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Abstract

Background and aims

Nonalcoholic Steatohepatitis (NASH) is a major cause of end-stage liver diseases such as

cirrhosis and hepatocellular carcinoma resulting ultimately in increased liver-related mortal-

ity. Fibrosis is the main driver of mortality in NASH. Procollagen C-Proteinase Enhancer-1

(PCPE-1) plays a key role in procollagen maturation and collagen fibril formation. To assess

its role in liver fibrosis and NASH progression, knock-out mice were evaluated in a dietary

NASH model.

Methods

Global constitutive Pcolce-/- and WT male mice were fed with a Choline Deficient Amino

acid defined High Fat Diet (CDA HFD) for 8 weeks. Liver triglycerides, steatosis, inflamma-

tion and fibrosis were assessed at histological, biochemical and gene expression levels. In

addition, human liver samples from control and NASH patients were used to evaluate the

expression of PCPE-1 at both mRNA and protein levels.

Results

Pcolce gene deficiency prevented diet-induced liver enlargement but not liver dysfunction.

Furthermore, liver triglycerides, steatosis and inflammation were not modified in Pcolce-/-

male mice compared to WT under CDA HFD. However, a significant decrease in liver fibro-

sis was observed in Pcolce-/- mice compared to WT under NASH diet, associated with a

decrease in total and insoluble collagen content without any significant modifications in the

expression of genes involved in fibrosis and extracellular matrix remodeling. Finally, PCPE-

1 protein expression was increased in cirrhotic liver samples from both NASH and Hepatitis

C patients.
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Conclusions

Pcolce deficiency limits fibrosis but not NASH progression in CDA HFD fed mice.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a common and progressive disease mainly charac-

terized by hepatic fat accumulation in the absence of alcohol consumption. NAFLD is strongly

associated with obesity, metabolic syndrome, Type 2 Diabetes and dyslipidemia. NAFLD is

subdivided into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)

based on histological examination of liver biopsy and defined by the presence of inflammation

and hepatocyte ballooning with various degrees of fibrosis [1, 2]. NAFLD is the most common

cause of chronic liver disease worldwide with an estimated prevalence of 25%. In contrast to

NAFL which is considered as a benign and reversible disease state, NASH accounts for an

increased number of patients with cirrhosis, liver failure and hepatocellular carcinoma. NASH

patients display an increased mortality compared to healthy population with a high cardiovas-

cular risk. To date, there is no approved treatment for NASH. Long term follow-up studies

revealed that fibrosis is the main driver of mortality in NASH [3, 4]. Fibrosis results from an

excessive production of extracellular matrix (ECM) which is not balanced by degradation.

From a mechanistic standpoint, it is believed that the accumulation of both triglycerides and

pro-inflammatory and cytotoxic lipid oxidation side-products results in the formation of a

necro-inflammatory milieu which triggers the activation of the main fibrogenic hepatic cell

population, namely hepatic stellate cells (HSCs) [5]. HSCs are responsible for the deposition of

the type I collagen-rich ECM and are key players in the development of NASH complications

such as portal hypertension [6]. The ECM is a complex network of proteins including fibrillar

and non-fibrillar collagens, glycosaminoglycans, proteoglycans and non-collagenous glycopro-

teins. In addition, this so-called matrisome composition may change with liver injury [7]. For

instance, cross-linking of collagens makes ECM more resistant to degradation. Indeed, aging

has been shown to enhance liver fibrotic response in mice through the impairment of extracel-

lular matrix remodeling [8]. All of these studies underline the importance of better characteriz-

ing the matrisome and its remodeling during disease progression in order to identify potential

drug targets.

PCPE-1(Procollagen C-Proteinase Enhancer-1, encoded by PCOLCE gene) has been

described as an enhancer of BMP-1 (Bone Morphogenetic Protein-1, also named Procollagen

C-Proteinase) [9], involved in the extracellular maturation of fibrillar procollagens. BMP-1

cleaves the C-terminal propeptides of fibrillar procollagens and this cleavage is a rate-limiting

step in fibrogenesis, as monomers that retain C-terminal propeptides (unlike those retaining

N-terminal propeptides) are not incorporated into fibrils [10]. PCPE-1 binds to C-terminal

propeptides of fibrillar collagens (PICP (Procollagen type I C-terminal Propeptide) for

instance) via its two CUB domains resulting in a conformational change that enhances BMP-1

activity [11, 12]. A homolog of PCPE-1, namely PCPE-2 (encoded by PCOLCE2 gene) has

been described with structural similarities of CUB domains [13]. PCPE-2 also has the ability to

increase the C-terminal processing of procollagen by BMP-1 [13] suggesting a role in procolla-

gen maturation but other physiological activities have been described such as a role in choles-

terol transport [14]. To date, the in vivo role of PCPE-2 still needs to be elucidated.

Several studies have described a key role of PCPE-1 in the regulation of fibrosis in different

organs such as heart [15], kidney [16], lung [17] or cornea [18] injury (for a review, see [19]).
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Little is known about the role of PCPE-1 in the development of liver fibrosis. While PCPE-1 is

not detected in freshly-isolated rat hepatocytes, liver endothelial cells or Kupffer cells, it is

poorly expressed by HSCs under basal condition but strongly induced by TGF-β (Transform-

ing Growth Factor-β) in parallel to procollagen type I synthesis [20]. Moreover, PCPE-1

expression is increased in fibrotic livers of rats treated with CCl4 [20] suggesting that it may

play a role in procollagen maturation during liver fibrogenesis. Hassoun et al. [21] have shown

that plasma PCPE-1 levels in mice treated with CCl4 increased gradually during the progres-

sion of liver fibrosis and reflected the severity of the disease. Indeed, circulating PCPE-1 is the

marker that is most well-correlated with fibrosis in animals administered fibrogenic chemicals

[22]. This increased level of plasma PCPE-1 was also found in patients with liver fibrosis (Hep-

atitis C (HCV) or B virus patients) [23, 24]. Taken together, these results suggest that PCPE-1

could be a potential fibrosis biomarker.

