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Abstract: Microarray technology is a powerful tool, which has been applied to further the understanding of gene expression 
changes in disease. Array technology has been applied to the diagnosis and prognosis of Acute Myelogenous Leukemia 
(AML). Arrays have also been used extensively in elucidating the mechanism of and predicting therapeutic response in 
AML, as well as to further defi ne the mechanism of AML pathogenesis. In this review, we discuss the major paradigms of 
gene expression array analysis, and provide insights into the use of software tools to annotate the array dataset and elucidate 
deregulated pathways and gene interaction networks. We present the application of gene expression array technology to 
questions in acute myelogenous leukemia; specifi cally, disease diagnosis, treatment and prognosis, and disease pathogenesis. 
Finally, we discuss several new and emerging array technologies, and how they can be further utilized to improve our 
understanding of AML.

Keywords: acute myelogenous leukemia, gene expression profi ling, diagnostics, therapeutics, prognosis, downstream 
genetic targets

Introduction
Acute myelogenous leukemia (AML) is a heterogenous disorder characterized by the inhibition of 
myeloid differentiation in hematopoietic progenitor cells (Estey and Dohner, 2006). This results in the 
accumulation of relatively undifferentiated “blasts” exhibiting one or more types of early myeloid 
differentiation within the bone marrow, leading to replacement of normal marrow elements, and clinical 
aspects of the disease. The most common cause of death is bone marrow failure resulting in anemia, 
neutropenia, and thrombocytopenia (Estey and Dohner, 2006). Cytokines released by AML blasts also 
inhibit the differentiation of normal blasts (Youn et al. 2000). Clinically, patients present with fever, 
fatigue, and spontaneous mucosal and cutaneous bleeding (Aster, 2005). Infections caused by 
opportunistic organisms such as fungi, Pseudomonas, and commensals are frequent (Aster, 2005).

AML is diagnosed based on a combination of morphology, cytochemistry, fl ow cytometry, and 
cytogenetics (Aster, 2005; Estey and Dohner, 2006). According to the World Health Organization (WHO) 
classifi cation, AML can be categorized into four groups: (1) AML with recurrent chromosomal 
abnormalities; (2) therapy-related AML; (3) myelodysplastic syndrome-associated AML; and, (4) AML, 
not otherwise specifi ed [NOS] (Harris et al. 1999; Vardiman et al. 2002; Table 1). This scheme attempts 
to defi ne AML in terms of molecular pathogenesis and outcome, in addition to the criteria listed above. 
However, heterogeneity still exists within subtypes, especially within the AML, NOS category. Up to 
45% of AML patients contain leukemic blasts that do not demonstrate any cytogenetic abnormality 
(normal karyotype AML) and more accurate methods to determine molecular pathogenesis and clinical 
outcomes are required for these patients. Molecular analysis of AML through gene expression profi ling 
may help determine patient prognosis and disease pathogenesis.

Global gene expression analysis offers the opportunity to examine the impact of a known disease or 
disease gene on the genome and transcriptome of the cell. Such an analysis, since the earliest 
days of its development, has been applied to numerous cancers and other disease systems. 



14

Goswami et al

Cancer Informatics 2009:7

Ta
bl

e 
1.

 T
he

 W
or

ld
 H

ea
lth

 O
rg

an
iz

at
io

n 
(W

H
O

) a
nd

 F
re

nc
h-

A
m

er
ic

an
-B

rit
is

h 
(F

A
B

) c
la

ss
ifi 

ca
tio

ns
 o

f a
cu

te
 m

ye
lo

ge
no

us
 le

uk
em

ia
s 

(A
M

L)
.

W
H

O
 C

la
ss

ifi 
ca

tio
n

D
es

cr
ip

tio
n

FA
B

 C
la

ss
ifi 

ca
tio

n
I. 

A
M

L 
w

ith
 re

cu
rr

en
t g

en
et

ic
ab

no
rm

al
iti

es
A

M
L 

w
ith

 t(
8;

 2
1)

(q
22

; q
22

), 
(A
M
L1
/E
TO

)
A

M
L 

w
ith

 a
bn

or
m

al
 b

on
e 

m
ar

ro
w

 e
os

in
op

hi
ls

 a
nd

 
in

v(
16

)(
p1

3q
22

) o
r t

(1
6;

 1
6)

(p
13

)(
q2

2)
, (
C
B
Fβ
/M
Y
H
11

)
A

cu
te

 p
ro

m
ye

lo
cy

tic
 le

uk
em

ia
 w

ith
 t

(1
5;

 1
7)

(q
22

; 
q1

2)
 

(P
M
L-
R
A
R

α)
 a

nd
 v

ar
ia

nt
s

A
M

L 
w

ith
 1

1q
23

 (M
LL

) a
bn

or
m

al
iti

es

M
3:

 A
cu

te
 p

ro
m

ye
lo

cy
tic

 le
uk

em
ia

II.
 A

M
L 

w
ith

 m
ul

til
in

ea
ge

dy
sp

la
si

a
Fo

llo
w

in
g 

m
ye

lo
dy

sp
la

st
ic

 s
yn

dr
om

e 
(M

D
S

) 
or

 M
D

S
/

m
ye

lo
pr

ol
ife

ra
tiv

e 
di

se
as

e 
(M

P
D

)
W

ith
ou

t a
nt

ec
ed

en
t M

D
S 

or
 M

D
S/

M
PD

 b
ut

 w
ith

 d
ys

pl
as

ia
 

in
 a

t l
ea

st
 5

0%
 o

f c
el

ls
 in

 2
 o

r m
or

e 
lin

ea
ge

s
III

. A
M

L 
an

d 
M

D
S,

 th
er

ap
y 

re
la

te
d

A
lk

yl
at

in
g 

ag
en

t o
r r

ad
ia

tio
n-

re
la

te
d 

ty
pe

To
po

is
om

er
as

e 
II 

in
hi

bi
to

r-
re

la
te

d 
ty

pe
O

th
er

s
IV

. A
M

L,
 n

ot
 o

th
er

w
is

e 
cl

as
si
fi e

d
A

M
L,

 m
in

im
al

ly
 d

iff
er

en
tia

te
d

A
M

L,
 w

ith
ou

t m
at

ur
at

io
n

A
M

L,
 w

ith
 m

at
ur

at
io

n
A

cu
te

 m
ye

lo
m

on
oc

yt
ic

 le
uk

em
ia

A
cu

te
 m

on
ob

la
st

ic
 o

r m
on

oc
yt

ic
 le

uk
em

ia
A

cu
te

 e
ry

th
ro

id
 le

uk
em

ia
A

cu
te

 m
eg

ak
ar

yo
cy

tic
 le

uk
em

ia
A

cu
te

 b
as

op
hi

lic
 le

uk
em

ia
A

cu
te

 p
an

m
ye

lo
si

s 
an

d 
m

ye
lo
fi b

ro
si

s
M

ye
lo

id
 s

ar
co

m
a

M
0:

