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Abstract: We addressed the involvement of the receptor for advanced glycation end products (RAGE)
in the impairment of the cellular cholesterol efflux elicited by glycated albumin. Albumin was isolated
from type 1 (DM1) and type 2 (DM2) diabetes mellitus (HbA1c > 9%) and non-DM subjects (C).
Moreover, albumin was glycated in vitro (AGE-albumin). Macrophages from Ager null and wild-type
(WT) mice, or THP-1 transfected with siRNA-AGER, were treated with C, DM1, DM2, non-glycated
or AGE-albumin. The cholesterol efflux was reduced in WT cells exposed to DM1 or DM2 albumin as
compared to C, and the intracellular lipid content was increased. These events were not observed
in Ager null cells, in which the cholesterol efflux and lipid staining were, respectively, higher and
lower when compared to WT cells. In WT, Ager, Nox4 and Nfkb1, mRNA increased and Scd1 and
Abcg1 diminished after treatment with DM1 and DM2 albumin. In Ager null cells treated with
DM-albumin, Nox4, Scd1 and Nfkb1 were reduced and Jak2 and Abcg1 increased. In AGER-silenced
THP-1, NOX4 and SCD1 mRNA were reduced and JAK2 and ABCG1 were increased even after
treatment with AGE or DM-albumin. RAGE mediates the deleterious effects of AGE-albumin in
macrophage cholesterol efflux.
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1. Introduction

In diabetes mellitus (DM), disturbances in the reverse cholesterol transport (RCT) are related to
the pathophysiology of atherosclerosis. The ATP-binding cassette transporters A1 (ABCA1) and G1
(ABCG1) mediate the excess of cholesterol delivered to, respectively, apo A-I and HDL in the first step
of the RCT, a pivotal mechanism that helps to maintain lipid homeostasis in the arterial wall favoring
cholesterol excretion into bile and feces [1,2].

Advanced glycation end products (AGEs) are prevalent in DM due to hyperglycemia, oxidative
stress and inflammation, but can also be absorbed from exogenous sources such as diet and tobacco [3].
AGE adversely affects ABCA1 and G1-mediated cholesterol efflux [4,5] by reducing ABCA1 protein
levels in macrophages without changing Abca1 mRNA [6,7]. On the other hand, in a LXR-dependent
mechanism, AGEs reduce ABCG1 gene transcription [8].

The receptor for AGE (RAGE, AGER gene) is a multi-ligand receptor of the immunoglobulin
superfamily that binds AGE and other inflammatory molecules such as calgranulins and high-mobility
group protein 1 (HMBG1), also referred to as a pattern recognition receptor [9]. RAGE is highly expressed
in atherosclerotic lesions from human and animal models of DM and mediates the deleterious effects
of AGE in vasculature [10,11]. Its antagonism by soluble forms that lack transmembrane and signaling
domains counteracts the full length receptor signaling, diminishing the development of atherosclerosis
in dyslipidemic diabetic mice [12]. In addition, AGER silencing by small interference RNA is able to
reduce inflammation and vascular damage [13,14].

We demonstrated that AGE albumin, isolated from both type 1 and 2 DM subjects’ serum, alters
the transcription of genes involved in ABCA1 expression and activity in macrophages, such as Scd1
(Stearoyl-Coenzyme A desaturase 1), Jak2 (Janus kinase 2) and Nox4 (NADPH oxidase 4) [15,16], leading
to intracellular lipid accumulation. Here, we tested the hypothesis that AGER silencing suppresses the
reduction in macrophage cholesterol efflux induced by AGE albumin and rescues the gene expression
profile. By utilizing bone marrow-derived macrophages (BMDM) from Ager null mice and THP-1
cells with AGER knockdown, we demonstrate that RAGE mediates the reduction in cholesterol efflux
induced by AGE albumin by modulating macrophage gene expression.

2. Results

The biochemical parameters of C and DM subjects are shown in Table 1. The body weight, BMI,
total cholesterol (TC), HDLc, LDLc and microalbuminuria were similar among groups. The duration
of the disease was similar between DM 1 and DM 2 individuals. DM 2 subjects were older than DM 1
and controls, and they presented higher plasma TG levels. Fasting glycemia, HbA1c, fructosamine and
total AGE in albumin were similar between DM groups but superior than the C group.