This study explores the role of PCPE-1 in the development of NASH and liver fibrosis. Consti-

tutive Pcolce knock-out mice were used in the CDA HFD (Choline Deficient Amino acid defined

High Fat Diet)-induced NASH model. Typical parameters of NASH (liver steatosis, inflamma-

tion, fibrosis) were evaluated and compared to control mice. Finally, PCPE-1 mRNA and protein

expression levels were assessed in cirrhotic liver specimens of NASH or HCV patients.

Material and methods

Animals

Mice were maintained on a 12:12 h light/dark cycle at 21 ± 2˚C and had ad libitum access to tap

water and standard or NASH diet. All procedures were performed according to the ethical pro-

tocol that has been approved by the Servier Institutional Animal Care and Use Committee in

accordance with the French regulations (Decree n˚ 2013–118 from 01 February 2013 relative to

the protection of animals used for scientific purposes and 4 orders of 01 February 2013).

Wild-type C57BL/6N and Pcolce-/- mice (8 weeks-old, male and female) were obtained

from the Transgenic Department of Charles River Laboratories (France). Generation of the

Pcolce-/- mice was performed by GenOway (Lyon, France) as previously described [25].

NASH models

STAM1model [26]: STAM liver samples were obtained from SMC Laboratories Inc. (Japan).

To induce NASH, C57Bl/6J male mice were injected with streptozotocin (Sigma-Aldrich,

200 μg, subcutaneous) 2 days after birth. After weaning, mice were fed with a high fat diet

(57% kcal of fat) from 4 week-old to 9 week-old. Control mice were injected with streptozoto-

cin but were fed a standard diet from 4 to 9 week-old.

GAN DIO model (Gubra Amylin NASH Diet Induced Obese) [27]: liver samples were

obtained from Gubra. (Denmark). To induce NASH, C57Bl/6J male mice were fed with stan-

dard diet or NASH-inducing diet which contains 40% saturated fat, 2% cholesterol, 22% fruc-

tose for 39 weeks.

CDA HFD (Choline Deficient Amino acid defined (0.1% methionine) High Fat Diet)

model [28]: Upon arrival, male and female mice were randomly assigned to either control diet

(A04 diet, SAFE) or NASH-inducing diet (A06071302, Research Diet) for 8 weeks. Mice were

checked daily for health status and weighed once a week.

Western Diet model [29]: C57Bl/6J male mice (5-week-old) were purchased at Charles

River Laboratories (France). Upon arrival, mice were assigned either to control diet (A04 diet,

SAFE) or a NASH-inducing diet (D09100301, Research Diets), which contains 40% kcal of fat,

2% cholesterol and 20% fructose for 16 weeks.
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For CDA HFD and Western Diet models, mice were anesthetized by isoflurane and livers

were collected for gene expression analyses. For the CDA HFD model, blood samples were

obtained from the heart cavity and livers were quickly removed, weighed and processed for

histological and biochemical analyses.

Gene expression studies

Total RNA was extracted using Qiagen RNA extraction kits following manufacturer’s instruc-

tions. Total RNA was treated with DNase I (Ambion Inc., Texas, USA) at 37˚C for 30 minutes,

followed by inactivation at 75˚C for 5 minutes. Real time quantitative PCR (RT-qPCR) assays

were performed using an Applied Biosystems 7500 sequence detector. Total RNA (1 μg) was

reverse transcribed with random hexamers using High-Capacity cDNA Reverse Transcription Kit

with RNase Inhibitor (Applied Biosystems, ThermoFisher Scientific) following the manufacturer’s

protocol. Gene expression levels were determined by TaqMan Fast Universal PCR Master Mix

(2x), No AmpErase UNG (ref:4352042, Applied Biosystem) and 18S (Hs99999901_S1, Applied

Biosystems) transcript was used as an internal control to normalize the variations for RNA

amounts. No difference in 18S expression was observed between the groups (regardless of geno-

type or diet). Gene expression levels are expressed relative to 18S mRNA levels. The following

Taqman assays were used: PCOLCE qHsaCIP0027739 (Biorad); PCOLCE2 qHsaCIP0031859

(Biorad); Pcolce qMmuCEP0056460 (Biorad); Pcolce2 qMmuCEP0052963 (Biorad); Bmp1
qMmuCEP0053968 (Biorad); AcacaMm01304277_m1 (Applied Biosystems™); FasnMm006

62319_m1 (Applied Biosystems™); Srebf1Mm00550338_m1 (Applied Biosystems™); CD68
Mm00839636_g1 (Applied Biosystems™); Il1bMm00434228_m1 (Applied Biosystems™); TNF
Mm00443258_m1 (Applied Biosystems™); Acta2Mm02546133_m1 (Applied Biosystems™);

Col1a1Mm00801666_g1 (Applied Biosystems™); Loxl2Mm00804740_m1 (Applied Biosystems™).

Alanine AminoTransferase (ALT) and Aspartate Amino-Transferase

(AST) analyses

Plasma levels of ALT and AST were determined with an automatic biochemical analyzer

(Indiko Clinical Chemistry Analyzer, Thermofisher).

Liver triglyceride content

Liver samples were processed for hepatic triglyceride (TG) content. Livers were homogenized

and TG content was determined using an automatic biochemical analyzer (Indiko Clinical

Chemistry Analyzer) with a Triglyceride assay kit (Thermofisher).