 A
cu

te
 u

nd
iff

er
en

tia
te

d 
le

uk
em

ia
M

1:
 A

M
L 

w
ith

 m
in

im
al

 d
iff

er
en

tia
tio

n
M

2:
 A

M
L 

w
ith

 d
iff

er
en

tia
tio

n
M

4:
 A

cu
te

 m
ye

lo
m

on
oc

yt
ic

 le
uk

em
ia

M
5:

 A
cu

te
 m

on
ob

la
st

ic
 le

uk
em

ia
M

6:
 A

cu
te

 e
ry

th
ro

id
 le

uk
em

ia
M

7:
 A

cu
te

 m
eg

ak
ar

yo
cy

tic
 le

uk
em

ia



15

Microarrays in acute myelogenous leukemia

Cancer Informatics 2009:7

For leukemias, associated typically with a single 
genetic abnormality—usually a single gene 
mutation (e.g. NPMc, FLT3-ITD, C/EBPα muta-
tion) or a fusion gene arising from a chromosomal 
translocation (e.g. BCR-ABL, AML1-ETO, 
X-RARα)—use of global gene expression analysis 
techniques allows for a deeper understanding of 
the cellular consequences as well as on the disease 
as a whole.

We and others have extensively reviewed 
methods of microarray analysis, study design and 
interpretation elsewhere (Sultan et al. 2002; 
Warner et al. 2004). Here, we will discuss the value 
of analyzing pathways into which deregulated 
genes may fall, as well as the major uses of array 
technology in AML. While we focus on using array 
technology to identify downstream targets of the 
leukemogenic transcription factors, we will also 

discuss its potential future applications in the fi eld; 
namely, in determination of diagnosis, prognosis, 
and therapeutic response.

Analysis of Gene Expression 
Microarrays

Identifying genes of interest: Biological 
relevance vs. statistical signifi cance
A schematic of a typical gene expression array 
analysis experiment is shown in Figure 1. 
Different approaches may be used for the 
interpretation of gene expression array data. One 
approach relies on the identifi cation of statisti-
cally significant deregulated genes between 
two or more groups of samples. Current analysis 

Arrays are scanned and
fluorescent intensities quantified

Reverse Transcription

Purification and Labeling:
biotinylated nucleotides are

incorporated

Labeled samples are
hybridized to oligo arrays

for cDNA synthesis
3’

3’

5’

Total RNA
AAAAA 3’5’

AAAAA

TTTTT 

UUUUU 

3’

5’

5’

3’ TTTTT 5’

A

B C D

Figure 1. Oligonucleotide microarrays. A) cDNA synthesis, labeling and hybridization to oligonucleotide array slides. B) Correlation 
coeffi cient analysis of gene expression data, showing, in red, probes with fl uorescent intensities above the threshold of detection, and in 
yellow, absent fl uorescence. C) Scatter plot analysis of gene expression data, showing the correlation between two of the samples that 
clustered together, where most probes have similar expression levels, with some probes differentially expressed between these samples. 
D) Hierarchical clustering of microarray data; in this analysis, samples with similar gene expression profi les are grouped together, cluster of 
genes is shown on the Y-axis and dendogram or cluster of samples is seen in the X-axis.
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of microarray data involves applying both 
statistical and machine learning techniques, such 
as hierarchical clustering (Lee et al. 2002), self-
organizing maps (Alevizos et al. 2001), or 
K-means clustering (Wang et al. 2000) to organize 
genes and samples into meaningful groups (Eisen 
et al. 1998; Vesanto, 1999; Friedman et al. 2000; 
Sultan et al. 2002; Table 2). These methods have 
been extensively used in microarray studies 
(Baugh et al. 2001; Hu et al. 2002; Iscove et al. 
2002; Makrigiorgos et al. 2002). There are 
numerous methods for statistical analysis of 
microarray data. Most existing tools have been 
developed for relational types of data, which 
typically have a large number of instances but 
low complexity. Thus, high complexity causes 
many existing tools to fail or provides outcomes 
with limited usefulness. New tools must be 

flexible enough to support the diverse tasks 
associated with clinically relevant genomic 
research.

While a group of genes may be deregulated in 
a statistically significant manner in a disease 
state, there is no assurance that these genes are 
functionally relevant in the disease. Conversely, 
in heterogeneous samples, where a mixed popula-
tion of cells is analyzed as a whole, biologically 
relevant deregulated genes may not attain statisti-
cal signifi cance. For example, in the study con-
ducted by Valk et al. (2004), they identified 
16 groups of AMLs with distinct molecular sig-
natures, associated with known and previously-
unidentifi ed disease subtypes. However, these 
studies demonstrated only an association; further 
analyses are needed to identify biological rele-
vance, especially when working with sets of 

Table 2. Brief description of selected computational methods for gene expression data analysis.

Computational methods 
for array data analysis

Basic concept of method Reference

Hierarchical Clustering This method is divided into partitive and 
agglomerative methods. The agglomerative 
approach is the most commonly used and it 
provides a compact summarization of the data. 
Hierarchical clustering is able to fi nd generic 
relationships between the resulting clusters; it 
can point to functional relationships between 
clustered genes, since genes that are co-
expressed might be co-regulated. Clusters are 
subsequently merged to form a tree structure 
called dendrogram.

Eisen et al. 1998

K-means Clustering This is a simple unsupervised learning algo-
rithm that classifi es a given dataset through a 
certain number of clusters; it requires that the 
researcher determine K, which specifi es the 
number of clusters in the data.

Sultan et al. 2002

Self-Organizing Maps (SOMs) It is a neural network algorithm similar to 
k-means clustering. A hexagonal map unit 
represents each gene selected by this algo-
rithm. It provides an intuitive visualization of 
the data, where the expression of a gene is 
associated with a color in the map, thus similar 
expression profiles correspond to similar 
colors.

Vesanto, 1999

Bayesian Networks This method requires the availability of prior 
distributions on the data. It provides a graphical 
display of dependence structure between 
multiple interacting quantities (e.g. interac-
tions between expression levels of different 
genes)

Friedman et al. 2000
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heterogeneous samples, which may lead to 
masking of relevant gene expression differences. 
Such further analysis may yield a set of genes, 
which, as a group, are biologically signifi cant in 
the context of the disease. Thus, an in-depth 
knowledge of the disease or system under inves-
tigation is needed.

