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Abstract
Variations of human leukocyte antigen (HLA) genes in the major histocompatibility complex region (MHC) significantly 
affect the risk of various diseases, especially autoimmune diseases. Fine-mapping of causal variants in this region was chal-
lenging due to the difficulty in sequencing and its inapplicability to large cohorts. Thus, HLA imputation, a method to infer 
HLA types from regional single nucleotide polymorphisms, has been developed and has successfully contributed to MHC 
fine-mapping of various diseases. Different HLA imputation methods have been developed, each with its own advantages, 
and recent methods have been improved in terms of accuracy and computational performance. Additionally, advances in HLA 
reference panels by next-generation sequencing technologies have enabled higher resolution and a more reliable imputation, 
allowing a finer-grained evaluation of the association between sequence variations and disease risk. Risk-associated variants 
in the MHC region would affect disease susceptibility through complicated mechanisms including alterations in periph-
eral responses and central thymic selection of T cells. The cooperation of reliable HLA imputation methods, informative 
fine-mapping, and experimental validation of the functional significance of MHC variations would be essential for further 
understanding of the role of the MHC in the immunopathology of autoimmune diseases.
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Introduction

The major histocompatibility complex (MHC) region is 
located at 6p21.3 with spanning approximately 5 Mb in 
length [1]. The genes encoded by this region are clearly 

enriched for immune responses and inflammatory pathways 
[1, 2]. Consistently with its function, genetic variants in the 
MHC region contribute to the genetics of various human 
complex traits, especially autoimmune diseases and infec-
tious diseases [3, 4]. The MHC is the region with the high-
est number of disease associations reported in genome-wide 
association studies (GWAS) [5]. These associations included 
those “non-autoimmune diseases,” such as cardiovascular, 
metabolic, and neurological diseases, implying immune-
related mechanisms behind the progression of these dis-
eases and the broader significance of the MHC region [6, 
7]. Among the genes densely present in the MHC region, 
human leukocyte antigen (HLA) genes are considered to 
explain most of the genetic heritability of MHC. HLA mol-
ecules mediate antigen presentation, which is a critical com-
ponent in triggering the subsequent immune responses; thus, 
variations in HLA genes have been considered to associ-
ate with the risk of immune-related diseases directly. For a 
representative instance, in type 1 diabetes (T1D), the MHC 
region explains 42.8% of phenotypic variance, of which 
HLA-DRB1, -DQA1, and -DQB1 haplotypes account for the 
most significant proportion at 29.6% [8].
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Associations of single nucleotide polymorphisms 
(SNPs) with phenotypes of interest in GWAS typically do 
not indicate their direct causal roles but linkage with truly 
causal variants. To identify such causal variants (i.e., fine-
mapping), comprehensive genotyping of regional varia-
tions including HLA allelic types for the target individuals 
is needed. However, the MHC region is one of the most 
challenging regions of the human genome to genotype 
because of its high degree of polymorphism and structural 
variations [9]. Thus, HLA typing is conducted with specific 
approaches, including traditional polymerase chain reac-
tion (PCR)-based methods and next-generation sequencing 
(NGS). They are so labor-intensive, time-consuming, and 
expensive that they could not be applied to fine-mapping for 
large cohorts of GWAS [6, 10]. Subsequently, the genotypes 
of HLA alleles are indirectly imputed from SNP-level data 
using a pre-constructed HLA reference panel. HLA impu-
tation has successfully contributed to the fine-mapping of 
causal HLA variants to delineate of the immunopathology 
of various diseases.

Beginning with a simple inference using tag SNPs [11, 
12], various statistical HLA allelic imputation methods have 
been developed, each with its advantages and disadvan-
tages for practical use. In this review, we discuss the recent 
advances and challenges in HLA imputation methods and 
available HLA reference panels. We also discuss the rela-
tionship between the MHC region and autoimmune diseases 

revealed by the fine-mapping and the current understanding 
of how HLA variations contribute to disease etiology.

Structure and definition of HLA

The MHC region is categorized into three sub-regions, 
namely, class I, II, and III (Fig. 1a) [1]. In the MHC class I 
region, three categories of genes are located: classical HLA 
class I genes (HLA-A, -B, and -C), non-classical HLA class 
I genes (HLA-E, -F, -G, HFE, and 12 pseudogenes), and the 
class I-like genes (MICA, MICB, and 5 pseudogenes). In the 
MHC class II region, there are two categories of HLA genes: 
classical HLA class II genes (HLA-DR, -DP, and -DQ) and 
non-classical HLA class II genes (HLA-DM and -DO). The 
remaining part is the class III region, where many of the 
genes are related to the immune system, such as comple-
ment (e.g., C2, C4A, and C4B) and inflammation system 
(e.g., TNF).