In order to access the role of RAGE in the disturbances of cholesterol efflux elicited by
glycated albumin drawn from those patients when compared to albumin from control subjects, bone
marrow-derived macrophages (BMDM) from WT and Ager null mice were utilized after cholesterol
overloading. The percentage of 3H-cholesterol efflux mediated by apo A-I was significantly reduced
by 71% and 81% in WT BMDM exposed to DM 1 or DM 2 albumin, respectively, as compared to C
albumin (Figure 1A). In addition, when compared to C albumin, the HDL2-mediated cholesterol efflux
in WT BMDMs was significantly reduced by 58% and 49% by DM1 or DM2 albumin, respectively
(Figure 1B). These changes were not observed when Ager null BMDM were incubated with DM
albumins (Figure 1A,B). In addition, the cholesterol efflux mediated by apo A-I and HDL2 was higher
in Ager null mice when compared to WT BMDM cells when both cells were treated with DM albumin
(Figure 1, panels A and B). These findings point to a role of the AGE/RAGE axis in the alteration of the
ABCA1- and ABCG1-mediated lipid efflux in macrophages.
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Table 1. Clinical and biochemical data from control, DM 1 and DM 2 subjects.

Control (n = 7) DM 1 (n = 7) DM 2 (n = 9)

Female/Male 5/2 5/2 6/3
Age (years) 28 ± 2 26 ± 3 63 ± 3 **
Weight (kg) 74.9 ± 8.5 64.3 ± 4 73.9 ± 4.2
BMI (kg/m2) 25.5 ± 1.8 23 ± 1.2 30.1 ± 1.7

Duration of DM (years) - 14 ± 2 14 ± 2
Total cholesterol (mg/dL) 170 ± 8 156 ± 7 187 ± 8

HDL-c (mg/dL) 63 ± 7 55 ± 4 55 ± 10
LDL-c (mg/dL) 87 ± 7 85 ± 8 98 ± 5

Triglycerides (mg/dL) 103 ± 16 80 ± 14 197 ± 37 *
Urinary albumin (mg/dL) 5.6 ± 1.2 13.5 ± 3.5 10.9 ± 2.3

Glucose (mg/dL) 80 ± 2 170 ± 39 * 192 ± 25 *
HbA1c (%) 5.3 ± 0.1 9.6 ± 0.4 ** 10.2 ± 0.4 **

Fructosamine (µmol/L) 245 ± 11.7 433 ± 34 ** 351 ± 10.7 **
Total AGE (mU AGE/mg of albumin) 12.7 ± 1.5 38.5 ± 1.4 ** 35.6 ± 0.6 **

* p-value < 0.05; ** p-value < 0.0001 compared to Control subjects (One-way ANOVA - Dunnett´s post test;
mean ± SE); Statistical analyses were performed using GraphPad Prism 5.0 software (GraphPad Prism, Inc.,
San Diego, CA, USA). Populational reference values for Total cholesterol (<190 mg/dL), HDL-c (>40 mg/dL), LDL-c
(<130 mg/dL), Triglycerides (<150 mg/dL), Glucose (≤99 mg/dL), HbA1C (≤6.5%), Fructosamine (205 to 285 µmol/L),
and urinary albumin (30 a 50 g/L)

Similar results were found in WT and Ager null BMDM treated with in vitro glycated albumin
(AGE albumin): a 67% and 39% reduction in cholesterol efflux mediated, respectively, by apo A-I and
HDL2 was observed in WT BMDM treated with AGE albumin when compared to cells treated with
non-glycated albumin. In the absence of Ager, disturbances in the cholesterol efflux were prevented
(Figure 1C,D). After treatment with AGE albumin, the cholesterol efflux mediated by HDL2 from
BMDM isolated from Ager null mice was significantly higher when compared to WT cells (Figure 1D).

Oil red O staining was performed to analyze the intracellular lipid accumulation in cells exposed to
DM, non-DM, glycated and non-glycated albumins. For that, WT and Ager null BMDMs were enriched
with acetylated LDL, treated with albumins for 48 h and incubated with apo AI or HDL, following
the assessment of lipid staining. The intracellular lipid accumulation increased after treatment with
DM1 and DM2 albumin, even after incubation with lipid acceptors, apo AI or HDL (Figure 2A,B).
On the other hand, there was a reduction in lipid staining in Ager null BMDMs treated with DM1
and DM2 albumin after incubation with apo AI or HDL (Figure 2A,B). Similar results were found in
cells treated with AGE albumin; while WT cells showed an increase in intracellular lipid staining by
AGE-albumin when compared to non-glycated albumin, this was not observed in Ager null BMDMs
that were preserved from lipid accumulation (Figure 2C,D). These data are in agreement with the
results obtained in cholesterol efflux assays, confirming a role of the AGE/RAGE axis in mediating
cholesterol homeostasis disturbances in macrophages.