Liver histology

Formalin-fixed, paraffin-embedded livers were sliced into 3-μm sections. Hematoxylin and

Eosin (H&E) staining was performed to investigate liver histology and Picrosirius Red staining

was used for liver fibrosis. NAFLD Activity Score (NAS) and fibrosis stage were determined by

two double-blinded persons using the NASH CRN scoring system [30]. For hepatocellular

steatosis, livers were classified into scores 0 to 3 (0: <5% of hepatocytes presenting steatosis, 1:

5 to 33% of hepatocytes presenting steatosis, 2: 34 to 66% of hepatocytes presenting steatosis

and 3:> 67% of hepatocytes presenting steatosis). For inflammation, livers were scored into

grades 0 to 3 (0: non inflammatory foci, 1: 1 inflammatory focus, 2: 2 to 4 inflammatory foci, 3:

>4 inflammatory foci). Fibrosis was scored into stages from 0 to 4 (0: no fibrosis, 1: perisinu-

soidal or periportal fibrosis, 2: perisinusoidal and periportal fibrosis, 3: bridging fibrosis or

septa, 4: cirrhosis).
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Liver collagen quantification

Livers were collected, dried on a paper towel, carefully cut into small pieces with a scalpel and

snap-frozen into liquid nitrogen before storage at -80˚C. Collagen was quantified according to

Baicu et al. [31]. About 80 mg of wet liver tissue were sampled and dried at 60˚C. Dry tissue

was ground in a glass Potter and powder was weighed. Collagen was hydrolyzed with HCl 6N

(50 mg dry tissue/mL) at 110˚C overnight and evaporated at 80˚C for 48h. Pellets were diluted

in H2O (50 mg dry tissue/mL) and agitated for 2h at room temperature. Samples were then

centrifuged 5 min at 450 g and supernatants were collected. OH-proline from tissues (and

OH-proline standard (Sigma)) was then quantified by oxidation with 1 volume of chloramine

T solution (0.14% (w/v) chloramine T (Sigma), 30% (v/v) ethylene glycol monomethyl ether,

50% (v/v) citrate buffer pH6) and incubated for 20 min at room temperature. Reaction was

stopped by addition of 1 volume of perchloric acid 3.15M, and 1 volume of Ehrlich reagent

(20% (w/v) 4-dimethylamino benzaldehyde (Sigma) in ethylene glycol) was added for 20 min

at 60˚C under agitation. Absorbance was then read in a spectrophotometer at 557nm.

For insoluble collagen: Tissue was diluted in NaCl 1N with proteases inhibitors (Complete

Mini (Roche)) with a concentration of 50 mg dry tissue/ mL and incubated overnight at 4˚C

under agitation. Samples were centrifuged at 250 g for 5 min. Pellets were collected (mainly

insoluble collagen) and evaporated at 80˚C overnight. Hydrolyzation of insoluble collagen and

OH-proline quantification were then performed as described above.

Quantity of collagen/ dry tissue weight was calculated by interpolation from OH-proline

standards x 7.46 [32].

Human liver samples

Liver tissues were obtained either from patients undergoing liver resection at the digestive sur-

gical department of Beaujon Hospital (Clichy, France) for primary or secondary liver cancer,

or from the explanted liver of patients undergoing liver transplantation. Patients’ clinical infor-

mation is presented in Tables 1 and 2. All patients gave a written consent to participate in the

study. The study was approved by the Institutional Review Board HUPNVS, University of

Paris, AP-HP (IRB n˚ 00006477 and declaration n˚ DC-2009-936). The study conformed to

Table 1. Patient’s characteristics. Liver samples used for RT qPCR analysis.

Patient Gendera SAF scoreb

Control 1 M S0A0F0

2 M S0A0F0

3 M S0A0F0

4 M S0A0F0

5 F S0A0F0

6 F S0A0F0

7 M S0A0F0

8 M S0A0F0

NASH 9 M S2A3F4

10 M S2A4F3

11 M S1A4F4

12 M S1A3F3

13 M S1A3F4

aM: Male, F: Female.
bSAF score: Steatosis, Activity and Fibrosis score.

https://doi.org/10.1371/journal.pone.0263828.t001
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the ethical guidelines of the 1975 Declaration of Helsinki. Liver specimens were examined by a

pathologist and samples were taken from the most distal non tumoral tissue surrounding the

tumoral part (for livers obtained from patients undergoing liver resection for primary or sec-

ondary liver cancer). Cirrhotic samples were obtained either from patients with metabolic syn-

drome or from patients with hepatitis C virus. Samples that had no abnormalities at liver

histological examination were used as controls (hereafter referred as healthy liver).

Western blotting analysis of human liver samples

About 50 mg of snap frozen human tissues were homogenized in RIPA buffer containing 150

mmol/L NaCl, 50 mmol/L TrisHCl, pH 7.4, 2 mmol/L EDTA, 0.5% sodium deoxycholate,

0.2% sodium dodecyl sulfate, 2 mmol/L activated sodium orthovanadate, complete protease

inhibitor cocktail tablet (Complete mini, Roche) and complete phosphatase inhibitor cocktail

tablet (PhosSTOP™, Roche). Lysates were centrifuged (12,000 g, 10 min, 4˚C), supernatants

were collected, and protein content was quantified using the Lowry protein assay (DC™ Protein

Assay, Bio-Rad). Lysates were mixed with the reducing sample buffer for electrophoresis and

subsequently transferred onto nitrocellulose membrane (Bio-Rad). Equal loading was checked

using Ponceau red solution. Membranes were incubated with primary antibodies (Rat anti-

Human PCPE-1 antibody, R&D systems MAB2627, 1/500; Mouse anti-GAPDH antibody,

Millipore MAB374, 1/20,000). After secondary antibody, immunodetection was performed

using an enhanced chemiluminescence kit (Immun-Star™ WesternC™ kit, Bio-Rad). Bands

were revealed using the ChemiDoc imaging system (Bio-Rad). Values reported from Western

blots were obtained by band density analysis using Image Lab software (Bio-Rad) and

expressed as the ratio of PCPE-1/ GAPDH. Three independent experiments were done (3

gels), and quantification was averaged for the final representation.