HLA class I molecules are expressed on the surface of 
nucleated cells and can present endogenous antigens to 
CD8+ T cells. While classical HLA class I genes are highly 
polymorphic and have distinct antigen-presenting ability, 
non-classical HLA class I genes are less polymorphic and 
have various functions. The structure of HLA class I mol-
ecules consists of a heavy chain consisting of three domains, 

Fig. 1  Structure of the MHC 
region and nomenclature of 
HLA alleles. a The MHC region 
is categorized into class I, II, 
and III. Only classical HLA 
genes are illustrated along with 
their positions for simplic-
ity. b The nomenclature of 
HLA alleles. HLA alleles are 
named hierarchically as four 
fields based on the resolution 
of sequences. The last letter 
denotes expression status, 
e.g., “N” indicates “not to be 
expressed.”
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α1, α2, and α3, and β2 microglobulin that constitutes one 
immunoglobulin-like domain.

HLA class II molecules are expressed on the surface of 
antigen-presenting cells, such as macrophages and dendritic 
cells, and function to present exogenous antigens to CD4+ T 
cells. The structure of HLA class II molecules consists of an 
alpha chain composed of two domains, α-domain consisting 
of α1 and α2 and β chain consisting of β1 and β2. Each HLA 
class I molecule (e.g., A, B, and C) is encoded by a single 
gene (e.g., HLA-A, -B, and -C, respectively). In contrast, for 
HLA class II, the heterodimer is formed from the products 
of two genes, e.g., HLA-DQA1 and HLA-DQB1 encode the 
α and β chains of DQ molecules, respectively. Although β 
chains of DR molecules are encoded by HLA-DRB1, there 
are additional loci encoding alternative DRβ chains in some 
haplotypes (e.g., HLA-DRB3, -DRB4, and -DRB5). The 
presence of the additional loci depends on the serogroup of 
HLA-DRB1 gene on the same haplotype and named accord-
ingly (e.g., HLA-DRB4 corresponds to HLA-DRB1*04).

The rapid increase in the number of identified HLA 
alleles has led to the development of the nomenclature used 
to describe them. It is managed by the WHO Nomenclature 
Committee for Factors of the HLA System, and all identified 
HLA alleles are registered in the IMGT/HLA database [13]. 
In the HLA allele nomenclature, the HLA gene name is fol-
lowed by numeric fields separated by colons that describe 
four levels of typing resolution (Fig. 1b). The first field or 
2-digit resolution describes a serologically defined allele 
group, and the second field or 4-digit resolution indicates 
a unique protein sequence encoded by the allele within that 
group. Fields 3 and 4 resolutions show silent and non-coding 
polymorphisms, respectively. Traditionally, HLA typing was 
mainly based on the antigen-binding region (i.e., exons 2 and 
3 for an HLA class I gene and by exon 2 for an HLA class 
II gene). However, with the increase in the number of HLA 
types registered in the database, many polymorphisms have 
been found outside the antigen-binding region. As a result, 
the G group was defined as a type of group in which the 
sequence of the antigen-binding region (i.e., exons 2 and 3 
for class I and exon 2 for class II genes) to differentiate it 
from the 4-digit resolution allele [14].

HLA imputation methods for individual 
genotype data

HLA imputation was developed to fine-map the MHC 
region, characterized by complicated linkage disequi-
librium (LD) structures and long-range haplotypes of 
regional variants and their corresponding HLA allelic 
types. HLA imputation uses a reference panel typed with 
both HLA and SNP genotypes to infer HLA genotypes 
from SNP information (Fig. 2). Starting with a simple 
inference using tag SNPs [11, 12], various HLA imputa-
tion methods have been developed to capture the compli-
cated LD structure of the MHC region (Table 1).

