (frame/s) 1 0.75
Number of averaged frames 5 3

Angular range (◦) 360 360
Angular step (◦) 0.25 0.25

3. Results and Discussions
3.1. Initial Morphology Characterization

The morphological parameters of the agglomerates present in the different compounds
were observed before performing fatigue testing by means of µCT. To this end, the µCT
experiments were carried out on cuboid samples. The SOD and SDD parameters were
adjusted in such a way that the sample was fully in the field of view and that the field of
view of air volume surrounding the sample was reduced to a minimum. The statistical
observation was carried out on a sample of volume 3.84 mm3 in which agglomerates of an
equivalent diameter larger than 10.24 µm were considered. The dissimilarity in agglom-
erate dispersion is qualitatively documented by Figure 2, in which more agglomerates
are present on the highest SSA compound (C3). A statistical analysis was carried out
considering different morphological parameters, and the results are presented in Table 3.
The median equivalent diameter of the agglomerates shows that the agglomerates were
in a similar size range whatever the silica SSA. However, the volume fraction and density
of the agglomerates increased with increasing silica SSA. This suggests that silica with a
larger SSA has a greater tendency to reduce the silica dispersion state in the SBR matrix.
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Having a high SSA reduces the interaggregate distance, developing more interaction with
their neighboring aggregates, and, therefore, it is more difficult for silica to be finely dis-
persed [43]. Additionally, undispersed agglomerates can be considered potential crack
initiation sites, which would lead to a shorter product lifetime.
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Table 3. 3D image analysis of the agglomerates in C1 to C3.

C1 C2 C3

Median equivalent diameter (µm) 12.42 12.05 12.10
Volume fraction (%) 0.12 0.24 0.27

Density of agglomerates per mm3 307 746 896

3.2. Crack Precursor Measurement Based on Tearing Energy

The stress–strain results based on quasi-static tests performed on dumbbell samples,
as well as the force-displacement from the nicked angle tear tests results, are presented in
Table 4. The sample’s crack precursors size was calculated by substituting stress at break,
strain at break, and the critical tearing energy in Equation (2). From Table 4, the strain at
break of the samples decreased with increasing silica SSA. The significant decrease in the
strain value of the sample can be attributed to the increased interaction between the silica
and SBR matrix when increasing SSA results in an increase in the stiffness of the material,
as more stress is transferred to the reinforcing fillers. The crack precursor sizes of the three
compounds are presented in Table 4. Values between 365 µm in the case of C1 and 501 µm
in the case of C2 were obtained, which may indicate that C2 has the shortest and C1 has
the longest fatigue life (large cracks promoting stress concentration) [31]. Fatigue testing
will enable verification of this finding. However, this method is known to overestimate
the real size of the crack precursors, as recently reported [31]. SEM imaging of cracks will
enable us to confirm this point.

Table 4. Mechanical properties and crack precursor size for the tested samples.

Stress at Break
(MPa)

Strain at Break
(%)

Tear Strength
(N/mm)

Crack Precursor
Size (µm)

C1 18.2 ± 0.1 277.0 ± 5.7 30.0 ± 0.5 365.0 ± 0.7
C2 15.6 ± 0.4 273.0 ± 2.1 35.3 ± 0.2 501.0 ± 16.9
C3 19.0 ± 0.2 254.0 ± 0.7 29.9 ± 0.7 370.0 ± 4.9

3.3. Viscoelastic Properties and Hysteresis

Figure 3 shows the dependence of the material’s storage modulus with respect to the
dynamic strain. A typical Payne effect was noted for all the compounds, i.e., the storage
modulus at the lowest strain amplitude decreased with an increase in strain. The magnitude
of the Payne effect (∆E’) [44] is attributed to the degree of filler–filler breakdown (Table 5).
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The compound with the highest silica SSA showed the highest decrease in modulus and,
therefore, the largest Payne effect. The largest Payne effect can be attributed to the increase
in the filler network. In C3, the particle diameter and interaggregate distance decreased
due to the increase in SSA. This facilitated the formation of a filler network. These filler
networks are produced when the primary fused particles (aggregates) can agglomerate
to create the filler network. The extent of the filler network is more noticeable with an
increase in filler SSA [45], as confirmed by µCT imaging (Figure 2, Table 3).
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Table 5. Magnitude of Payne effect.