Statistical analysis

For comparison of 2 groups, an unpaired Student t test was used (GraphPad Prism1 software,

v9.0) after verification of the normal distribution of data. For more than 2 groups, a one-way

analysis of variance was performed followed by a Tukey’s test. For body weight, a two-way

Table 2. Patient’s characteristics. Liver samples used for Western blot analysis.

Patient Genderb SAF scorec METAVIR score

Healthy liver 1 F S0A0F0 A0F0

2 F S0A0F0 A0F0

3 M S0A0F0 A0F0

4 M S0A0F0 A0F0

NASH 5 F S1A3F4 -

6 M S2A3F4 -

7 M S2A3F4 -

8 M S0A1F4 -

HCVa related cirrhosis 9 M - A1F4

10 F - A0F4

11 M - A1F4

12 M - A0F4

aHCV: hepatitis C virus.
bF: female; M: male.
cSAF score: Steatosis, Activity and Fibrosis score.

https://doi.org/10.1371/journal.pone.0263828.t002
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analysis of variance was performed followed by a Tukey’s test. For the NAS histological param-

eters, a one-way analysis of variance with group (2 strains and 2 diets combined) as fixed effect

was performed, followed a Tukey’s test (SAS software, v9.4). For the other histological parame-

ters (scores of steatosis, inflammation and fibrosis), a Fisher exact test was performed to com-

pare groups. Significance threshold was 5%.

Results

Liver PCPE-1 expression in different murine models of NASH

In order to address the role of PCPE-1 in the development of NASH and liver fibrosis, we first

evaluated its expression in different preclinical murine models of NASH. As shown in Fig 1,

liver PcolcemRNA expression was significantly increased in STAMTM (x1.5), Western Diet

(x1.3), GAN DIO (x3.6) and CDA HFD (x4.3) models. Interestingly, PCPE-1 up-regulation

was more pronounced in mice models with established fibrosis such as GAN DIO and CDA

HFD models [33].

Liver mRNA expression of Pcolce, Pcolce2 and Bmp1 in Pcolce-/- male mice

To evaluate the impact of PCPE-1 deficiency on typical NASH-associated parameters (liver

steatosis, inflammation and fibrosis), the CDA HFD (8 weeks of diet) model was selected and

investigated in WT and Pcolce-/- male and female mice.

Constitutive Pcolce-/- mice were generated as previously described [25]. Extensive pheno-

typing revealed that Pcolce KO mice do not display any gross abnormalities under basal condi-

tions [25, 34]. Confirmation of Pcolce knock-out in the liver was assessed by RT-qPCR (S1

Fig). Expression of liver Pcolce2, its close homolog, was slightly but significantly (p<0.05)

decreased whereas liver Bmp1mRNA expression was not modified in Pcolce-/- compared to

WT male mice (S1 Fig).

Fig 1. Evaluation of liver Pcolce mRNA gene expression in murine models of NASH. A: STAMTM model, control

mice (n = 5), STAM mice (n = 6); B: Western diet model, control (n = 10), Western diet mice (n = 9); C: GAN DIO

model (n = 3/group); D: CDA HFD after 8 weeks of diet (n = 10/group). Data are expressed as mean ± SEM. �p<0.05,
��p<0.01, ���p<0.001 vs. control mice. Unpaired t test.

https://doi.org/10.1371/journal.pone.0263828.g001
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Evaluation of body and liver weight, liver triglyceride, plasma ALT and

AST levels in WT and Pcolce-/- male mice under CDA HFD

To evaluate the impact of PCPE-1 deficiency on NASH progression and development of fibro-

sis, WT and Pcolce-/- male mice were subjected to CDA-HFD for 8 weeks. As shown in Fig 2A,

no body weight gain was observed during the 8 week-NASH diet for both WT and Pcolce-/-

male mice. A slightly higher body weight gain was observed in Pcolce-/- male mice compared

to male WT under control diet (Fig 2A).

Liver weight was significantly increased in WT male mice under CDA HFD compared to con-

trol diet (Fig 2B). Pcolce gene deficiency completely prevented this increase in liver mass (Fig 2B).

The content of liver triglyceride (TG) was similarly increased in both WT and Pcolce-/- mice

under CDA HFD (Fig 2C).

CDA HFD induced a large increase in plasma ALT levels in both WT mice and Pcolce-/-

mice, but to a lesser extent in PCPE-1 deficient mice (Fig 2D). By contrast, AST levels were sig-

nificantly and similarly increased in both strains under CDA HFD (Fig 2E).