Gene expression was assessed in BMDM isolated from WT and Ager null mice (Figure 3) or in
AGER-silenced THP-1 cells (Figure 4) treated with albumin samples. Genes were chosen based on our
previous findings, which demonstrated their involvement in the ABC-mediated cholesterol efflux in
macrophages [15,16]. Ager expression was increased in WT BMDMs after treatment with DM 1 or AGE
albumin in comparison to, respectively, C and non-glycated albumin (Figure 3A). There was an increase
in Nox4 mRNA expression in WT cells after treatment with DM 1 and DM 2 albumin in comparison to
C albumin (Figure 3B). In spite of the presence of DM 1 or DM 2 albumin, a dramatic reduction in
Nox4 expression was observed in Ager null cells (Figure 3B). Jak2 mRNA expression was similar in WT
cells treated with C, DM 1 and DM 2 albumin, but after treatment with DM 1 and DM 2 albumin it
increased in Ager null BMDMs when compared to WT cells (Figure 3C). Nonetheless, Scd1 mRNA
expression was lower in Ager null cells than in WT after treatment with DM albumins (Figure 3D).
Nfkb1 increased significantly in WT BMDM treated with DM 1 or DM 2 albumin in comparison to C
albumin but was lower in Ager null cells than in WT cells (Figure 3E).
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cholesterol for 24 h. Cells were treated for 48 h with (A and B) control, DM 1 or DM 2 albumin or with 

Figure 1. Cholesterol efflux mediated by apo AI and HDL2 in macrophages treated with non-glycated,
AGE, control, DM 1 or DM 2 albumin. Bone marrow-derived macrophages (BMDMs) from C57BL/6 WT
(n = 4) mice and Ager null (n = 4) mice were loaded with acetylated LDL (50 µg/mL) and 3H-cholesterol
for 24 h. Cells were treated for 48 h with (A and B) control, DM 1 or DM 2 albumin or with (C and D)
non-glycated or AGE albumin (1 mg/mL in DMEM). Apo A-I (30 µg/mL) or HDL2 ((50 µg/mL) were
utilized as 3H-cholesterol acceptors in 6-h incubations. One-way ANOVA—Dunnett´s posttest; mean± SD.

RAGE silencing was utilized as another approach to investigate the role of RAGE in intracellular
cholesterol homeostasis. The expression of the AGER gene in THP-1 cells transfected with siRNA-AGER
was reduced by 60% in comparison to scramble siRNA-treated cells (Figure 4A). This agreed with the
fact that the amount of RAGE assessed by immunoblot decreased by 77% in AGER-silenced THP-1
cells in comparison to scramble siRNA-cells (Figure 4B).

In AGER-silenced THP-1 cells, there was a reduction in the NOX4 mRNA expression after
treatment with AGE albumin when compared to cells transfected with scramble siRNA (Figure 4C).
No statistical differences were obtained regarding DM 1 and DM 2 albumin. JAK2 increased in
siRNA-AGER cells treated with AGE or DM 2 albumin when compared to scramble siRNA cells
(Figure 4D). In scramble siRNA cells, SCD1 increased via AGE and DM 2 albumin when compared to
their respective experimental controls (non-glycated and C albumin) and decreased after treatment
with DM 1 albumin. In siRNA-AGER cells, the expression of SCD1 decreased under all experimental
conditions when compared to scramble siRNA cells (Figure 4E).
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Figure 2. Intracellular lipid staining in macrophages treated with non-glycated, AGE, control, DM 1 or
DM 2 albumin. Bone marrow-derived macrophages (BMDMs) from C57BL/6 Wild-type (WT, n = 3)
and RAGE knockout (RAGE-KO, n = 3) mice were loaded with acetylated LDL (50 µg/mL) for 24 h.
Cells were treated for 48 h with control, DM 1 or DM 2 albumin (A,B) or with non-glycated or AGE
albumin (C,D) (1 mg/mL in DMEM) alone or in the presence of apo AI (30 µg/mL) or HDL (50 µg/mL)
for 6 h to determine the Oil Red O staining. Representative images (400x magnification). Student’s t
test; mean ± SD.