Leslie et al. first reported a probabilistic approach for 
classical HLA allelic imputation based on the Li and Ste-
phens haplotype model [21]. Its improved version was 
implemented as HLA*IMP targeted for the European 
population [22]. The Li and Stephens haplotype model 
is a theory of statistical genetics, stating that the genome 
sequence of an individual can be represented by recombi-
nation and a small number of mutations of those of other 
individuals [23]. They modeled the SNP haplotype back-
ground of individual HLA alleles and performed Bayes-
ian inference to determine genotypes of HLA alleles [23]. 
Dilthey et al. developed a subsequent software program, 
HLA*IMP:02, which uses a haplotype graph approach 
with SNP data from multiple populations to address hap-
lotypic heterogeneity [15]. HLA*IMP:02 is currently 
available in Thermo Fisher Scientific software for sam-
ples typed with its SNP-genotyping array. HLA*IMP:03 
is web-based software, which uses random forest models 
[16]. SNP2HLA adopts an innovative approach in which 
multi-alleles of HLA genes are viewed as individual 
binary alleles and are imputed using Beagle, standard 
SNP genotype imputation software based on a haplo-
type graph approach [17]. One of its advantages is that 
SNP2HLA imputes HLA types and amino acid allele geno-
types simultaneously. HIBAG (HLA Genotype Imputation 
with Attribute Bagging) estimates the likelihood of HLA 
alleles by the ensemble of multiple classifiers that model 

Fig. 2  An illustration of HLA 
imputation using a reference 
panel. An HLA reference panel 
contains individual data for 
which both SNP genotypes 
and HLA typing information 
are available. Based on LD 
information from a reference 
panel, it is possible to infer 
HLA allelic information of 
target individuals for whom 
only SNP genotype information 
is available.
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haplotypes and their frequencies based on expectation-
maximization algorithm [18].

For widely used software, overall accuracy for high-
quality reference panels is greater than 90% [24]. However, 
their accuracy tends to significantly decline as alleles were 
less frequent [19, 20]. Additionally, imputation accuracy in 
hyper-multi-allelic genes, such as HLA-B and HLA-DRB1, 
drops. In contrast, recently developed techniques presented 
their improvement of accuracy in such respects. CookHLA 
is similar to SNP2HLA in that it treats the multi-allelic 
HLA information as a set of binary markers but has several 
updates [19]. While SNP2HLA places each marker set in the 
center position of the gene, CookHLA embeds each marker 
set in the middle position of each polymorphic exon (i.e., 
exons 2, 3, and 4 for class I genes; and exons 2 and 3 for 
class II genes). It addresses the issue of LD decay with dis-
tance by effectively capturing the information of polymor-
phic exons. CookHLA repeats imputation for each exon and 
combines the posterior probabilities to make final consensus 
calls. Furthermore, CookHA uses Beagle v4 instead of v3, 
which was built in SNP2HLA. CookHLA achieved higher 
accuracy than SNP2HLA and HIBAG with significant supe-
riority for less frequent alleles. For instance, CookHLA 
achieved 80% accuracy in alleles in frequency 0.1–0.5% for 
a European reference panel, whereas conventional methods 
presented 40−60% accuracy.

DEEP*HLA is also a recently published software, which 
uses a deep learning model to capture the complex LD struc-
ture of the MHC region. It utilizes the advantage of multi-
task convolutional neural networks [20], which takes SNP 
input and impute alleles of multiple HLA genes belonging 
to the same preset group simultaneously (Fig. 3). Conven-
tional imputation algorithms based on the Markov model 
of sequential information would show limited performance 
for imputing alleles without distant-dependent LD decay 
features. In contrast, DEEP*HLA was less dependent on 
distant-dependent LD decay, thanks to the nature of neu-
ral networks. DEEP*HLA was advantageous, especially for 
its low-frequency and rare alleles. It achieved around 80% 

accuracy for alleles with a frequency < 1% in most settings, 
while conventional methods presented 60−70% accuracy. 
Furthermore, DEEP*HLA was computationally efficient 
enough to be applied to biobank-scale data.

One aspect that determines which imputation software 
should be used is whether you have an HLA reference panel 
for a target population. HLA*IMP:02 and HLA*IMP:03 are 
pretrained with their reference data; thus, there is no need for 
your own. In contrast, the current version of HLA*IMP:02 
and HLA*IMP:03 does not support a function for users to 
generate an imputation model using their own data locally. 
While SNP2HLA and CookHLA explicitly use reference 
haplotype data always, HIBAG and DEEP*HLA do not 
require these data once the trained models are generated. 
Since it is difficult to restore genotype information of indi-
viduals from the model parameters, their trained models 
could be publicly distributed or moved without ethical 
permission.