Steatosis and liver inflammation in WT and Pcolce-/- male mice under CDA

HFD

Liver steatosis and inflammation were assessed by histology and NAS score was evaluated. As

shown in Fig 3, CDA HFD induced a significant increase in both liver steatosis (Fig 3A and

3C), (with 100% of mice presenting more than 66% of affected hepatocytes) and inflammation

(Fig 3D) in WT male mice resulting in a significant increase of NAS score (Fig 3B). While

Fig 2. Body and liver weight, liver TG, ALT and AST levels in WT and Pcolce-/- male mice under A04 or CDA HFD after 8 weeks. A: Body

weight gain during A04 or CDA HFD diet (n = 12–18). §§§p<0.001 WT A04 vs. WT CDA HFD; ˚˚˚p<0.001 Pcolce-/- A04 vs. Pcolce-/- CDA HFD;
�p<0.05 WT A04 vs. Pcolce-/- A04, Two-way ANOVA with Tukey’s post-hoc analysis. B: Liver weight (n = 12–18); C: Liver triglyceride (TG)

content (n = 11–16); D: Plasma Alanine Aminotransferase (ALT) level (n = 8–15); E: Plasma Aspartate Aminotransferase (AST) level (n = 8–15).

Panels B-E: §§§p<0.001 vs. WT A04; ˚˚˚p<0.001 vs. Pcolce-/- A04; �p<0.05 vs. WT CDA HFD. One-way ANOVA with Tukey’s post hoc analysis.

Data are expressed as mean ± SEM.

https://doi.org/10.1371/journal.pone.0263828.g002
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histological results were similar in Pcolce-/- mice under CDA HFD (Fig 3A), a slight increase in

inflammation score was nevertheless observed compared to WT male mice mainly driven by a

slight increase of inflammatory foci observed in Pcolce-/- mice (Fig 3D).

Liver fibrosis in WT and Pcolce-/- male mice under CDA HFD

Fibrosis was first evaluated by histology with Picrosirius red staining of liver sections and

scored. This scoring analysis was based on fibrosis localization (perisinusoidal, periportal fibro-

sis) or “structural” fibrosis (bridging fibrosis, septa, cirrhosis) as described in Material and

Methods section. As expected, CDA HFD triggered liver fibrosis in WT male mice with the

presence of both perisinusoidal and periportal fibrosis (Fig 4A and 4B). A significant decrease

in liver fibrosis scoring was observed in Pcolce-/- male mice compared to male WT under CDA

HFD with a lower frequency of both perisinusoidal and periportal fibrosis (Fig 4B).

Total and insoluble liver collagen were then quantified. Total collagen was significantly

increased in male WT under CDA HFD (Fig 4C). Under CDA HFD, PCPE-1 deficiency pro-

tected the mice, since significantly lower total collagen content was observed in Pcolce-/- male

mice than in WT male mice (Fig 4C). To evaluate the effect of Pcolce knock-out on collagen

maturation in the CDA HFD model, liver insoluble collagen was also quantified. Liver insolu-

ble collagen was increased in WT mice under CDA HFD, and PCPE-1 deficiency induced a

significant decrease of cross-linked collagens compared to WT (Fig 4D). Collagen results are

consistent with histological data (Fig 4A and 4B). Taken together, these results indicate that

Pcolce gene deficiency limits CDA HFD-induced liver fibrosis.

Fig 3. Liver steatosis and inflammation in WT and Pcolce-/- male mice under A04 or CDA-HFD after 8 weeks. A: Typical examples

of liver histology with Hematoxylin and Eosin staining for inflammation and steatosis analysis (bars represent 100 μm except Pcolce-/-

A04: 75 μm); B: evaluation of NAS score; C: steatosis score and D: inflammation score. Results are expressed as percentage of frequencies

(C & D). NAS, steatosis and inflammation scores were determined as described in Material and Methods (n = 10–18). §§§p<0.001 vs.
WT A04; ˚˚˚p<0.001 vs. Pcolce-/- A04. One-way ANOVA followed by Tukey’s post test for B. Fisher exact test for C & D.

https://doi.org/10.1371/journal.pone.0263828.g003
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Liver mRNA expression of lipogenesis, inflammation and fibrosis genes in

WT and Pcolce-/- male mice under CDA HFD

In order to better understand from a mechanistic standpoint, the impact of Pcolce gene defi-

ciency on NASH progression and fibrosis, gene expression studies focusing on key relevant

pathways were performed. As expected, CDA HFD induced an overexpression of genes

involved in de novo lipogenesis (Acetyl-CoA carboxylase 1, Fatty Acid Synthase, Sterol Regula-

tory Element-Binding Protein 1) in both WT and Pcolce-/- mice, with a slightly higher expres-

sion of Acetyl-CoA carboxylase 1 in Pcolce-/- mice (Fig 5A). The increase of inflammation

markers such as CD68 (monocyte/macrophage marker), Tumor Necrosis Factor-α (TNF-α)

and Interleukin 1β (IL1-β) in CDA HFD model was similar in both strains (Fig 5B). Expression

of fibrosis genes such as procollagen type I, Smooth Muscle Actin and Lysyl Oxidase Like-2

(LOXL2) was also similarly increased in WT and Pcolce-/- mice under CDA HFD (Fig 5C).

These results indicate that Pcolce gene deficiency did not alter diet-induced expression of

key genes involved in both NASH disease progression and fibrosis.

Liver parameters in WT and Pcolce-/- female mice under CDA HFD

CDA HFD model (8 weeks of diet) was used in WT and Pcolce-/- female mice. As shown in

S2A Fig, female mice (WT and Pcolce-/-) gradually gained body weight under CDA HFD. Liver

weight and TG as well as ALT and AST levels were increased with the NASH diet, similarly in

WT and Pcolce-/- female mice (S2B–S2D Fig).