Pathways analysis is an emerging method by 
which gene expression array data can be used to 
give rise to networks of biologically relevant 
genes. Several pathways analysis tools are avail-
able online or commercially, which can aid in the 
analysis of coordinately deregulated pathways. 
Others have been developed by indiviual investi-
gators to meet their specifi c needs. Some tools 
classify genes based on their Gene Ontology (GO) 
annotations, while others may map genes into 
canonical pathways. Still others attempt to defi ne 
interaction networks or functional relations among 
gene sets. Tools may also provide the means to 
compare pathways/interactions among several sets 
of genes, essentially allowing for a type of com-
parative analysis to take place. Several tools are 
available which combine some or all of these 
functions. All of these tools are based upon curated 
literature databases. This form of analysis allows 
the researcher to determine whether a given group 
of genes, defi ned within a particular annotation 

set, is enriched within the dataset, in comparison 
to the whole genome. The development of interac-
tion networks allows for the identifi cation of sets 
of genes, not within the same canonical pathway, 
which may still be involved in the same functional 
interaction (e.g. interaction networks often help 
defi ne regulatory interactions, either via transcrip-
tion or protein-protein interaction). Such analyses 
are useful in rapidly classifying deregulated genes 
into pathways and interaction networks for 
validation and functional analysis.

The following discussion further explores the 
practical use of expression profi ling in the clinical 
setting of acute myelogenous leukemia, paying 
special respect to the entity of acute promyelocytic 
leukemia.

Application of Gene Expression 
Microarray Technology to Acute 
Myelogenous Leukemia
Gene expression array technology has been put to 
a number of uses in order to more fully elucidate 
AML biology. Broadly, array analysis has been 
applied to the diagnosis and prognosis of AML; 
development and understanding of AML therapies; 
and elucidating the mechanisms of AML patho-
genesis (summarized in Table 3). Below, we 

Table 3. Uses of gene expression microarray technology in AML.

Application Examples
Microarrays in Diagnostics  •  Determination of gene expression signatures for known AML 

classes
 •  Development of clinical outcome gene expression signature
 •  Identifi cation of novel classes of AML, based on gene 

expression signatures
 •  Classifi cation of additional mutation status in patients based on 

gene expression profi les
Microarrays in Therapeutics  •  Use of gene expression profi les to predict chemosensitivity

 •  Elucidation of the molecular basis of action of AML 
therapeutic agents

Microarrays in Prognostics  •  Correlation of gene expression profi les in patients with 
mutation status and negative prognostic indicators

Microarrays in Understanding 
the Molecular Basis of 
Leukemias

 •  Elucidating downstream targets of leukemogenic transcription 
factors

 •  Comparative analysis of downstream targets to identify 
pathways commonly deregulated in AML

 •  Identifi cation of gene expression changes associated with other 
leukemogenic mutations

 •  Correlation between gene expression profi les and epigenetic 
regulation patterns in AML

 •  Molecular characterization of animal models of AML
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present case studies of the use of array technology 
in each of these areas of AML biology.

Array technology in diagnosis 
and prognosis
Gene expression profiling has demonstrated 
diagnostic utility within the research setting. 
Expression signatures may have predictive power 
in classifying leukemias from patient samples. 
Expression profi ling requires a large quantity 
(�10 μg) of high-quality RNA. While it may not 
replace molecular and cytogenetic testing as a 
diagnostic method, it is a potentially powerful 
tool in predicting patient response to therapy, 
although this area has not yet been extensively 
explored.

Prediction of known AML subclasses can be 
performed using gene expression profi ling, and 
AML subgroups with prognostically relevant 
chromosomal abnormalities can be predicted using 
this technique (Bullinger and Valk, 2005). 
The determination of novel AML subclasses has 
been performed using microarray technology. 
Bullinger et al. (2004) used cDNA microarrays to 
determine gene expression in blood and bone mar-
row samples from 116 AML patients, including 45 
patients with normal karyotype AML. This group 
identifi ed two novel subgroups of AML consisting 
of patients with normal karyotypes with signifi cant 
differences in survival times (Bullinger et al. 
2004). Unsupervised hierarchical clustering was 
performed on results from a test set of 59 patients 
to obtain a set of molecular subgroups with distinct 
gene expression signatures, and to create a super-
vised learning algorithm. This algorithm was used 
to obtain a 133-gene clinical outcome predictor 
which was then validated on the remaining 57 
patients in order to predict overall survival in this 
group. Using this predictor, overall survival was 
predicted accurately within the validation group 
including the subgroup of patients with normal 
karyotype AML. The gene expression predictor 
was a strong independent prognostic factor in 
multivariate analysis (Bullinger et al. 2004).

A second study performed by Valk et al. (2004) 
determined gene expression profi les within blood 
or bone marrow of 285 patients with AML. Using 
unsupervised cluster analysis, sixteen groups of 
patients with separate molecular signatures were 
identified. Clustering was driven mainly by 
chromosomal abnormalities, (i.e. t(8; 21), inv(16), 

t(15;17), 11q23, −7q), genetic mutations, 
(i.e. FLT3ITD, FLT3TKD, N-RAS, K-RAS, 
CEBPA), and abnormal oncogene expression, 
(EVI1). Novel subclasses of AML, containing 
normal karyotype AML samples, were obtained, 
and one cluster with a distinctive gene expression 
signature associated with significantly poor 
outcome was identifi ed (Valk et al. 2004). Interest-
ingly, this cluster contained a heterogenous group 
of samples with regard to known poor-risk markers. 
The authors suggest that this group may all share 
a yet unknown biochemical pathway leading to 
poor prognosis and that this group shares a 
molecular signature similar to that of normal 
hematopoietic stem cells (Valk et al. 2004).

Since these two studies, a third group has 
attempted to independently validate the fi ndings 
of Bullinger et al. (2004) using the expression 
signature identifi ed by the latter. Although this 
group used a different expression array platform, 
they were able to confi rm the prognostic utility 
of the gene expression signature obtained by 
Bullinger et al. (2004) (Radmacher et al. 2006). 
Thus, microarray technology, although currently 
not in use in the clinical setting may prove to be 
an important tool in the future in order to further 
subclassify the disease and help determine patient 
prognosis and potentially allow clinicians to tailor 
treatments to individual patients.