The expressions of the cholesterol transporters ABCA1 and ABCG1 were also studied in both
BMDMs (Figure 5A,C) and THP-1 cells (Figure 5B,D). The Abca1 levels increased via DM 1 albumin in
Ager null when compared to WT BMDMs. In comparison to C albumin, only DM 2 albumin increased
Abca1 in WT cells, although the mRNA levels were reduced in Ager null when compared to WT BMDMs
(Figure 5A). In THP-1 cells transfected with scramble siRNA or siRNA-AGER, the ABCA1 mRNA
expression was not modified after treatment with DM 1 and DM 2 when compared with C albumin
(Figure 5B). A reduction in Abcg1 was observed in WT BMDMs treated with DM 1 and DM 2 albumin
when compared with C albumin. However, there was an increase in Abcg1 expression in Ager null cells
exposed to DM 1 albumin when compared to C albumin (Figure 5C). In THP-1 cells transfected with
siRNA-AGER and exposed to DM 1 or DM 2 albumin, we found an increase in ABCG1 when compared
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to cells transfected with scramble siRNA. In addition, DM 2 albumin increased when compared to C
albumin in AGER-silenced cells (Figure 5D).
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Figure 3. Gene expression in WT and Ager null macrophages treated with control, DM 1 or DM 2
albumin. Bone marrow-derived macrophages (BMDMs) from C57BL/6 WT (n = 3) and Ager null (n = 3)
mice were maintained for 48 h in DMEM (1 mg/mL) with control, DM 1 or DM 2. RT qPCR was
performed for (A) Ager, (B) Nox4, (C) Jak2, (D) Scd1 and (E) Nfkb1 using TaqMan Universal PCR Master
Mix (Applied Biosystems). IPO8 rRNA (Applied Biosystems) was used as an endogenous reference
gene. One-way ANOVA—Dunnett’s posttest; mean ± SD.
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Figure 4. Gene expression in THP-1 cells transfected with scramble siRNA and siRNA-AGER. THP-1
cells (n = 4) were transfected with small interfering RNA (siRNA) duplexes against AGER (AM16706,
Ambion, Austin, TX, USA). Separated wells of THP-1 cells were electroporated with a scramble siRNA
(AM4635, Ambion) as a negative control. After 96 h, cells were maintained for 48 h in DMEM containing
1 mg/mL of non-glycated, AGE, control, DM or DM 2 albumin. RT qPCR was performed for (A) AGER,
(C) NOX4, (D) JAK2 and (E) SCD1 using TaqMan Universal PCR Master Mix (Applied Biosystems).
IPO8 rRNA (Applied Biosystems) was used as an endogenous reference gene. Protein levels of RAGE
by Western blotting (B). One-way ANOVA—Dunnett’s posttest; mean ± SD.
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Figure 5. ABCA1 and ABCG1 gene expression in cells treated with C, DM 1 and DM 2 albumin.
(A,C) Bone marrow-derived macrophages (BMDMs; n = 3) from C57BL/6 WT and Ager null mice or
(B,D) THP-1 cells (n = 4) transfected with scramble siRNA and siRNA-AGER were treated with C,
DM 1 or DM 2 albumin (1 mg/mL), as described in the Material and Methods. RT qPCR was performed
using TaqMan Universal PCR Master Mix (Applied Biosystems). IPO8 rRNA (Applied Biosystems)
was used as an endogenous reference gene. One-way ANOVA—Dunnett’s posttest; mean ± SD.

3. Discussion

Glycated albumin is an important clinical marker of glycemic control and independently predicts
long-term outcomes in DM [17]. AGE albumin plays a potential atherogenic role, particularly via its
deleterious effects in macrophage reverse cholesterol transport [16]. Considering the involvement of
the AGE/RAGE axis in the development of inflammation and vascular damage in DM, we addressed
how RAGE is involved in the impairment of apo A-I and HDL-mediated cholesterol efflux elicited by
human AGE albumin in macrophages.

By utilizing two different experimental approaches to abrogate RAGE signaling (Ager null mouse
macrophages and RAGE-silenced THP-1 cells), we demonstrated that: (1) the reduction in cholesterol
efflux to apo A-I and HDL2 elicited by AGE requires RAGE and that (2) RAGE absence abolishes the
effect of AGE albumin, normalizes the expression of many genes involved in cholesterol efflux and
prevents intracellular lipid accumulation.

Together with oxidative stress and epigenetics, AGEs are important mediators of metabolic
memory. They mediate the intracellular glycation of the mitochondrial respiratory chain proteins,
leading to the excessive production of reactive oxygen species, NF-KB activation and increased
expression of adhesion molecules and cytokines. In addition to altering the transcription of several
genes, AGE induces RAGE expression, creating a vicious cycle in the pathophysiology of vascular
damage [18,19].

The in vivo modification of albumin, analyzed in the present study, which occurs in poorly
controlled DM individuals, is reflected by the high amount of AGE in DM 1 and DM 2 albumin
as compared to C albumin. We previously demonstrated that glycation that takes place in vivo in
DM subjects elicits similar alterations in macrophage cholesterol homeostasis when compared to
in vitro-produced AGE albumin [6,15,16,20]. Apart from changes in its message level, AGE albumin
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induces intracellular lipid accumulation as a consequence of the reduction in ABCA1 protein [15,16].
The accumulation of toxic cholesterol derivatives such as 7-ketocholesterol has been described as being
associated to the enhanced inflammation, as well as the oxidative and endoplasmic reticulum stress,
in macrophages [6,7,21,22].