Fig 4. Liver fibrosis in WT and Pcolce-/- male mice under A04 or CDA-HFD after 8 weeks. A: Typical examples of liver

histology with Picrosirius red staining for fibrosis (bars represent 100 μm except Pcolce-/- A04: 75 μm). B: Fibrosis score (n = 10–

18). Fibrosis score was determined as described in Material and Methods and results are expressed as percentage of frequencies.
§§§p<0.001 vs. WT A04; ˚˚˚p<0.001 vs. Pcolce-/- A04; ��p<0.01 vs. WT CDA HFD. Fisher exact test. C: Total collagen content in

liver (n = 5–11) and D: Insoluble collagen content in liver (n = 5–12). Data are expressed as mean ± SEM. §§§p<0.001 vs. WT A04;
�p<0.05, ���p<0.001 vs. WT CDA HFD. One-way ANOVA with Tukey’s post-test.

https://doi.org/10.1371/journal.pone.0263828.g004
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S3 Fig shows that CDA HFD induced a significant increase in both liver steatosis (S3A and

S3C Fig) and inflammation (S3D Fig) in WT and Pcolce-/- female mice resulting in a significant

increase of the NAS score (S3B Fig).

Finally, CDA HFD induced liver fibrosis in WT and Pcolce-/- female mice with the presence

of both perisinusoidal and periportal fibrosis but no significant difference was observed

between the 2 strains under NASH diet (S4A and S4B Fig). Interestingly, a slight decrease of

liver fibrosis score was observed in Pcolce-/- female mice compared to WT mice under control

diet (S4B Fig). Total and insoluble collagen content were slightly but not significantly

increased in WT mice under CDA HFD (S4C and S4D Fig). Under CDA HFD, Pcolce-/- female

mice showed a significant lower total and insoluble collagen content compared to WT mice

(S4C and S4D Fig).

Expression of PCPE-1 mRNA and protein in human liver specimens

In order to assess the potential relevance of our preclinical findings, we next evaluated by RT-

qPCR the hepatic expression of both PCOLCE and PCOLCE2 in patients with NASH and

fibrosis (F3-F4) (Table 1). Both genes were slightly less expressed in patients with NASH and

fibrosis (Fig 6A and 6B, n = 8 and 5 for control and NASH respectively). This decrease was

more pronounced for PCOLCE2 even though it did not reach statistical significance. We next

Fig 5. Liver mRNA expression of lipogenesis, inflammation and fibrosis genes in male mice under A04 or CDA

HFD after 8 weeks. Gene expression by RT-qPCR analysis in WT and Pcolce-/- male mice (n = 9–16). A: Fatty acid/

cholesterol synthesis (Acetyl-CoA carboxylase 1 (Acaca), Fatty Acid Synthase (Fsn), Sterol regulatory element-binding

protein 1 (Srebf1)). B: Inflammation (CD68, Interleukin 1β (Il1b), Tumor Necrosis Factor α (Tnf)). C: Fibrosis (Actin

α2 (Acta2), procollagen type I α1 (Col1a1), Lysyl Oxidase-like-2 (Loxl2)). Data are expressed as mean ± SEM.
§§§p<0.001 vs. WT A04; ˚˚˚p<0.001 vs. Pcolce-/- A04; ��p<0.01 vs. WT CDA HFD. One-way ANOVA with Tukey’s

post-test.

https://doi.org/10.1371/journal.pone.0263828.g005
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compared our results to previous published transcriptomic studies. Interestingly, results from

6 independent studies are in line with our findings (S1 Table). Finally, cirrhotic human liver

samples were collected from NASH or HCV patients (Table 2) to evaluate PCPE-1 protein

expression. All samples were scored by a pathologist. Samples without histological abnormali-

ties were considered as controls (without steatosis, nor activity, nor fibrosis). Western blot

analysis (Fig 6C, n = 4/group) showed that PCPE-1 protein expression was increased in livers

of HCV patients (p<0.01) and slightly increased in liver of NASH patients but did not reach

the statistical significance (p = 0.09).

Discussion

This study describes the effect of PCPE-1 deficiency on liver fibrosis and NASH parameters in

a murine model of NASH (CDA HFD). Liver PCPE-1 expression was also assessed in human

livers of control and NASH or HCV related cirrhotic patients.

PCPE-1 is a key player of fibrosis as it is involved in fibrillar collagen maturation, critical

step before collagen cross-linking, more resistant to degradation. Ogata et al. [20] have

described that PCPE-1 is involved in the processing of type I collagen during liver fibrinogen-

esis under hepatic stress conditions such as murine CCl4 model. We thus investigated liver

mRNA expression of Pcolce in different murine dietary models of NASH (STAMTM, Western

Diet, GAN DIO and CDA HFD). Liver PcolcemRNA expression was increased in all these

models, confirming the induction of liver fibrosis markers in dietary models, but interestingly,

the highest increase was observed in GAN DIO and CDA HFD models, two models associated

with significant fibrosis [33]. Interestingly, PCPE-1 was recently identified as part of a gene

cluster involved in ECM remodeling and directly linked to fibrosis by single cell

Fig 6. Expression of PCOLCE and PCOLCE2 mRNA and PCPE-1 protein in human liver samples. PCOLCE (A) and

PCOLCE2 (B) mRNA expression in liver of control (n = 8) and NASH (F3-F4) patients (n = 5). PCPE-1 protein (C) in liver of

control, NASH (F3-F4) and HCV cirrhotic patients (n = 4/group). One representative blot is shown, and the quantification was

done from 3 independent experiments. Values reported from Western blots were obtained by band density analysis using Image

Lab software (Bio-Rad) and expressed as the ratio of PCPE-1 / GAPDH. Data are expressed as mean ± SEM. ��p<0.01 vs.
control. Unpaired t test.

https://doi.org/10.1371/journal.pone.0263828.g006
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transcriptomic analysis of HSCs from mice fed with Amylin diet [35] in line with our results.