The formats of genotype data and HLA reference and 
nomenclature of HLA alleles are often unorganized, so 
that HLA association analysis has been laborious. HLA-
TAPAS (HLA-Typing At Protein for Association Studies) 
is a sophisticated integrated pipeline, including data format-
ting, HLA reference panel construction, HLA imputation, 
and HLA association analysis. The imputation method of 
HLA-TAPAS adopts that of SNP2HLA in which Beagle v4 
is used, unlike the original SNP2HLA software [25, 26]. As 
is the case with CookHLA, Beagle v4 supports multithread-
ing, which would make it applicable for biobank-scale data.

HLA imputation for GWAS summary 
statistics

While privacy and ethical constraints often restrict access 
to individual GWAS genotype data, sharing GWAS sum-
mary statistics has become more prevalent. Imputation of 
summary statistics has been developed in this context [27]. 
In summary, statistics-based imputation and associations 

Table 1  Comparison of HLA imputation software

Name Type Methods URL Reference

HLA*IMP:02 Stand-alone software Haplotype-graph model NA [15]
HLA*IMP:03 Web application Random forest model http:// imp. scien ce. unime lb. edu. au/ hla/ [16]
SNP2HLA Shell script Beagle with considering markers as binary 

alleles
http:// softw are. broad insti tute. org/ mpg/ snp2h 

la/
[17]

HIBAG R package Bagging of multiple classifiers of EM algo-
rithm

https:// github. com/ zheng xwen/ HIBAG [18]

CookHLA Python script Beagle with considering markers as binary 
alleles and embedding of markers on exons

https:// github. com/ Wanso nChoi/ CookH LA [19]

DEEP*HLA Python script Multi-task convolutional deep neural net-
works

https:// github. com/ tatsu hikon aito/ DEEP- HLA [20]
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of untyped alleles are inferred from the approximation 
of Z scores to a multivariate normal distribution. Li et al. 
extended this algorithm to the imputation of HLA associa-
tion tests as DISH (Direct Imputing Summary association 
statistics of HLA variants) software [28]. Although it might 
be challenging to perform a detailed fine-mapping, such as 
haplotype analysis, reliable conditional analysis, and addi-
tional adjustment of covariates, DISH would play a suffi-
cient role in obtaining meaningful inferences. We recently 
conducted trans-ethnic fine-mapping for Parkinson’s disease 
(PD) by integrating GWAS summary statistics from different 
studies to detect functionally plausible risk-associated HLA 
variants [7].

Existing HLA imputation reference panels 
and challenges

A high-quality HLA reference panel is a prerequisite to 
achieve high-performance of HLA imputation. We summa-
rized available HLA imputation reference panels in Table 2. 

In traditional HLA reference panels, HLA typing was con-
ducted with PCR-based genotyping methods [17, 32, 34]. 
PCR-based HLA typing methods are limited to G group 
resolution or frequent alleles.

In contrast, high-throughput of NGS technologies and 
sophisticated HLA type inference algorithms has enabled 
higher resolution typing using either exons only or larger 
gene segments, including whole HLA genes [37, 38]. Reli-
ance on a single reference sequence would be problematic 
in the assembly since MHC haplotypes have significant vari-
ations in genomic contents and length [1]. Thus, as exem-
plified by the genome graph-based methods developed by 
Dilthey et al. [39, 40], HLA type inference methods focusing 
on sequence diversity have been developed [41, 42]. Expla-
nation of HLA type inference methods would be beyond 
the scope of this review and has been well discussed else-
where [43]. Recently published HLA reference panels have 
mainly used NGS technologies. Kim et al. constructed a 
Korean reference panel with a hybrid method of the SSO 
method for HLA-DRB1 and NGS for other HLA genes [30]. 
Zhou et al. performed deep sequencing of the MHC region 

Fig. 3  The architecture 
and imputation strategy of 
DEEP*HLA. DEEP*HLA is a 
multi-task deep convolutional 
neural network model that takes 
SNP information and outputs 
genotype probabilities of HLA 
genes. In the training phase, 
DEEP*HLA learns the relation-
ship between SNP genotype 
and HLA alleles from an HLA 
reference panel consisting of 
many individuals (a). In the 
imputation phase, a trained 
DEEP*HLA can perform HLA 
imputation from SNP genotype 
data without a reference panel 
(b).
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and constructed a Han-Chinese reference panel contain-
ing 10,689 normal healthy controls [33]. Hirata et al. con-
structed a Japanese reference panel based on NGS, which 
covered high-resolution allelic information of the extended 
MHC region, including non-classical HLA genes [6]. Squire 
et al. also constructed a reference panel mainly of Europe-
ans, which included non-classical HLA and HLA-like genes 
[35].