Several studies have reported that acute 
promyelocytic leukemia (APL) has a molecular 
“signature” associated with the presence of the 
PML-RARα gene fusion, which is distinct from 
the signatures of AMLs expressing AML1-ETO, 
CBFβ-SMMHC or C/EBPα mutations. AMLs 
expressing NPMc have a gene expression profi le 
(Alcalay et al. 2005), which is also distinct from 
those of other AMLs. Likewise, other forms of 
leukemia have distinct gene expression profi les 
that can be classifi ed based on the kind of leukemia 
being examined. For example, large scale gene 
expression profi ling has also been used to attempt 
clinical diagnosis of de novo versus MDS-related 
AML of the M2 subtype, by identifying gene 
expression signatures associated with these two 
forms of AML (Oshima et al. 2003).

Interestingly, expression profi ling of APL and its 
microgranular variant (AML M3 and M3v) demon-
strated that there are distinct differences between 
these two forms of promyelocytic leukemia 
(Haferlach et al. 2005). Additionally, FLT3-ITD is 
associated with 147 distinct gene expression changes 
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in APL; differentially expressed genes are associated 
with pathways involving cytoskeletal organization, 
cell adhesion and migration, coagulation, infl am-
mation, differentiation and myeloid granules 
(Marasca et al. 2006).

The presence or absence of FLT3 mutations 
may help determine the prognosis of APL 
patients. Although many mutations have been 
identifi ed, the majority, present in approximately 
25% of patients, are internal tandem duplications 
(ITDs). These are known to lead to in-frame 
insertions within the juxtamembrane region of 
the receptor. Other less frequent mutations 
involve the region encoding the activation loop, 
and most commonly affect codons aspartate 
835 and isoleucine 836 (D835/I836). These 
have been reported in approximately 8% of 
patients with AML (Gilliland and Griffi n, 2002; 
Kottaridis et al. 2003; Levis and Small, 2003; 
Stirewalt and Radich, 2003).

A study of  203 patients with PML-RARα-positive 
APL demonstrated that patients with FLT3 ITDs 
or D835/I836 mutations had associated poor prog-
nostic indicators. For instance patients with either 
FLT3 ITDs or activation loop mutations had higher 
white blood cell counts at presentation, often 
10 × 109 cells/L or greater (Gale et al. 2005). 
The same study discovered that FLT3 ITDs were 
correlated with M3v subtype, bcr3 PML break-
point, and expression of reciprocal RARA-PML 
transcripts. Patients with mutant FLT3 had a higher 
rate of induction death, but no signifi cant differ-
ence in relapse or overall survival at 5 years. 
Microarray analysis revealed differences in 
expression profi les among patients with FLT3/
ITD, D835/I836, and wild-type FLT3 (Gale et al. 
2005). The microarray portion of the study 
revealed that gene expression between FLT3 wild-
type and mutant samples was distinct enough that 
they could be separated into two different clusters. 
Samples with FLT3 ITD were associated with 
upregulation of 64 probe sets, including genes 
involved in or predicted to be involved in, cell 
cycle control and cell growth (e.g. SOCS2, FRP1, 
PLAGL1, TTK, CDC16, APOBEC3B) or RNA 
processing (e.g. GEMIN4, HNRPH1, DHX15). 
Nineteen probe sets were downregulated in the 
same population, 5 of which were HLA class 1 
genes (HLA-B71, allele A*2711, HLA-Cw*1701, 
HLA-J, HLA-G2.2). This seems to indicate that 
the presence of FLT3 mutations have differing 
effects on gene expression in patients with 

a t(15; 17) abnormality and they are distinct from 
expression patterns in FLT3 WT samples (Gale 
et al. 2005). The discovery that FLT3 mutations 
are associated with upregulation of genes involved 
in cell proliferation lends support to the hypoth-
esis that specifi c mutations providing a prolifera-
t ive/survival  s ignal  cooperate  with the 
PML-RARα—induced differentiation block in 
APL (Gale et al. 2005; Deguchi and Gilliland, 
2002). Thus, although microarrays are currently 
not being used in the diagnosis of APL, they 
provide insights into the biology of the disease.

These studies highlight the potential of using 
gene expression profi ling of patients to classify 
their leukemia and mutation status. However, 
several important considerations need to be taken 
into account when interpreting molecular signa-
tures of AMLs. First, different AMLs can arise 
from different myeloid lineages, or their blasts may 
resemble more or less differentiated progenitors. 
Thus, without appropriate lineage and differentia-
tion stage-specific controls, it is difficult to 
determine whether molecular signatures of differ-
ent AMLs are due to the disease itself, or merely 
artifacts of the cell type that predominates in the 
leukemia. It is also worthwhile to note that 
molecular signatures in and of themselves do not 
prove function. For example, while leukemic blasts 
may exhibit “stem cell-like” signatures, they are 
not stem cells, nor may they functionally behave 
like stem cells. Such inferences lie outside the 
scope of the array data, and require functional 
studies to more fully elucidate. In interpreting array 
data, one must always be cautious of the difference 
between statistical signifi cance and biological 
relevance of genes in the dataset. Finally, array 
analysis of AML subtypes to yield molecular 
signatures of disease allows us to identify potential 
biomarkers of specifi c leukemias. These genes are 
associated with the leukemia, but may not be 
causative, and therefore part of its molecular 
mechanism. The application of array technology 
to this latter question is addressed in more 
detail below.

Array technology in the treatment 
of AML
In addition to a number of studies that utilize 
microarray technology to subclassify AML and 
more generally acute leukemias (Kohlmann et al. 
2003; Tsutsumi et al. 2004; Song et al. 2006a), 
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this technology has also been used extensively 
to identify prognostic determinants in AML 
patients, as well as to better understand the 
molecular basis of response to therapeutic 
agents in AML.

Using a cohort of 76 AML patients, one study 
was able to identify gene expression changes that 
correlated with response to chemotherapy, and 
thus was predictive of chemosensitivity (Song 
et al. 2006b). Another study used a cell line 
model of doxorubicin resistance to identify gene 
deregulation patterns in chemoresistant cell lines 
(Tagliafi co et al. 2006). In a similar manner, 
Tagliafi co et al. used gene expression analysis 
to determine a molecular signature that is 
predictive for sensitivity to induction of 
differentiation by retinoids. A comparable anal-
ysis was performed to identify prognostic groups 
using 54 cases of pediatric AML (Yagi et al. 
2003). The authors of this study reported a set 
of 35 genes that included cell cycle and apopto-
sis regulators that provides prognostic informa-
tion in pediatric AML.