E’(0.1) E’(10) ∆E’ [E’(0.1)–E’(10)]

C1 9.2 5.5 3.7
C2 10.9 5.7 5.2
C3 15.3 8.0 7.3

Following the Payne effect results, it is evident that the silica SSA has been perceived
as a critical parameter in the material’s stiffness. Figure 4a,b shows the storage modulus (G’)
and loss modulus (G”) master curves as a function of frequency at a reference temperature
of 21 ◦C corresponding to the fatigue testing temperature. During these measurements,
the percentage of dynamic strain used to stretch the samples was in the linear viscoelastic
regime. In the rubbery regime (low-frequency range), an increase in G’ and G” is observed
with increasing SSA. This can be explained by the formation of a rigid 3D filler network
consisting of percolating paths of aggregates and agglomerates. µCT results showed that
the increase in SSA promotes more interaction between fillers, meaning a stronger filler
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network. The increase in filler–filler interactions will induce an increase in G’ and G” due
to the intrinsic higher stiffness of the filler (increase in G’) and by the amount of energy
needed to alter the filler network (G”).

Figure 4c presents the frequency dependence of tan δ at 21 ◦C for the three compounds.
Considering the transition regime, a decrease in the height of tan δ is observed as the silica
SSA increases. Given that the α-relaxation in the transition zone is caused by coopera-
tive motions of polymer chains, the decrease in peak height with increasing SSA can be
attributed to the increase in local interactions between the polymer chains and the filler
interface. These local interactions decrease the number of polymer chains participating in
the molecular motions responsible for the α-relaxation process.
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Samples with hourglass geometry (see Figure 1) were used for the hysteresis loss
measurement. Hysteresis losses of compounds with different SSAs are shown in Figure 5.
Here again, the hysteresis losses increase with increasing local maximum strain and silica
SSA. For a constant filler content, silica fillers with larger SSA, i.e., smaller particle size,
facilitate the formation of a secondary filler–filler structure, i.e., agglomerates [18]. There-
fore, the disaggregation of agglomerates during deformation increases with an increase in
SSA [18]. As a result, hysteresis loss increases and contributes to a larger heat generation in
the compound with increasing SSA.



Polymers 2021, 13, 3094 10 of 18

Polymers 2021, 13, x FOR PEER REVIEW 10 of 19 
 

 

Samples with hourglass geometry (see Figure 1) were used for the hysteresis loss 
measurement. Hysteresis losses of compounds with different SSAs are shown in Figure 5. 
Here again, the hysteresis losses increase with increasing local maximum strain and silica 
SSA. For a constant filler content, silica fillers with larger SSA, i.e., smaller particle size, 
facilitate the formation of a secondary filler–filler structure, i.e., agglomerates [18]. There-
fore, the disaggregation of agglomerates during deformation increases with an increase 
in SSA [18]. As a result, hysteresis loss increases and contributes to a larger heat generation 
in the compound with increasing SSA. 

 
Figure 5. Measured hysteresis loss from compounds, including different silica fillers tested at different strain levels. 

3.4. Fatigue Life 
For comparing compound fatigue properties, Wöhler curves were generated by cor-

relating the number of cycles until the end of life with different local strain levels (see 
Figure 6). A power-law function (y = a·xb) was used to fit the data. The local maximum 
strain, as presented in Figure 6, was measured on the surface of the median section of the 
sample using 3D-DIC. As expected, the fatigue life of the compound increased with re-
ducing the imposed local surface strain. Regardless of the local maximum strain to which 
the sample was subjected, fatigue life decreased from C1 to C3, indicating that the esti-
mated crack precursor sizes by tearing testing (Table 4) are not reflecting this fatigue life 
order (C2 was estimated to have the largest crack precursor size and, hence, the shortest 
fatigue life). Whereas previous studies have shown that the fatigue life of filled com-
pounds depends on the test conditions, load ratios [42], and additives [8], this study im-
plies that the compound’s fatigue life also depends on the SSA of the silica filler. The im-

Figure 5. Measured hysteresis loss from compounds, including different silica fillers tested at different strain levels.