Conventional HLA reference panels have been con-
structed for a single ancestry, considering that the LD and 
haplotype structure of the MHC region is highly ancestry 
specific. Thus, the ancestral background of a reference 
panel must be as close as possible to a target population. 
In contrast, a multiethnic reference panel is constructed 
with the expectation that its diversity could cover ethnically 
heterogeneous populations. Degenhardt et al. constructed 
a multiethnic reference panel by integrating multiple exist-
ing single-ancestry reference panels and demonstrated that 
it could maintain high accuracy across different ethnici-
ties [29]. Luo et al. constructed a large-scale multiethnic 
reference panel (n = 21,456), including Admixed African, 
East Asian, European, and Latino, with short-read whole 
sequencing data. It achieved an accuracy of >90% at the G 
group resolution in all the ancestries. This reference panel 
is also publicly available in the Michigan Imputation Server, 
allowing direct imputation using this panel [44].

The currently available reference panels based on short-read 
NGS technologies could not capture the entire MHC region in 
a haplotype-preserving manner. Assembly of complete MHC 
haplotypes has been challenging due to several reasons, such 
as sequence homologies between the HLA genes and large 
structural variants, especially in the MHC class II region and 
class III region (e.g., C4 genes). This is problematic since such 
regions with high levels of structural variations may have a 

greater effect on the risk of some diseases. Indeed, it has been 
shown that structural variants in the C4 genes can largely 
explain the MHC genetic risk of schizophrenia [45]. Further-
more, Kamitaki et al. revealed that the C4 allele associated 
with the risk of schizophrenia could have a protective effect 
on SLE and SjS by imputation of C4 structural haplotypes 
using WGS data [46]. They demonstrated that the C4 gene 
variant explains the risk of SLE rather than its tagged HLA-
DRB1*03:01, which had been presumed as the risk itself. 
In these diseases, the MHC genetic predisposition might be 
attributed not to precise interactions to specific autoantigens 
but to the continuous interaction of the immune system with a 
large number of potential autoantigens, which are modulated 
by C4 protein. These observations imply that fine-mapping 
using the current reference panels might distort our interpre-
tation of the role of HLA variants in the etiology of some 
diseases and thus need to be improved.

In contrast, long-read sequencing technologies have been 
attracting attention as a potential method to solve these prob-
lems. Koren et al. reported the trio binning-based assembly of 
a diploid MHC with perfect HLA typing results [47]. Equiva-
lent results were obtained with nanopore ultra-long reads 
[48]. Based on a combination of state-of-the-art long and 
short reads, Chin et al. produced a high-quality diploid MHC 
assembly of HG002, one of the GIAB benchmarking sam-
ples [49]. Future reference panels will take advantage of these 
technologies to realize more thorough MHC fine-mapping. 
Considering the current cost of the long-read sequencing tech-
nologies, the next step might be the flow of information from a 
relatively small number of long-read-sequenced samples to the 
refinement of HLA reference panels constructed by short-read 
sequencing, which could be used for HLA imputation from 
SNP array data [43].

Table 2  A list of existing HLA reference panels

SSOP sequence-specific oligonucleotide probe, NGS next-generation sequencing, SSP sequence-specific primer, SBT sequencing-based typing

Population HLA typing method Sample size URL Year Reference

Europeans SSOP 5225 http:// softw are. broad insti tute. org/ mpg/ snp2h la/ 2013 [29]
Korean NGS 413 https:// sites. google. com/ site/ scbae hanya ng/ hla_ panel 2014 [30]
East and South Asians SSOP 530 http:// softw are. broad insti tute. org/ mpg/ snp2h la/ 2014 [31]
Japanese SSOP 908 https:// human dbs. biosc ience dbc. jp/ hum00 28- v2 2015 [32]
Han-Chinese NGS 10,689 http:// gigadb. org/ datas et/ 100156 2016 [33]
Japanese NGS 1120 https:// human dbs. biosc ience dbc. jp/ en/ hum01 14- v2 2019 [6]
Finnish SSOP, SSP, SBT 1150 NA 2020 [34]
Europeans NGS 401 NA 2020 [35]
Taiwanese NGS 1012 NA 2020 [36]
Multi-ethnicity NGS 21,546 https:// github. com/ immun ogeno mics/ HLA- TAPAS/ 2021 [26]