Array technology has also been applied to gain 
a better understanding of the molecular basis of 
therapeutic agents commonly used in AML. This 
is the case for the drug tipifarnib, a farnesyl 
transferase inhibitor originally developed to 
target oncogenic RAS, and shown to be effec-
tive in treatment of refractory and relapsed 
acute leukemias. One study identifi ed genes and 
genetic pathways that respond to treatment with 
tipifarnib, and revealed the presence of additional 
targets in the cell, in addition to RAS (Raponi 
et al. 2004). To further understand the molecular 
basis of differentiation therapy using all-trans 
retinoic acid (ATRA) in APL, one study used 
cDNA microarrays to identify gene expression 
changes in a time course analysis of ATRA 
treatment of the NB4 APL cell line model. 
The study identifi ed a number of genes that were 
upregulated after ATRA treatment, the majority 
of which were involved in pathways regulat-
ing cellular differentiation, transcription, 
programmed cell death, and cytokine and 
chemokine signalling (Yang et al. 2003). Another 
high-throughput study combined the use of 
oligonucleotide microarrays and 2D gel differ-
ence electrophoresis (2D DIGE) and mass 
spectrometry to identify both genomic as well as 
proteomic targets of ATRA in NB4 cells (Wang 
et al. 2004). Many, but, signifi cantly, not all of 

these were also attributable to the wild-type 
retinoic acid response (Liu et al. 2000).

Array technology in the defi nition 
of the mechanism of AML pathogenesis
Downstream Targets of AML-Associated Fusion 
Genes. Array technology has been applied to an 
understanding of the downstream targets of 
AML-associated fusion proteins (e.g. X-RARα in 
acute promyelocytic leukemia, or the t(8; 21) and 
inv(16) translocation products). Many of these 
studies are comparative in nature, as researchers 
aim to understand the signaling and genetic 
networks commonly deregulated in AML. Several 
studies have compared the APL fusion proteins 
PML-RARα with PLZF-RARα, as well as the 
t(8; 21) product AML1-ETO.

In in vitro studies conducted in U937 cells 
expressing PML-RARα and PLZF-RARα, a 
comparison of the effects of these two fusions on 
gene expression was undertaken (Park et al. 2003). 
In this analysis, deregulated expression of a number 
of genes identifi ed to be involved in tumor necrosis 
factor (TNF) α signaling was observed. Strikingly, 
an independent study examining the effect of ATRA 
on gene expression in ATRA-sensitive and—resistant 
NB4 cells also identifi ed TNF-response genes as 
being induced in response to retinoic acid treatment 
(Witcher et al. 2003; Witcher et al. 2004). In studies 
designed to follow up on these latter observations, 
it was demonstrated that TNFα treatment could 
cooperate with ATRA in the differentiation of APL 
cells, implying a potential role for this combination 
in treating human patients.

Concomitant with the studies described above, 
others investigated the commonalities among 
PML-RARα, PLZF-RARα and AML1-ETO, 
also in U937 cells (Alcalay et al. 2003). Genes 
deregulated in the presence of all three fusions were 
found in pathways involved in stem cell mainte-
nance and in the regulation of DNA repair. These 
observations suggested that AML fusions induced 
a “de-differentiated” state in leukemic blasts, thus 
providing for their self-renewal capabilities. 
In addition, the loss of DNA repair regula-
tion allowed for the accumulation of additional 
genetic changes, which could accelerate leukemic 
progression. This is consistent with the observation 
that external irradiation potentiated the leukemic 
phenotype in mCG-PML-RARα mice (Walter 
et al. 2004).
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Comparative analysis also identifi ed MNK1 
as over-expressed in U937 cells expressing 
PML-RARα, PLZF-RARα, and AML1-ETO, and 
post-translationally stabilized by PML-RARα. 
(Worch et al. 2004) MNK1 is functionally associ-
ated with eIF4E, and its role in carcinogenesis, as 
over-expression of MNK1 leads to phosphoryla-
tion of eIF4E, and its subsequent functional 
activation. Finally, another study examining 
the effects of PML-RARα, PLZF-RARα and 
AML1-ETO on U937 cells identifi ed the deregu-
lation of Wnt/β-Catenin signaling common among 
all three fusions (Muller-Tidow et al. 2004). 
The Wnt signaling pathway is involved in cellular 
proliferation, cell-to-cell signaling, and is impli-
cated in the self-renewal of stem cells, suggesting 
that AML fusions may induce abnormal cellular 
proliferation in part through deregulated Wnt 
signaling. Concomitantly, AML-associated 
translocation products (including PML-RARα) 
increase the expression of γ-Catenin by activating 
its promoter region. Increased γ-Catenin expres-
sion leads to increased replating effi ciency of HSC 
(Zheng et al. 2004).

Microarray studies have focused on the 
identification of commonly- and specifically-
regulated genes in related leukemias. Both the 
t(8; 21) and inv(16) forms of AML create fusion 
proteins involving components of the Core Binding 
Factor complex, AML1 and CBFβ. A recent study 
has demonstrated that an overlap exists between 
the gene expression profi les of t(8; 21)-expressing 
patient blasts, as compared to inv(16)-expressing 
blasts. As expected, there are also genes specifi cally 
regulated by one fusion, but not the other, in this 
dataset (Ichikawa et al. 2006).

Studies aimed at examining the downstream 
targets of the t(8; 21) translocation product 
AML1-ETO, as well as the naturally-occurring 
leukemogenic splice variant AML1-ETO9a, 
identified CD44 as a transcriptional target. 
Interestingly, CD44 was found to be induced at the 
mRNA and protein levels, and both variant forms 
of AML1-ETO were found to bind the CD44 
promoter. The authors of this study also identifi ed 
a number of other genes differentially regulated by 
AML1-ETO9a. Interestingly, consistent with 
analysis of the APL fusion proteins, more genes 
were found to be over-expressed in the presence 
of this fusion than down-regulated (238 over-
expressed �2-fold; 183 under-expressed �2-fold). 
When considering genes deregulated by �3.5-fold, 

the contrast was even more striking: 75 genes were 
over-expressed; 24 were under-expressed (Peterson 
et al. 2007). It is interesting to consider the 
implications of this research in the context of 
the currently accepted models of action for 
leukemogenic transcriptional repressors such as 
AML1-ETO and X-RARα. Particularly, why do 
putative transcriptional repressors have so many 
over-expressed target genes? Are they simply 
easier to detect in array and PCR validation 
studies? Or are they not direct targets of the 
transcription factors, but are instead secondary or 
even tertiary effects? Or are they due to some 
as-yet-unidentified gain-of-function properties 
of these fusion proteins? As yet, the answer 
remains unclear.