In the present work, the absence of RAGE prevented alterations in the macrophage cholesterol
efflux induced by both sources of glycated albumin, isolated from poorly controlled DM subjects and
produced in vitro. This result agrees with recent observations from our group [23] demonstrating that
a 54% RAGE knockdown in THP-1 cells prevented the reduction in ABCA-1 elicited by AGE-albumin.
Those results likely point to a role of RAGE in mediating the activation of the ubiquitin-proteasome
and lysosomal-related degradation pathways that are responsible for the intracellular degradation of
ABCA-1 protein elicited by AGE.

In addition, Daffu et al. (2015) demonstrated that AGER knockdown rescued ABCG1 expression
and HDL-mediated cholesterol efflux in cells treated with carboxymethyllysine (a specific RAGE
ligand) [5]. Altogether, these results point to a major role of RAGE in mediating the AGE effects in
cholesterol homeostasis, although they do not exclude the participation of other scavenger receptors
and toll-like receptors that may bind AGE.

Our findings agree with previous clinical observations in DM subjects, where the circulating
levels of AGE and soluble forms of RAGE were associated with the progression of cardiovascular
disease. In DM 2 individuals with stable coronary artery disease, the levels of glycated albumin and
the splice variant endogenous secretory RAGE (esRAGE) were independent predictors of primary and
secondary endpoints [24]. In mononuclear cells, the expression of esRAGE decreased in pre-diabetes
and type 2 DM subjects when compared to controls and was, together with HbA1c, a determinant of
the intima-media thickness [25]. In addition, in type 1 DM soluble RAGE (sRAGE), the levels were
inversely related to inflammation in a five-year follow-up study [26].

Gene expression was assessed in BMDMs isolated from Ager null mice or in AGER-silenced THP-1
cells treated with C or DM albumin samples. The Ager, Nox4 and Nfkb1 expression increased in WT
BMDMs after treatment with DM albumin. The deletion of Ager decreased Nox4 after DM 1 or DM 2
albumin treatment, indicating a role of RAGE silencing in the modulation of oxidative stress that is
deleterious to cholesterol exportation via ABCA1. Jak2 mRNA expression was increased in Ager null
BMDMs when compared to WT cells after treatment with DM 1 and DM 2 albumin. JAK-2 is postulated
to be a mediator of the apo A-I and ABCA-1 interaction, a requirement for free cholesterol exportation
that leads to HDL assembly [27]. RAGE induces JAK-2/STAT (signal transducer and activator of
transcription) activation [28,29], and its silencing is able to prevent this intracellular signaling [14].

In Ager null cells, when compared to WT cells, there was a reduction in Nfkb1 mRNA expression
even after treatment with albumin isolated from DM subjects. The AGE/RAGE interaction mediates
oxidative stress generation [30] that evokes NF-κB activation [31], thereby increasing the chronic
inflammatory and vasoconstrictor response related to long-term complications of DM.

There was a reduction in Scd1 in Ager null cells and in siRNA-AGER THP-1 cells treated with DM
1 and DM 2, which may be beneficial considering the negative modulation of ABCA1 mRNA levels by
SCD-1 [32,33]. Nonetheless, the role of SCD-1 in atherogenesis is still controversial, since a low level of
SCD-1 activity in macrophages triggers endoplasmic reticulum stress that leads to a reduction in the
ABCA1 protein level [22].

The expression of Abca1 was increased by DM 1 albumin in Ager null BMDMs when compared to
WT cells. DM 2 albumin enhanced Abca1 mRNA in WT cells when compared to C albumin, which
may be the reason for the difference observed between WT and Ager null cells treated with DM 2
albumin. On the other hand, no differences in ABCA1 expression were observed in scramble siRNA- or
siRNA-AGER-transfected THP-1 cells treated with DM albumin when compared to C albumin. It is
worth noting that the final content of ABCA1 protein in cells is mainly dictated by posttranslational
mechanisms represented by protease-mediated degradation, ubiquitin-proteasome and lysosomal
degradation [34,35]. Thus, the elevation in ABCA1 mRNA levels that we observed may not account for
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the final protein level, which is reduced by AGE albumin [7,16], as described by the increased ABCA-1
ubiquitination and degradation [23].