20 Seminars in Immunopathology (2022) 44:15–28

http://software.broadinstitute.org/mpg/snp2hla/
https://sites.google.com/site/scbaehanyang/hla_panel
http://software.broadinstitute.org/mpg/snp2hla/
https://humandbs.biosciencedbc.jp/hum0028-v2
http://gigadb.org/dataset/100156
https://humandbs.biosciencedbc.jp/en/hum0114-v2
https://github.com/immunogenomics/HLA-TAPAS/


1 3

Findings obtained from fine‑mapping 
of the MHC region

In 2010, the association of HIV controllers was first 
mapped to specific amino acids of HLA class I genes 
through HLA imputation [50]. In 2012, as one of the first 
representative studies of MHC fine-mapping on an autoim-
mune disease using HLA imputation, the risk of rheuma-
toid arthritis (RA) in European populations was mapped 
to independent associations of amino acid alleles in HLA 
class I and II genes [51]. While the risk-HLA alleles had 
been conventionally reported for a set of amino acid posi-
tions 70–74 in HLA-DRβ1 (i.e., “shared epitope”), the 
study showed that the strongest association was fine-
mapped to amino acid position 11 in HLA-DRβ1.

Since then, HLA imputation has successfully contrib-
uted to the fine-mapping in the MHC region on various 
autoimmune diseases. The risk amino acid positions of 
RA were replicated in East-Asian populations [31, 52], 
and additionally, the risk contributions of HLA-DOA were 
also identified [53]. The MHC risk of other autoimmune 
diseases was also fine-mapped, including systemic lupus 
erythematous (SLE) [52, 54], dermatomyositis [55], idi-
opathic inflammatory myositis [56], juvenile idiopathic 
arthritis [57], Sjögren’s syndrome (SjS) [58], polyangiitis 
[59, 60], ankylosing spondylitis (AS) [61], psoriasis [33, 
62, 63], celiac disease [64], T1D [8, 65], Graves’ disease 
[32], inflammatory bowel diseases [66, 67], pulmonary 
alveolar proteinosis (PAP) [68], primary biliary cholan-
gitis [69–71], and multiple sclerosis [72, 73]. Attempts to 
find novel insights by inter-ethnic comparison or integra-
tion by trans-ethnic fine-mapping have also been made for 
T1D [20] and ulcerative colitis [74].

For most common autoimmune diseases, the major 
risk-associated HLA loci were known from epidemiologi-
cal studies; thus, fine-mapping studies have contributed 
to the confirmation of such associations at the level of 
specific variants and the additional identification of inde-
pendent associations in different HLA loci. For instance, 
a fine-mapping study of AS revealed that not only the 
well-known HLA-B*27 alleles but also different HLA-B 
alleles were associated with the risk [61]. Interestingly, the 
stratified analysis demonstrated that a variant in ERAP1, 
which encodes a protein involved in peptide trimming in 
HLA class I presentation, was correlated with the risk in 
carriers of specific HLA-B alleles. In addition to HLA-
B, variants in HLA-A, -DPB1, and -DRB1 were indepen-
dently associated with the risk of AS. In some diseases, 
the association with HLA itself has been proven by fine-
mapping. PAP is a rare disease, in which autoimmunity 
to pulmonary surfactant contributed to the pathogenesis. 
An MHC find-mapping study first revealed that a specific 

HLA-DRB1 allele confers its major genetic risk [68]. We 
summarized the current findings on risk-associated HLA 
loci and independent associations of specific HLA vari-
ants for autoimmune diseases obtained from MHC fine-
mapping studies in Table 3. We note that these findings 
may be updated through refinement of reference panels as 
mentioned in the example of C4 [46] or functional fine-
mapping as described later.