Gene Expression Changes Associated with 
Other Leukemogenic Mutations. Microarray 
analysis has also been used to assess the 
consequences of FLT3 mutation on AML cells 
(Tickenbrock et al. 2005). Such analysis led to 
the identifi cation of Frizzled 4, a receptor for Wnt 
ligands, as being up-regulated in 32D cells 
expressing FLT3-ITD. Further studies demon-
strated a functional link and possible cooperation 
between FLT3-ITD and Wnt signaling in myeloid 
transformation. Similar studies identified the 
proto-oncogene Pim-1 as being up-regulated in 
the presence of FLT3-ITD (Kim et al. 2005). 
Additional studies demonstrated that FLT3 muta-
tions activate transcriptional programs that may 
partially mimic IL-3 activity in cells (Mizuki et al. 
2003). Other FLT3-ITD target genes are involved 
in IL-3-independent pathways that antagonize 
differentiation.

HOXA9 is frequently over-expressed in AML, 
suggesting that it may contribute to leukemogen-
esis. Indeed, forced expression of HOXA9 in mice 
is leukemogenic. The authors’ data suggested that 
HOXA9 functions as a cell-type and context-
dependent transcriptional activator or repressor, 
and that its target genes are involved in prolifera-
tion or myeloid differentiation. Expression of 
14 HOXA9 target genes correlated with its 
over-expression in AML samples (Dorsam 
et al. 2004).

Array Analysis of Epigenetic Regulation in 
AML. In a screen to identify methylation targets 
in AML, the authors of one study identified 
C/EBPδ as a putative tumor suppressor that is 
hypermethylated and under-expressed in �35% 
of AML patients. C/EBPδ was also found to be 
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growth-inhibitory in primary progenitor cells, as 
well as in FLT3-ITD-transformed cells (Agrawal 
et al. 2007). Other studies have utilized microarray 
technology to identify epigenetically silenced 
genes in AML. Desmond et al. (2007) compared 
the expression of KG-1 cells, +/− demethylating 
agents or HDAC inhibitors, to that of similarly-
treated primary CD34+ cells. This enabled them 
to identify genes as epigenetically silenced if they 
were under-expressed in KG-1, compared to 
primary CD34+ cells, and over-expressed after 
drug treatment (Desmond et al. 2007).

Array Analysis of Murine Models of Leukemia. 
Transgenic or transduction/transplant models of 
AML allow for a unique opportunity to study the 
effects of leukemogenic mutations in vivo. 
Specifi cally with respect to APL, only three such 
studies have been conducted in two mouse model 
systems: The mCG-PML-RARα transgenic line 
(Walter et al. 2004; Yuan et al. 2007) and the 
hCG-NuMA-RARα line (characterized in Sukhai 
et al. 2004). In the fi rst set of studies, the authors 
identifi ed genes deregulated in the presence of 
PML-RARα in primary bone marrow cultures 
derived from transgenic mice, and in the context 
of treatment with external irradiation, in order to 
measure the accumulation of genetic changes after 
DNA damage. Further analysis demonstrated a 
network of deregulated myeloid transcription, 
postulated to contribute to leukemogenesis in mice. 
These studies demonstrated that individual 
PML-RARα+ mice had variable gene expression 
profi les, suggesting that no single, unifying coop-
erating downstream gene expression change may 
be required for leukemogenesis in these mice. Our 
own studies on hCG-NuMA-RARα mice utilized 
pathways analysis to assess the identities of 
possible cooperating signaling networks in APL. 
While we identifi ed the deregulation of myeloid 
transcription in our dataset, we also identifi ed 
several epigenetic regulators and modulators of 
apoptosis and cytokine signaling to be deregulated 
in the presence of NuMA-RARα. Our studies were 
the fi rst in vivo report of gene expression analysis 
of a variant APL fusion gene.

Considerations in interpreting 
array studies
In reviewing array studies of AML, several 
considerations important to the analysis 
and interpretation of published array studies 

become evident. First among these is the nature 
of the system being studied (human patients, cell 
line models, or animal models). Cell lines are the 
most tractable system, often readily available, 
easily grown and easily manipulated. However, 
cell lines are immortalized systems with their 
own stable of genetic changes—some of 
which may render the cell line genomically 
unstable. U937 cells, often used for the study of 
leukemogenic transcription factors, carry 
58 chromosomes with multiple genomic changes. 
The patient-derived APL cell line NB4 carries 
78 chromosomes. Additionally, the nature of the 
manipulation must be taken into consideration 
when assessing cell line array data: Was the line 
transduced with a viral vector, or transfected with 
a plasmid? If transfected, does the plasmid 
integrate into the genome? Was the transfection 
transient or stable? If transduced, what was the 
nature of the viral vector? Did it integrate into 
the genome? If so, where? What is the dosage of 
the exogenously introduced gene?

Animal models are more physiologically 
relevant systems than cell lines, although they are 
more labor intensive to create, maintain and 
phenotype. In analyzing array data from animal 
models, particularly from the hematopoietic 
compartment, we must take into consideration the 
heterogeneity of this environment, as well as the 
temporal and spatial control of the introduced 
genetic change. It is important to also consider, 
when comparing across models, whether animals 
were transgenic, knock-out, knock-in, conditional 
or transplant/xenograft models in nature.

Human patient samples are perhaps the most 
ideal system in which to study genetic changes in 
leukemias. However, as noted previously, they can-
not be used to study the mechanism of the disease. 
Here, too, it is important to recognize the hetero-
geneity of the bone marrow environment and the 
nature of the appropriate controls for the array 
experiment.

Additional considerations in interpreting array 
studies of AML include the sample size and number 
of replicates in the study; the need for RNA and 
protein validation studies as well as functional 
follow-up or demonstration of clinical relevance; 
and the purpose of the experiment, as well as the 
appropriateness of the system being used. For 
example, one cannot use human samples to identify 
direct targets of leukemogenic transcription factors. 
However, while cell lines and animal models 
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may be used for this, as discussed previously, 
human patient samples must ultimately be used for 
validation purposes. These questions remain 
applicable, even when we consider the new and 
emerging array technologies that are the focus of 
the fi nal section of this review.