A reduction in Abcg1 mRNA expression was observed in WT BMDMs treated with DM 1 and DM
2 albumin. Abcg1 mRNA increased when Ager null cells or THP-1 cells transfected with siRNA-AGER
were exposed to DM albumin. Daffu et al. (2015) found a reduction in Abca1 and Abcg1 mRNA
in RAGE-expressing diabetic BMDMs when compared to Ager null diabetic BMDMs [5]. In their
paper, they demonstrated that the AGE/RAGE axis downregulates the luciferase activity in the ABCG1
promoter and decreases the cholesterol efflux to HDL. Although changes in gene expression reported
here were not confirmed by evaluating the protein expression, the prevention of disturbances in the
cholesterol exportation to apo A-I and HDL, as well as in intracellular lipid accumulation, observed
in the absence of RAGE reinforce the role of AGE-RAGE signaling in the deleterious effects of AGEs
on lipid homeostasis in macrophages. In addition, the use of in vitro-glycated albumin confirms the
specific role of AGEs, generated both in vitro and in vivo, in the diabetes mellitus milieu. The recovery
of cellular functionality that favored cholesterol efflux and reduced intracellular lipid accumulation
seems to represent a cellular whole integration (gene expression and protein levels/functions) that is
attained by the absence of RAGE signaling.

In another investigation, we found that serum albumin drawn from an animal model of uremia
also renders macrophages vulnerable to endoplasmic reticulum stress and disturbs reverse cholesterol
transport by impairing the ABCA1 expression and activity [36]. Interestingly, glycated albumin is
enhanced in those animals’ serum and acts similarly to glycated albumin drawn from DM subjects.
RAGE is overexpressed in the uremic aortic wall, and Ager null animals are protected from the
uremia-induced acceleration of atherosclerosis [37]. Thus, RAGE inhibition may contribute to
abrogating the deleterious effects of AGE albumin in a range of metabolic conditions where carbonyl
stress prevails.

In conclusion, cholesterol efflux impairment and intracellular lipid accumulation induced by
human advanced glycated albumin is due to alterations in macrophage gene expression mediated by
the AGE/RAGE axis. Strategies to block RAGE signaling might be useful in preventing derangements
in macrophage reverse cholesterol transport and atherosclerosis induced by AGE.

4. Materials and Methods

Control individuals (n = 7) were selected at the Faculdade de Medicina da Universidade de São
Paulo. Type 1 (n = 7) and type 2 DM (n = 9) subjects with HbA1c > 9% were selected at the Hospital das
Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP). All participants signed
an informed written consent form previously approved by The Ethical Committee for Human Research
Protocols of HCFMUSP (CAPPesq protocol #195.421; 21 January 2013). None of the participants had
chronic diseases other than DM, and subjects diagnosed with microalbuminuria, renal disease or
alcohol abuse were excluded. One individual in the control group was a current smoker, two were on
enalapril and one on L-thyroxine treatment. In the DM 1 group, all subjects were on insulin treatment
and none were smokers. In the DM 2 group, six were on insulin, nine on statins, six on sulfonylureas,
nine on metformin, two on acarbose, one on pioglitazone, two on fibrate, eight on antihypertensives
and six on acetylsalicylic acid. One subject was a current smoker.

Plasma fructosamine, glucose, triglycerides, total cholesterol, HDL cholesterol and serum albumin
were determined after overnight fasting by enzymatic techniques. HbA1c was determined by high
performance liquid chromatography. Urinary albumin was quantified by colorimetric analysis.

4.1. Isolation and Purification of Serum Albumin

Serum albumin was isolated from control and DM individuals by fast protein liquid
chromatography using a HiTrapTM Blue (GE Healthcare, Uppsala, Sweden) affinity column, following
purification by alcoholic extraction, as previously described by Machado-Lima et al., 2015 [16].
The samples’ integrity was assessed by electrophoresis in comparison with a pure commercially
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available human albumin serum (Sigma-Aldrich, Steinheim, Germany). The amount of endotoxin in
the albumin samples was less than 50 pg of endotoxin/mL according to the Limulus Amebocyte Lysate
(LAL) (Cape Cod, Falmouth, MA, USA), and no cell toxicity was observed.

4.2. In Vitro Advanced Glycation of Human Albumin

Advanced glycation was induced in human fatty acid-free albumin (Sigma-Aldrich, Steinheim,
Germany) by incubating with 10 mM glycolaldehyde (Sigma Chemical Co., St. Louis, MO, USA) for
four days under sterile conditions in a shaker bath at 37 ◦C in the dark, under N2 atmosphere. Control
non-glycated albumin was incubated with phosphate buffered saline only. The samples were dialyzed
and, after sterilization, were frozen at −80 ◦C until experiments.

4.3. Total AGE Measurement

The content of total AGE (mU AGE/mg of albumin) in albumin isolated from control individuals
and DM 1 and DM2 subjects was quantified by an immunoenzymatic method from LAMIDER SA
(ELISA kit for the detection and quantification of AGEs—Mexico DF, México).