Not confined to so-called autoimmune diseases, MHC 
fine-mapping studies have successfully identified the risk 
HLA variants of different diseases, such as infectious dis-
eases [75, 76], malignant tumors [77, 78], and neurological 
diseases [7, 79]. These studies could expand our knowledge 
of the involvement of autoimmunity in the progression of 
such diseases. For instance, in PD, a neurodegenerative dis-
ease characterized by the deposition of protein aggregates 
containing α-synuclein, GWAS, and fine-mapping studies 
have suggested an association of the HLA variants with the 
risk [80, 81]. Subsequently, an aberrant T cell response to 
α-synuclein associated with HLA-DRB1 alleles was revealed 
in PD patients, significantly advancing the understanding 
of the role of acquired immunity in the pathogenesis of PD 
[82]. Furthermore, phenome-wide fine-mapping of the MHC 
region revealed a wide variety of associations and the rela-
tionships among different phenotypes [6, 76, 83]. 

Current procedure and challenges 
in fine‑mapping

A typical procedure of fine-mapping of the MHC region 
enables both exploration of independent HLA loci and dis-
entanglement of independently associated variants in the 
locus. For instance, in the MHC fine-mapping on RA [51], 
the strongest associations were mapped to the HLA-DRB1 
region, followed by the HLA-B and HLA-DPB1 regions by 
step-wise conditional analysis, wherein the locus with the 
strongest association are successively conditioned on. Then, 
independently associated variant sets consisting of amino 
acid or HLA alleles were detected by step-wise conditional 
analysis in individual loci. Independent effects of single vari-
ants are evaluated in an additive model, in which the effects 
of the two alleles on a disease of interest are independent 
and combine linearly.

In contrast, non-additive effects statistically mean devia-
tion from this linear relationship, which may arise from 
interactions between two alleles or individual alleles’ inher-
ent effects [84]. In terms of the function of HLA, an individ-
ual’s two expressed HLA alleles with different antigen-bind-
ing repertoires are speculated to present a synergic effect 
on antigen-presentation ability, leading to an extraordinary 
disease risk. MHC fine-mapping analysis has also been used 
to elucidate non-additive and interaction effects. Lenz et al. 
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comprehensively evaluated the non-additive and interaction 
effects of several autoimmune diseases. They reported non-
additive effects explained by interactions between specific 
HLA alleles in RA, T1D, and celiac disease [84]. Hu et al. 
reported that several combinations of haplotypes of HLA-
DRB1, -DQA1, and -DQB1 presented an association with the 
risk on T1D beyond an additive effect [8]. Interaction effects 
between MHC and non-MHC genes have also been reported 
in several autoimmune diseases, such as interaction with 
cytotoxic T lymphocyte antigen 4 (CTLA4) [85], several 
killer immunoglobulin receptor (KIR) genes [86, 87], and 
ERAP1 and 2 [88, 89]. Variations in the KIR region can be 
imputed by a method similar to HLA imputation [90]. Thus, 
hybrid fine-mapping in the MHC region and KIR region 
would further our understanding on how they interactively 
associate with the risk of autoimmune diseases.

While focusing on the nominal statistical significance of 
all the variants in the MHC region is currently a standard 
approach, weighting or filtering of variants based on their 
functional annotations is an effective approach for fine-map-
ping in normal genomic regions [91]. Some variants have 
an eQTL effect on HLA genes [92, 93]. Furthermore, dif-
ferential allelic expression of HLA genes has been reported 
in association with the etiology of several diseases [94, 95]. 
Considering these observations, functional fine-mapping 
would be helpful in further understanding the role of vari-
ations in the MHC region for disease etiology. Due to the 
difficulty in mapping short-reads of the highly polymorphic 
MHC loci and quantification of HLA gene expressions [96, 
97], eQTL database is lacking, especially for different pop-
ulations. The construction of an eQTL database for HLA 
genes based on a state-of-the-art NGS technology and map-
ping strategy would be expected [96–98].

Functional contribution of the HLA risk allele

MHC fine-mapping studies have shown that the amino acid 
alleles composing HLA alleles are likely to have stronger 
associations than the classical HLA alleles [8, 51]. Typically, 
risk-associated amino acid polymorphisms of autoimmune 
diseases are located in peptide-binding grooves of HLA 
molecules, which are considered to lead to the altered bind-
ing affinity of HLA molecules to the autoantigen peptides 
[32]. The altered binding affinity by the causal HLA alleles 
can be experimentally validated using HLA-peptide binding 
assay [99, 100]. Otherwise, if the epitope of an autoantigen 
for a disease of interest is already known, in silico predic-
tion tools for HLA binding affinity could also be helpful to 
obtain a meaningful inference [7, 101]. Antigen peptides 
presented by HLA molecules are recognized by T cell recep-
tors (TCRs), leading to antigen-specific immune responses. 
Then, the altered interaction between HLA, peptides, and 

TCRs by variations in HLA alleles is presumed to influence 
the immune response by two major mechanisms: thymic 
selection of T cells and peripheral T cell response [75, 102].