New and Emerging Array 
Technologies

Array comparative genomic 
hybridization (aCGH) in AML
Array-comparative genomic hybridization, in 
conjunction with gene expression profi ling, has 
been used to identify gene expression signatures 
in AML with complex karyotypes (Lindvall et al. 
2004; Schoch et al. 2005; Rucker et al. 2006). 
This approach is valuable in that it allows for the 
comparison of identifi ed regions of genomic gain 
and loss with gene expression data, as we would 
expect that genes situated in regions where the 
genomic copy number has been altered would 
either be over- or under-expressed, depending on 
the change. Such a comparison allows for the 
screening of array data for gene expression 
changes that are associated with genomic copy 
number difference. This permits the identifi cation 
of genes that are more likely to be directly dereg-
ulated by the leukemogenic mutation of interest. 
Array cGH has also been used to identify genomic 
imbalances in complex karyotype AML (Rucker 
et al. 2006), and although not in use diagnostically, 
can lend insights into disease pathogenesis. 
Although this technique has some limitations 
(e.g. it does not allow for the detection of balanced 
translocations or insertions), novel recurring 
imbalances were identified in AML patients. 
Rucker et al. (2006) noted that genomic losses 
were more common than gains with an increased 
frequency of 5q, 17p and 7q deletions. Genomic 
losses involving TP53 were found in up to 
55% of patients, which the authors propose as a 
mechanism for the genomic instability seen in 
cases with complex karyotypes. Gains involving 
8q and 11q were also noted, and when correlated 
with gene expression profile data, demon-
strated overexpression of genes such as MYC, 
NSE2, and TRIB1. This study demonstrates 
that array cGH can be used as a tool to eluci-
date novel genes involved in the pathogenesis 
of AML.

Chip-on-chip technology: Global 
analysis of DNA binding profi les
Chromatin immunoprecipitation on a chip (ChIP-
on-Chip) is a technique that utilizes chromatin 
immunoprecipitation and microarray analysis to 
identify protein-DNA interactions in living cells. 
These studies are useful to researchers studying 
AML-associated transcription factors, such as 
AML1-ETO and X-RARα, as they enable analysis 
of the sequences directly bound by these proteins 
on the DNA. Thus, regulatory regions, and hence, 
genes, that are directly transcriptionally modulated 
by these proteins can be identifi ed.

A summary of the ChIP-on-chip methodology 
is presented in Figure 2. Proteins are fi rst fi xed to 

Fix cells to cross-link proteins and
DNA 

Lysecells, nuclei to release
chromatin 

Shear chromatin to 100bp −1kb
range 

IP with antibody of choice, 
pull down complexes 

Controls:

No Antibody

Total Input chromatin

Mock IP

Wash, de-crosslink 
protein-DNA, purify 

DNA  

Enrichment analysis to 
determine enrichment of known 

targets  

Amplification of IP 
DNA 

Labelling, hybridization on array platform 
and data analysis

Figure 2. A ChIP-on-Chip workfl ow. Each step of the chromatin 
immunoprecipitation stage is optimized for every cell and tissue type. 
Enrichment analysis to determine successful immunoprecipitation is 
performed using quantitative real time PCR using primers against 
target DNA sequences known to be bound by the protein of interest. 
Large scale genome binding analyses are dependent on the array 
platform used in the study—these can include promoter arrays, whole 
genome tiling arrays, or custom made targeted tiling arrays.
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capture cellular protein-DNA interactions by 
chemical fi xation methods. Cells are then lysed, 
DNA fragmented and immunoprecipitated using 
antibodies against the target proteins. DNA asso-
ciated with the targeted protein will be co-purifi ed. 
The enriched DNA fragments are then labeled and 
applied to DNA microarrays to detect the enriched 
signals. Using a number of computational and 
bioinformatics analysis, a map of protein-genome 
occupancy is generated. Hybridized sequences 
can be annotated in silico using publicly available 
tools (including NCBI: www.ncbi.nlm.nih.gov/
BLAST and the Transcription Element Search 
System software package [TESS]: http://www.
cbil.upenn.edu/tess/) to determine the character-
istics of identified sequences: promoter vs. 
enhancer/repressor function, as well as possible 
transcription factor binding sites recognized by 
the protein of interest. A number of array plat-
forms are currently available for the hybridization 
of immunoprecipitated DNA. These include 
printed PCR amplicon arrays, and other commer-
cial oligonucleotide arrays. The choice of array 
platform depends on the need for high perfor-
mance, ease of use, cost, and resolution. Whole-
genome oligonucleotide tiling arrays currently 
offer the highest resolution power with probes 
tiled at approximately 35-base pair intervals. 
These probes are selected at defi ned intervals 
through both coding and non-coding sequences 
of the entire genome. Base pair resolution 
describes the density of coverage of the genome 
on the arrays. High-resolution arrays allow for the 
more accurate detection of protein/DNA interac-
tion. Other arrays that are commonly used in 
ChIP-on-Chip assays include promoter arrays, 
which contain sequences tiled though several 
thousand promoter regions, and CpG island 
arrays. In addition to determining transcription 
factor binding sites, ChIP-on-chip technology is 
also being applied to examine histone and 
DNA modifi cations including methylation, and 
acetylation, and distributions of chromatin 
modifying proteins, as well as interactions 
between proteins and RNA.

ChIP-on-chip technology has been used 
elsewhere to study the DNA binding sites of the 
transcription factor E2F1, and thereby identify 
genes that it directly regulates (Bieda et al. 
2006). This analysis revealed binding of E2F1 
to novel promoter elements that do not contain 
known consensus binding sites of E2F1. Another 

study identified genes directly regulated by 
the ZNF217 oncogene, proposed to have an 
important role in neoplastic transformation (Krig 
et al. 2007). To better understand the pathogen-
esis of  diffuse large cell B lymphomas (DLBCLs) 
which often exhibit deregulated BCL6 expres-
sion, ChIP-on-chip studies have focused on 
determining direct BCL-6 target genes, and 
demonstrate that these targets involved in BCL-
6 regulated pathways were indeed deregulated 
in some DLBCLs (Polo et al. 2007). Very 
recently, a global analysis of genomic DNA 
binding profi les of the PML-RARα and PLZF-
RARα APL fusion proteins have been reported 
(Hoemme et al. 2008). The screen focusing on 
PML-RARα identifi ed 372 direct genomic tar-
gets of the fusion which include transcriptional 
modulators as well as cell cycle and apoptosis 
regulatory genes. Such analysis, in concert with 
gene expression data analysis, performed for 
PLZF-RARα, can lend powerful insight into the 
molecular effects of aberrant fusion proteins 
within the leukemic cell.

Use of protein and microRNA 
microarrays in AML biology
High throughput methods are also being developed 
to study the proteome and to examine transcrip-
tional regulation through the use of protein and 
microRNA (miRNA) microarrays. These are novel 
techniques that show promise in reducing the 
labour-intensive nature of studying protein 
and mRNA regulation by allowing the study of 
complex mixtures of proteins or miRNA simulta-
neously rather than one by one (Hall et al. 2007). 
A discussion of the principles behind protein and 
miRNA microarrays follows.