To investigate the role of PCPE-1 in liver fibrosis, the CDA HFD model (8 weeks) was selected

to be used with Pcolce-/- mice. Previous studies have shown that Pcolce knock-out mice (with

different constructions) do not display any phenotypic abnormalities under basal conditions

[25, 34], including blood chemical chemistry such as electrolytes, hepatic enzymes, total biliru-

bin, creatinine or urea [25]. As expected with choline deficient and methionine defined diet,

male mice fed with CDA HFD had no body weight gain, as well as an increased liver weight

and strong elevation of plasma ALT and AST [28]. PCPE-1 deficiency in male mice had no

impact on body weight gain, ALT (slight decrease considered as non-relevant (even statistically

significant)) and AST levels suggesting that this deficiency had no impact on diet-induced

liver dysfunction. Liver steatosis, as well as mRNA expression of lipogenesis markers were

highly induced in the model, with no significant effect of PCPE-1 deficiency. This result was

expected, as modulation of fibrosis has no impact on cellular lipid accumulation driven by the

diet. As expected, CDA HFD induced an increase of liver inflammation (histology and mRNA

expression of typical markers such as CD68 (monocyte/macrophage) or cytokines (TNF-α,

IL1-β)). PCPE-1 deficiency did not prevent this liver inflammation and even a slight increase

of inflammatory foci was observed in liver of Pcolce-/- mice under CDA HFD which could be

attributed to an infiltration of neutrophils as observed by Massoudi et al. [36] in Pcolce-/-

mouse corneas after epithelial abrasion or alkali burn. Inflammatory response stimulates the

transformation of quiescent HSCs into activated HSCs, which are the main source of collagens.

Indeed, CDA HFD triggered liver fibrosis in WT mice with the presence of both perisinusoidal

and periportal fibrosis, as well as bridging and septa fibrosis to a lesser extent. As expected, an

increased mRNA expression of fibrosis markers such as Smooth Muscle Actin, procollagen

type I and LOXL-2 was observed in WT mice under CDA HFD, leading to an increased level

of total and insoluble collagen content. No liver weight increase was observed in Pcolce-/- mice

under NASH diet compared to mice under standard diet. This effect might be attributed, at

least in part, to a beneficial effect on liver fibrosis, as no difference was observed in hepatic TG

content. Indeed, PCPE-1 deficient mice under CDA HFD displayed a significant decrease of

liver fibrosis with a lower frequency of both perisinusoidal and periportal fibrosis. This result

was in accordance with a decreased liver collagen content associated with a decreased insoluble

collagen observed in Pcolce-/- mice under CDA HFD. This result suggests that, in this model,

the maturation of procollagen into collagen fibers is dependent on PCPE-1 which enhances

BMP-1 activity and accelerates collagen maturation and deposition [10]. PCPE-1 deficiency

had no impact on CDA HFD-induced mRNA expression of Smooth Muscle Actin, procolla-

gen type I and LOXL-2, this result suggests that PCPE-1 is a distal player and does not seem to

be involved in the regulation of expression of these markers, at least in this model (with 8

weeks of a NASH diet). Taken together, these results suggest that PCPE-1 deficiency decreased

liver fibrosis but had no impact on NASH progression in the CDA HFD model.

Although most of the NASH preclinical models including the CDA HFD murine model

have been developed and characterized using male mice [28, 37] due to sexual dimorphism

associated to NAFLD [38], we also carried out similar investigations in female mice. Female

mice (WT and Pcolce-/-) gradually gained body weight under CDA HFD in contrast to males,

as previously described [39]. In general, we found similar results in female mice with no

impact on NASH progression and liver dysfunction upon Pcolce gene deletion. In contrast to

male mice, Pcolce gene deficiency did not have a significant impact on CDA HFD-induced

liver fibrosis in female mice as assessed by Picrosirius Red staining, even if no bridging fibrosis

was observed in Pcolce-/- female mice compared to WT female mice. However, we confirmed

that Pcolce gene deficiency resulted in a significantly reduced total and insoluble collagen con-

tent upon CDA HFD similar to what was observed in male mice. Taken together, the data
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generated with female mice are consistent with the results obtained in males with an impact

on liver fibrosis only.

A slight reduction in PCOLCE2 expression was observed in human liver biopsies from

NASH patients compared to control. Even though PCPE-2 has been shown to play a major

role in HDL-cholesterol metabolism and more broadly in reverse cholesterol transport [14,

40], it could be also involved in liver fibrosis by a direct effect on procollagen maturation or an

indirect effect via cholesterol metabolism. Interestingly, PCPE-2 is mainly expressed in the

heart where its role in fibrosis has been established [31]. Further studies using PCPE-2 defi-

cient mice are required to address this point.

Hassoun et al. [23] have shown that circulating PCPE-1 is increased in patients with liver

fibrosis suggesting that PCPE-1 could be a key player of liver fibrosis in patients. We thus ana-

lyzed the expression of liver PCPE-1 in patients with NASH or HCV related cirrhosis. Expres-

sion of PCOLCEmRNA was not modified in patients compared to control (confirmed by

published transcriptomic studies). PCPE-1 protein expression was slightly increased in NASH

patients, but not significantly (p = 0.09) likely due to the small number of samples (n = 4/

group). Why PCOLCE gene expression is not up regulated in patient derived samples in con-

trast to all tested preclinical models, is unclear. Further studies are needed to confirm these pre-

liminary results. Moreover, it would be of interest to assess more precisely circulating PCPE-1

levels in NASH patients with various degrees of fibrosis (as reported by Gokce and colleagues

[24] in patients suffering from chronic hepatitis B) to determine whether PCPE-1 could be a

diagnostic biomarker or be used to monitor efficacy of anti-fibrotic drugs. The impact of aging

should also be carefully analyzed since it is well-established that NASH disease progression and

development of fibrosis are also function of age [41]. It has been hypothesized that fibrosis may

be less prone to reverse due to impaired fibrolysis associated with increased cross-linking of col-

lagen fibrils [8, 42]. The role of PCPE-1 in this process should be investigated in the future.