4.4. Isolation of Plasma Lipoprotein

Plasma preparative ultracentrifugation was performed in order to isolate LDL (d = 1.019–1.063 g/mL)
and HDL2 (d = 1.063–1.125 g/mL). LDL was acetylated with acetic anhydride, as previously described [38],
and protein was measured by the Lowry technique [39]. Purified apo A-I was purchased from Biomedical
Technologies (Tewksbury, MA, USA).

4.5. L929 Cell Culture

L929 cells (ATCC, American Tissue Culture Collection) were cultured in low glucose DMEM
supplemented with 10% heat-inactivated fetal calf serum and 1% penicillin/streptomycin for seven days
as a source of colony-stimulating factor-1 (CSF-1; required for bone marrow cells’ differentiation into
macrophages) [40]. The medium was removed and stored at −20 ◦C (first week medium). Confluent
monolayers were cultured with fresh medium for seven more days to generate a second batch of
conditioned medium (second week medium).

4.6. Isolation of Mouse Bone Marrow Cells

Mouse bone marrow cells were obtained from C57BL/6 wild-type (WT) and Ager null mice. Male
and female homozygous Ager−/− mice, backcrossed > 12 generations into a C57BL6/J background,
were bred in our laboratory [41]. Male and female C57BL6/J (WT) mice were purchased from Jackson
Laboratories (Bar Harbor, ME, USA). Animal studies were carried out with the approval of the
Institutional Animal Care and Use Committee of New York University. Briefly, tissues from legs were
removed with scissors and dissected away from the body. All remaining tissue from the femurs and
tibias were cleaned and separated at the knee joint to avoid contamination. The end of each bone was
cut off and, using a needle size of 26 and 1

2 and a 20 mL syringe, was filled with bone marrow medium
(low-glucose DMEM with 0.8% penicillin/streptomycin, 10% heat-inactivated fetal calf serum and 10%
L929-cell conditioned medium [40]—half from the first week and half from the second week). The bone
marrow from both ends of the bones was expelled with a jet of medium directed into a 50 mL screw
top tube. Using a needle size 18 and 1

2 attached to a 20 mL syringe, the marrow was gently aspirated
and expelled until the cell aggregates were broken up. Cells were centrifuged for 6 min at 1000 rpm at
room temperature. Cells were resuspended in bone marrow medium and were dispensed into culture
dishes. Incubation was done for five days at 37 ◦C under a 5% (v/v) CO2. On day 5, the conditioned
medium was changed for a new bone marrow medium. On day 6, the growth medium was completely
changed to normal medium (low-glucose DMEM + 1% penicillin/streptomycin + 10% heat-inactivated
fetal calf serum).
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4.7. Cholesterol Efflux Assay

Bone marrow-derived macrophages (BMDM) from WT and Ager null mice were incubated with
acetylated LDL (50 µg/mL) and 5 µCi/mL of 3H-cholesterol for 24 h. After two washes with PBS
containing fatty acid free albumin (FAFA), cells were maintained for 48 h in DMEM containing 1%
penicillin/streptomycin supplemented with 1 mg/mL of albumin from control subjects, DM 1 or DM 2
subjects. In another set of experiments, cells were incubated with non-glycated or with in vitro glycated
albumin (AGE albumin). Macrophages were then incubated with 50 µg/mL HDL2 or 30 µg/mL apo
A-I for 6 h to determine the 3H-cholesterol efflux, as previously described [4].

4.8. Intracellular Lipid Staining

Bone marrow-derived macrophages (BMDMs) from WT and Ager null mice were seeded in
chamber slides (Lab Tek) and were then enriched with acetylated LDL (50 µg/mL) for 24 h. After
two washes with PBS containing fatty acid free albumin (FAFA), cells were maintained for 48 h in
DMEM containing 1% penicillin/streptomycin supplemented with 1 mg/mL of albumin from control,
DM 1 or DM 2 subjects. In another set of experiments, cells were incubated with non-glycated or
in vitro glycated albumin (AGE albumin). Then, macrophages were incubated with 50 µg/mL HDL
or 30 µg/mL apo AI for 6 h. Cells were washed with PBS and fixed with formalin solution (10% in
PBS) for 10 min at room temperature. Cells were washed with PBS and 60% isopropanol. Then, cells
were stained with Oil Red O working solution: 30 mL of the stock stain in 220 mL of distilled water
(Oil Red O stock stain: 0.5 g of Oil Red O—Sigma-Aldrich—dissolved in 100 mL of isopropanol) for
25 min. Cells were washed with 60% isopropanol and were stained with hematoxilin (stain nucleo
core) for 1 min. Cells were washed with distilled water, and aqueous mounting medium was used to
put the coverslips. Cells were observed under an optical microscope (Sony CCD Camera/Olympus
Microscope BX-51). Oil Red O staining was quantified by a single blinded investigator using Image
Pro Plus Media Cybernetics software (Bethesda, Rockwell, MD, USA). Data were expressed as the
stained area detected by the software Image Pro Plus Media Cybernetics software (Bethesda, Rockwell,
MD, USA).