Protein Microarrays: Three types of protein 
microarrays are currently in use: analytical 
microarrays, functional microarrays and reverse-
phase microarrays (Sreekumar et al. 2001; Zhu 
et al. 2001; Hall et al. 2004; Bertone and Snyder, 
2005; Speer et al. 2005; Hall et al. 2007; Table 4). 
Analytical microarrays are used to measure binding 
affinities, specificities, and protein expression 
levels of proteins in a mixture. Functional protein 
microarrays are used to study the biochemical 
activities of an entire proteome in a single 
experiment. The fi nal type of protein microarray, 
known as a reverse phase protein microarray 
(RPA), can be used to determine the presence of 
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proteins altered secondary to disease processes 
(Hall et al. 2007). Although proteomic techniques 
have been carried out in order to analyze the 
proteome within APL systems (Harris et al. 2004; 
Zhang et al. 2005), protein microarrays have yet 
to be used to accomplish the same. Comparison of 
the results obtained with traditional proteomics 
techniques such as 2D-PAGE-MS to those obtained 
with protein microarrays will be necessary to 
determine the advantages and disadvantages of 
each technique.

MicroRNA Microarrays: MicroRNAs (miRNAs) 
are non-coding RNAs, of 18–22 nucleotides in 
length, involved in regulation of gene expression 
by either inhibiting mRNA translation or degrading 
mRNA (DiLeva et al. 2006). miRNAs are involved 
in numerous important biological processes 
including development, differentiation, apoptosis, 
and proliferation (Bartel, 2004; Harfe, 2005; 
Cummins and Velculescu, 2006) and are believed 
to have roles in oncogenesis as well. They can act 
as either tumor suppressors or as oncogenes 
(Cummins and Velculescu, 2006). Evidence 
supports a role for miRNAs in hematopoiesis (Chen 
et al. 2004; Fazi et al. 2005). These studies focused 
on studying the role of miRNAs using a candidate 

gene approach, selecting specifi c target miRNAs 
for analysis. One of the fi rst high-throughput studies 
to examine the global miRNA profi le of hemato-
poeitic cells was the report of ATRA induced 
changes in miRNA expression in the PML-
RARA+ APL cell line, NB4 (Garzon et al. 2007). 
Using a microarray chip consisting of 245 human 
and mouse miRNA genes, the group identifi ed a 
list of miRNAs, including miR-107, let-7a-3, and 
miR-223 differentially expressed during ATRA 
induced differentiation. As with other RNA expres-
sion array systems, these data were also validated 
using a quantitative real time PCR assay as well as 
northern analysis using the original cell line model, 
as well as primary APL patient blasts. MicroRNA 
profi les have also been used to attempt to classify 
different classes of acute leukemia. Using a bead-
based fl ow cytometric method (Lu et al. 2005) to 
determine the expression of 435 miRNAs in ALL, 
and AML patient samples, another study examined 
miRNA expression signatures to discriminate 
between the two types of leukemia (Mi et al. 2007). 
A similar approach was used to determine that 
distinct miRNA profi les are associated with several 
different cytogenetic groups in AML using a 
miRNA microarray platform (Garzon et al. 2008a). 

Table 4. Summary of protein microarray technologies. Information adapted from refs (68–73).

Array type Uses Technique
Analytical 
Arrays

Measure:
 • Binding affi nities
 • Specifi cities
 •  Protein expression 

levels (e.g. healthy 
vs. diseased tissues)

Library of antibodies, aptamers, or 
affi bodies is fi xed to a glass slide.
Array probed with a protein solution.
Detect by labelling protein probes 
with either fl uorescent, affi nity, 
photochemical, or radioisotope tags.

Functional 
Arrays

Study the biochemical 
activities and interactions of 
an entire proteome:
 • Protein-protein
 • Protein-DNA
 • Protein-RNA
 • Protein-phospholipid
 • Protein-small molecule

Composed of full-length functional 
proteins or protein domains.
Array probed with a solution 
containing a specifi c molecule of 
interest.
Detect by labelling protein probes 
with either fl uorescent, affi nity, 
photochemical, or radioisotope tags.

Reverse-phase 
Arrays

Determine presence of 
proteins altered secondary to 
disease processes (e.g. 
changes in post-translational 
modifi cations)

Cells isolated from various tissues of 
interest and lysed.
Lysate arrayed onto a nitrocellulose 
slide.
Slides probed with antibodies 
against target protein.
Antibodies detected with 
chemiluminescent, fl uorescent, or 
colorimetric assays.
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In addition these data also suggested a miRNA 
profi le that was correlated with overall and event-
free survival in AML patients (Garzon et al. 2008a). 
Finally, miRNA microarray platforms have also 
been used to determine the miRNA signatures that 
distinguish between variants of AML with and 
without the NPMc mutation, and thereby help 
understand the biology of these different AMLs 
(Garzon et al. 2008b). Taken together, whole 
genome miRNA profi ling of acute leukemias shows 
promise in the fi elds of understanding leukemia 
biology, providing additional diagnostic criteria, 
and perhaps also in determining novel therapeutic 
targets. Future studies integrating miRNA profi les 
with transcriptome and proteome information can 
yield powerful insights into the pathogenesis and 
treatment of acute leukemias.

Conclusions and Future Directions: 
Comparative Analysis of Multiple 
Forms of Array Data
With the advent of new and emerging microarray 
technologies, we are rapidly developing the tools 
whereby we can utilize multiple high-throughput 
and whole genome approaches to assay the 
leukemic cell. The ability to compare data across 
array platforms will be a powerful tool in the 
analysis of leukemia pathogenesis and in the 
identifi cation of novel therapeutic targets in AML. 
Already, studies in solid tumors have demonstrated 
the validity of comparison of aCGH and gene 
expression array data, in order to identify genes 
whose deregulated expression is correlated to gains 
or losses of chromosomal regions.

In the analysis of transcription factor-based 
diseases, comparison of ChIP on chip array data 
with gene expression array data will allow for the 
identifi cation of genes that are direct downstream 
targets of transcription factors, thus allowing for 
an understanding of direct vs. indirect targets of 
these proteins. Comparison of gene expression and 
protein expression array data enables an elucidation 
of transcriptional effects in disease, vs. translational 
or post-translational effects. This holds great 
promise in AML, since the pathogenesis of certain 
subtypes of this disease is orchestrated by aberrant 
transcription factors. Integrated computational 
analysis of gene and protein expression data, as 
well as miRNA profiling data will help us to 
understand the protein networks that are deregu-
lated by post-transcriptional or translational means. 

Taken together, these approaches will yield greater 
insight into the biology of AML, and allow for an 
understanding of factors influencing AML 
pathogenesis, prognosis and treatment.
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