3.4. Fatigue Life

For comparing compound fatigue properties, Wöhler curves were generated by cor-
relating the number of cycles until the end of life with different local strain levels (see
Figure 6). A power-law function (y = a·xb) was used to fit the data. The local maximum
strain, as presented in Figure 6, was measured on the surface of the median section of
the sample using 3D-DIC. As expected, the fatigue life of the compound increased with
reducing the imposed local surface strain. Regardless of the local maximum strain to
which the sample was subjected, fatigue life decreased from C1 to C3, indicating that the
estimated crack precursor sizes by tearing testing (Table 4) are not reflecting this fatigue life
order (C2 was estimated to have the largest crack precursor size and, hence, the shortest
fatigue life). Whereas previous studies have shown that the fatigue life of filled compounds
depends on the test conditions, load ratios [42], and additives [8], this study implies that
the compound’s fatigue life also depends on the SSA of the silica filler. The improvement
in the fatigue end of life could be due to the reduction in stiffness of the material, as
stiffness decreased with the decrease in the SSA; thus, requiring less energy for the cyclic
deformation. Generally, an increased energy input results in a decreased fatigue end of
life [10]. Additionally, from Table 3, the volume fraction of agglomerate in C1 is lower in
comparison to C3. Therefore, the shortest distance between the two agglomerates will be
more significant compared with C3. It is reported that a decrease in the distance between
two agglomerates drastically decreases the strain for the cavitation [33]. Thus, there could
be a delay in losing the structural stability of the compound, hence improving fatigue end
of life.
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3.5. Mechanisms of Crack Initiation

SEM analyses were performed on the surface of the interrupted fatigue samples to un-
derstand the mechanisms of crack initiation. While performing the SEM measurements, the
sample was stretched by 2 mm using a miniature tensile machine for reopening the cracks
induced by the fatigue testing. Figure 7 shows debonded silica agglomerates from the SBR
matrix. The detachment zone is at the poles of the agglomerates, and the crack propagates
perpendicular to the loading direction. In addition, there were significant morphological
similarities observed between the agglomerates induced debonding mechanisms. Thus,
from the 2D images, it appears that in some observed debonding sites (e.g., Figure 7e), the
silica agglomerates have a sharper edge at the debonded pole, at least in two dimensions.
It is generally known that a sharper edge raises the stress concentration and facilitates
crack initiation at the interface. Therefore, it can be rationalized that the crack initiation of
silica-filled SBR composites under dynamic loading originates from filler–matrix debond-
ing. From the SEM observations, three stages of crack evolution at the vicinity of silica
agglomerates were identified. These stages were similar for the three compounds of the
study. In stage 1 (Figure 7a), the initiation of crack was noted due to matrix–agglomerate
debonding occurring at the agglomerate poles. Figure 7b represents stage 2 characterized
by the sidewise opening of the initiated crack, whereas stage 3 (Figure 7d) corresponds to
the fast growth of the crack on the surface and in the bulk perpendicular to the loading
direction, expected to form at a later stage a macro-crack conducting to the sample fracture.
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respectively (samples subjected to 200% of local strain and 40% of Ni, loading direction is vertical).

Apart from the debonding mechanism, another specific initiation mechanism was
identified for the samples subjected to interrupted fatigue tests. Indeed, some silica
agglomerates fractured into two or more fragments, as depicted in Figure 8. This could
be due to the fracture of agglomerates during the sample preparation process or to pre-
existing internal flaws [46]. Defining the aspect ratio of the agglomerate as the ratio of
their vertical length i.e., the length parallel to the loading direction, to the agglomerate’s
horizontal length [47], it can be seen from Figure 8 that the apparent correlation between
the shape, orientation, and alignment of the agglomerates was causing the crack initiation.
We observed from the SEM micrographs that the silica agglomerates of aspect ratio greater
than one (i.e., the longest length is oriented along the loading direction) were mostly
fractured into halves. This suggests that a significant particle orientation effect is present.
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Thus, particles with a large aspect ratio (>1) are more susceptible to internal agglomerate
fracture than axisymmetric particles (if aspect ratio equals 1).

The crack precursor size was determined by quantitative analysis of SEM images
(Figure 9). For the calculations, crack precursors resulting from both the matrix–agglomerate
debonding and the internal fracture of the agglomerate were considered. The result shows
that the majority of the crack precursors had a size below 10 µm for C1 to C3. It was also
noted in the three compounds that the cracks initiated from silica agglomerates having a
size between 20 µm and 50 µm tend to propagate very fast and, hence, were considered
critical cracks. Moreover, the calculated crack precursor sizes obtained by SEM imaging
were different from those determined from the critical tearing energy method (Table 4). In
particular, the values obtained by quantitative microscopy were much smaller than the
ones obtained from the mechanical testing method. Considering that the direct observation
of the crack is much more accurate than the second method, we conclude that the critical
tearing energy method markedly overestimates the crack precursor size, confirming a pre-
vious study [31]. This can be explained by the fact that the used macroscopic mechanical
testing method is not sensitive enough to crack initiation occurring at the microscopic scale.