In the mechanism associated with thymic selection, spe-
cific MHC/peptide–TCR interactions, which MHC variants 
could alter, will determine the selection of the T cell reper-
toire during primary tolerance events, leading to differential 
susceptibility to disease progression. The antigen specificity 
of the TCR is determined by hyper-variable complementary 
determining region 3 (CDR3) [103]. During T cell develop-
ment in the thymus, a highly diverse CDR3 repertoire is 
generated through random VDJ recombination in immature 
T cells. In the positive selection, thymic T cells that bind 
moderately to MHC complexes would survive. Conversely, 
T cells whose TCRs bind too strongly to MHC complexes, 
which are likely to be self-reactive, are killed as the process 
of negative selection. For instance, T1D risk-associated DQ 
molecules present weak binding to an epitope and are likely 
to escape from negative selection [104, 105]. Not limited to 
binding affinity, thymic escape due to the protein instabil-
ity of DQ molecules is also suggested to associate with the 
risk of T1D [106, 107]. Recently, Ishigaki et al. investigated 
the association between HLA allelic variations and CDR3 
amino acid features through CDR3 quantitative analysis 
(cdr3-QTL) [102]. In this study, the HLA amino acid posi-
tion that explained the most variance in CDR3 composition 
was position 13 in HLA-DRβ1, which is the strongest asso-
ciation to RA risk. The effect sizes of multiple amino acids 
in this position were consistent between the risk of RA and 
cdr3-QTL, which supported the assumption that HLA risk 
for RA is mediated by TCR composition in some degree. 
Furthermore, they integrated the risk for several autoim-
mune diseases throughout the MHC region as an HLA risk 
score and identified multiple CDR patterns associated with 
the risk of the diseases. Considering the overlap between 
cdr3-QTL and risk-associated HLA variants in autoimmune 
diseases, the cdr3-QTL information might be utilized as an 
annotation for functional fine-mapping in the MHC region.

The MHC/peptide–TCR interaction in peripheral T cell 
immune responses would also be influenced by altered bind-
ing affinity dependent on MHC variants and associated with 
disease susceptibility. For instance, citrullinated self-pep-
tides tend to bind to RA risk-associated HLA-DR molecules 
stronger than non-RA risk-associated HLA-DR molecules 
[99]. It is unclear whether T-cell selection in the thymus or 
the peripheral T-cell response is the primary contributor to 
the pathogenesis and how they are related to each other. An 
interesting example regarding their relationship is the neo-
antigen hypothesis of the association between RA and the 
risk-HLA alleles [108]. The conversion of electrically posi-
tive arginine to electrically neutral citrulline at the P4 posi-
tion of peptides, which interacts with the SE, significantly 
increases the binding affinity of SE-containing HLA-DR 
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molecules [99]. This finding might suggest that SE-contain-
ing HLA-DR molecules fail to induce tolerance in thymic 
selection under non-inflammatory conditions because they 
cannot bind and present peptides with arginine residues at 
the P4 position. Then, P4-citrullinated self-peptides can be 
presented by SE-containing HLA-DR molecules and induce 
peripheral T cell response.

Conclusions

We have discussed current procedures, recent advances, and 
challenges in HLA imputation methods, along with topics 
regarding reference panels. Since no one method outper-
forms the others in all aspects, it is important to understand 
the advantages of each method and use or integrate differ-
ent methods according to the situation. In general, newer 
reference panels contain more information covering wider 
variations and higher resolution of HLA typing. Therefore, 
HLA imputation methods should evolve with more learning 
capacity and higher computational performance. We have 
expectations of the high learning capacity of deep neural 
networks as one of such methods. We also reviewed the find-
ings obtained from fine-mapping in the MHC region and 
the hypothetical mechanisms of how MHC variants affect 
the susceptibility of autoimmune diseases. An effective 
approach in this field is to compare the different risks among 
HLA alleles and their biochemical functions validated by 
experimental techniques. Thus, in this sense, reliable HLA 
imputation methods and informative fine-mapping would be 
essential for further understanding of the immunopathology 
of autoimmune diseases.
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