4.9. AGER siRNA

The human monocytic leukemia cell line, THP-1 (ATCC, American Tissue Culture Collection)
was seeded in 6-well plates and transfected with small interfering RNA (siRNA) duplexes against
AGER. The siRNA duplexes against AGER (AM16706, Ambion) were electroporated into THP-1
cells using serum-free medium (Opti-MEM® Reduced Serum Medium, Gibco, Paisley, Scotland, UK)
without antibiotic supplements, using Lipofectamine® 2000 Transfection Reagent (Invitrogen, Thermo
Fisher Scientific Inc., Waltham, MA, USA), according to the manufacturer’s protocol. To control for
the off-target effects of siRNA, separated wells of THP-1 cells were electroporated with scramble
siRNA (AM4635, Ambion) as negative controls. Cells were incubated under these conditions for 96 h.
After that, cells were maintained for 48 h in DMEM supplemented with 1 mg/mL of albumin from
control, DM 1 or DM 2 subjects. In another set of experiments, cells were incubated with non-glycated
or with AGE albumin. The total RNA was extracted from THP-1 cells using the RNeasy Mini Kit
(Qiagen, Hilden, Germany).

4.10. Real-Time Quantitative PCR

The total RNA (0.5 µg) was processed directly to cDNA using the iScript™ cDNA Synthesis Kit
(Bio-Rad Laboratories, Inc., Foster City, CA, USA), according to the manufacturer’s protocol. Real-time
quantitative PCR was performed using TaqMan Universal PCR Master Mix (Applied Biosystems,
Foster City, CA, USA). TaqMan Gene Expression Assays were used in the Step One Plus Real Time
PCR System (Applied Biosystems, Foster City, CA, USA) (Table 2).
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Table 2. Primers utilized-TaqMan Gene Expression Assays (Step One Plus Real Time PCR).

GENE Human ID Mouse ID

AGER (RAGE) Hs00153957_m1
(FAM 75 µL 20×)

Mm01134790_g1
(FAM 75 µL 20×)

NOX4 (NADPH oxidase 4) Hs00418356_m1
(FAM 75 µL 20×)

Mm00479246_m1
(FAM 75 µL 20×)

JAK2 (Janus kinase 2) Hs00234567_m1
(FAM 75 µL 20×)

Mm01208489_m1
(FAM 75 µL 20×)

SCD1 (Stearoyl-CoA desaturase-1) Hs01682761_m1
(FAM 75 µL 20×)

Mm00772290_m1
(FAM 75 µL 20×)

NFKB1 (NF-kappaB) Hs00765730_m1
(FAM 75 µL 20×)

Mm00476361_m1
(FAM 75 µL 20×)

ABCA1 (ATP binding cassette subfamily A member 1) Hs01059118_m1
(FAM 75 µL 20×)

Mm00442646_m1
(FAM 75 µL 20×)

ABCG1 (ATP binding cassette subfamily G member 1) Hs00245154_m1
(FAM 75 µL 20×)

Mm00437390_m1
(FAM 75 µL 20×)

IPO8 (Importin 8) Hs00183533_m1
(VIC 75 µL 20×)

Mm01255158_m1
(VIC 75 µL 20×)

The relative expression of each gene was measured with respect to the expression of the
housekeeping gene IPO8. The relative quantification of the gene expression was performed with
StepOne Software 2.0 (Applied Biosystems, Foster City, CA, USA) using the comparative cycle threshold
(Ct) (2−∆∆Ct) method [42,43].

4.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8.0 software (GraphPad Prism, Inc.,
San Diego, CA, USA). The Shapiro–Wilk normality test was applied, and the one-way ANOVA with
Dunnett´s posttest or Student´s t test were utilized to compare results (mean ± SD). A p-value < 0.05
was considered statistically significant.
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Abbreviations

ABCA1 ATP-binding cassette transporter A1
ABCG1 ATP-binding cassette transporter G1
AGEs Advanced glycation end products
AGE albumin glycated albumin
BMDM bone marrow-derived macrophages
CSF-1 colony-stimulating factor-1
C non-DM subjects
DM diabetes mellitus
DM1 type 1 diabetic subjects
DM2 type 2 diabetic subjects
FAFA fatty acid free albumin
HMBG1 high-mobility group protein 1
IPO8 importin 8
Jak2 janus kinase 2
NFKB1 NF-κB
Nox4 NADPH oxidase 4
RAGE, AGER gene receptor for AGE
RCT reverse cholesterol transport
Scd1 stearoyl-Coenzyme A desaturase 1
WT wild-type
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