3.6. Volume of Cracks Based on µCT and DIC

The crack volume fraction, i.e., the ratio of the volume of the crack to the total volume
of the sample, was assessed by performing µCT on the hourglass samples for the strain
level 150% for different compounds. The volume of cracks is presented in Figure 10 for
different levels of fatigue end life (Ni). Most of the cracks initiated in the surface and
sub-surface regions of the sample’s median section. Here again, it was observed that the
cracks mainly initiated due to debonding and internal fracture of the silica agglomerates.
C1 and C2 had a higher resistance to crack initiation; the volume fraction of cracks in C3
was around three times higher than for C1 and C2 and continued to rise at a faster rate
with increasing Ni. The volume of the cracks increased with increasing numbers of cycles
to rupture, and the cracks initiated at later stages of fatigue life. Further, cracks grew and
coalesced, leading to fracture.
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A quantitative comparison was made with the DIC results. The normalized vol-
ume strain, obtained by dividing the measured volume strain of each compound by the
global maximum volume strain, of the different compounds determined using 3D-DIC
measurement is shown in Figure 11. The choice of normalizing the volume strain comes
from the intrinsic gradient of deformation in the hourglass geometry, being the maximum
strain at the surface and the minimum at the center. Therefore, a precise determination of
the deformation is not ensured with the current method, inducing experimental bias in
calculating the volume strain. By normalizing, we propose to discuss the overall trends
of the volume increase measured at the surface of the hourglass specimens. Figure 11
shows the stretch dependencies of the normalized volume strain for all three investigated
compounds. Upon stretching, a noticeable increase in the normalized volume strain is
observed. The normalized volume strain of the compounds depends on the SSA of the
filler: the higher the SSA, the higher the volume strain. The µCT and 3D-DIC results show
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a similar trend for the various compounds. Thus, the evaluation of the volume change can
be a suitable approach to understand the incompressibility. The rise in the macroscopic
volume can be correlated to the initiation and propagation of cracks. Therefore, this method
suggests that the µCT and 3D-DIC results are qualitatively comparable [24,25]. Thus, it
demonstrates the relevancy of two methods on the durability-based ranking of composites
during deformation.
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4. Conclusions

This study focused on understanding the influence of silica SSA on the fatigue and
viscoelastic behavior of SBR/silica composite. From the DMA analysis and hysteresis loss
testing, the stiffness of the compounds and the hysteresis loss increase with the SSA, which
is attributed to the increase in the reinforcement effect of high SSA silica and the increase
in the degree of breakdown of filler network upon deformation. By µCT, the volume
fraction of the agglomerates was investigated. It was observed that the detected volume
fraction of the agglomerates increases with the SSA, which is related to the strong filler
network. These filler networks, i.e., agglomerates, are being considered crack initiation sites.
SEM observations on interrupted fatigue samples revealed two types of crack initiation
mechanisms initiated from the silica agglomerates: (a) matrix silica interfacial debonding
at one or both poles of the fillers and (b) internal silica. The detected initial cracks were
oriented perpendicular to the loading direction. These mechanisms were observed in the
case of all the compounds irrespective of the SSA. Moreover, it was observed that the
cracks initiated even before 10% of fatigue end life. Based on the SEM observations on
the sample surface, we found that most of the crack precursors had a size below 10 µm,
whereas the tearing testing method provided much higher values of crack precursor size.
The influence of SSA on fatigue end life was characterized by generating the Wöhler curve
for different strain levels. The latter indicates that the fatigue end life decreases with an
increase in the SSA. This can be corroborated by the increase in the volume fraction of
the filler network. Hence, an increase in stiffness could be related to a stronger filler–filler
interaction. Some calculations of the volume strain with DIC measurements revealed the
same trend as the volume strain determined by µCT experiments. Indeed, for the two
volume strain calculation methods, the volume strain increased with SSA. Microscale
structural characterization methods indicate that the macroscopic rise in volume strain
observed by DIC coincides with the formation and growth of cracks. The decrease in
fatigue life with increasing SSA was accompanied by the rise in hysteresis loss and stiffness.
It is concluded that the SSA plays a predominant role in the compound’s fatigue life and
viscoelastic properties and, therefore, has a profound influence on the applications for
which it is developed. Thus, it may be beneficial to use a silica-filled rubber material with a
large SSA in an elastomeric product where the rigidity is essential and where the material is
not exposed to a high number of fatigue cycles, whereas a silica-filled rubber material with
a low SSA would be used in an elastomeric product where the rigidity is less important,
but the fatigue properties are essential.
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