Circumstantial evidence links the degree of fibrosis to mortality in NASH patients [43].

Therefore, there is increasing interest in pharmacologic agents that can either reverse and/or

slow down the progression of fibrosis. Since the pathogenesis of NASH is complex and

involves multiple pathways, a combination of pharmacological agents may be required to

tackle the problem rather than a single agent. Targeting the maturation of collagen via PCPE-1

antagonism, could be a relevant strategy to act on this mechanism. Further studies are needed

to explore the combination of PCPE-1 deficiency with a drug treatment targeting inflamma-

tion/ steatosis to evaluate the impact on fibrosis and NASH progression.
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S1 Fig. Liver mRNA expression of Pcolce, Pcolce2 and Bmp1 in WT and Pcolce -/- male mice

(18 week old, WT n = 9; Pcolce-/- n = 12). Data are expressed as mean ± SEM. �p<0.05,
���p<0.001 vs. WT. Unpaired t test.
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S2 Fig. Body and liver weight, liver TG, ALT and AST levels in WT and Pcolce-/- female

mice under A04 or CDA HFD after 8 weeks. (A) Body weight gain during A04 or CDA HFD

diet (n = 5–15). §§p<0.05, ˚˚˚p<0.001 vs. WT A04. 2-way ANOVA followed by Tukey’s post-hoc

analysis. (B) Liver weight (n = 5–15); (C) Liver TG content (n = 5–15); (D) Plasma Alanine Ami-

notransferase (ALT) level (n = 2 (Pcolce-/- A04)-11); (E) Plasma Aspartate Aminotransferase
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CDA-HFD after 8 weeks. (A) Typical examples of liver histology with Hematoxylin and Eosin

staining for inflammation and steatosis analysis (bars represent 75 μm); (B) evaluation of NAS

score; (C) steatosis score and (D) inflammation scores. Results are expressed as percentage of

frequencies (C & D). NAS, steatosis and inflammation scores were determined as described in

Material and Methods (n = 5–14). §§§p<0.001 vs. WT A04; ˚˚˚p<0.001 vs. Pcolce-/- A04. One-

way ANOVA followed by Tukey’s post test for B. Fisher exact test for C & D.
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weeks. (A) Typical examples of liver histology with Picrosirius red staining for fibrosis (bars

represent 75 μm). (B) Fibrosis score (n = 5–14). Fibrosis score was determined as described in

Material and Methods and results are expressed as percentage of frequencies. §§p<0.01 vs. WT

A04; ˚˚˚p<0.001 vs. Pcolce-/- A04. Fisher exact test. (C) Total collagen content in liver

(n = 3–9) and (D) Insoluble collagen content in liver (n = 5–14). Data are expressed as

mean ± SEM. �p<0.05 vs. WT CDA HFD. One-way ANOVA with Tukey’s post-test.
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S1 Raw images. Western blotting for analysis of PCPE-1 protein expression in human liver
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Ponceau staining and with anti-PCPE1 and anti-GAPDH blotting.

(PDF)

S1 Raw dataset. Evaluation of liver Pcolce mRNA gene expression in murine models of

NASH (Fig 1).

(PDF)

S2 Raw dataset. Body (A) and liver weight (B), liver TG (C), ALT (D) and AST (E) levels in

WT and Pcolce-/- male mice under A04 or CDA HFD after 8 weeks (Fig 2).

(PDF)

S3 Raw dataset. NAS score (A), liver steatosis (B) and inflammation (C) in WT and Pcolce-/-

male mice under A04 or CDA-HFD after 8 weeks (Fig 3).

(PDF)

S4 Raw dataset. Liver fibrosis score (A), total collagen (B) and insoluble collagen (C) in WT

and Pcolce-/- male mice under A04 or CDA-HFD after 8 weeks (Fig 4).

(PDF)

S5 Raw dataset. Liver mRNA expression of lipogenesis (A), inflammation (B) and fibrosis (C)

genes in male mice under A04 or CDA HFD after 8 weeks (Fig 5).

(PDF)

S6 Raw dataset. Expression of PCOLCE (A) and PCOLCE2 (B) mRNA and PCPE-1 protein

(C) in human liver samples (Fig 6).

(PDF)

PLOS ONE PCPE-1 and liver fibrosis in NASH

PLOS ONE | https://doi.org/10.1371/journal.pone.0263828 February 11, 2022 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263828.s012
https://doi.org/10.1371/journal.pone.0263828


S7 Raw dataset. Liver mRNA expression of Pcolce, Pcolce2 and Bmp1 in WT and Pcolce -/-

male mice (S1 Fig).

(PDF)

S8 Raw dataset. Body (A) and liver (B) weight, liver TG (C), ALT (D) and AST (E) levels in

WT and Pcolce-/- female mice under A04 or CDA HFD after 8 weeks (S2 Fig).

(PDF)

S9 Raw dataset. NAS score (A), liver steatosis (B) and inflammation (C) in WT and Pcolce-/-

female mice under A04 or CDA-HFD after 8 weeks (S3 Fig).

(PDF)

S10 Raw dataset. Liver fibrosis score (A), total collagen (B) and insoluble collagen (C) in WT

and Pcolce-/- female mice under A04 or CDA-HFD after 8 weeks (S4 Fig).

(PDF)

Acknowledgments
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