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Abstract: Barium titanate (BaTiO3) nanoparticles (BT NPs) have shown exceptional characteristics
such as high dielectric constant and suitable ferro-, piezo-, and pyro-electric properties. Thus,
BT NPs have shown potential to be applied in various fields including electro-optical devices and
biomedicine. However, very limited knowledge is available on the interaction of BT NPs with human
cells. This work was planned to study the interaction of BT NPs with human lung carcinoma (A549)
cells. Results showed that BT NPs decreased cell viability in a dose- and time-dependent manner.
Depletion of mitochondrial membrane potential and induction of caspase-3 and -9 enzyme activity
were also observed following BT NP exposure. BT NPs further induced oxidative stress indicated
by induction of pro-oxidants (reactive oxygen species and hydrogen peroxide) and reduction of
antioxidants (glutathione and several antioxidant enzymes). Moreover, BT NP-induced cytotoxicity
and oxidative stress were effectively abrogated by N-acetyl-cysteine (an ROS scavenger), suggesting
that BT NP-induced cytotoxicity was mediated through oxidative stress. Intriguingly, the underlying
mechanism of cytotoxicity of BT NPs was similar to the mode of action of ZnO NPs. At the end,
we found that BT NPs did not affect the non-cancerous human lung fibroblasts (IMR-90). Altogether,
BT NPs selectively induced cytotoxicity in A549 cells via oxidative stress. This work warrants further
research on selective cytotoxicity mechanisms of BT NPs in different types of cancer cells and their
normal counterparts.

Keywords: BaTiO3 nanoparticles; selective cytotoxicity; oxidative stress; antioxidant enzymes;
cancer therapy

1. Introduction

Barium titanate (BaTiO3) nanoparticles (BT NPs), a perovskite-type ceramic material,
has exceptional characteristics such as high dielectric constant and suitable ferro-, piezo-,
and pyro-electric properties. BT NPs are broadly used in the manufacture of multilayer ceramic
capacitor, thermistors, transducers, infrared detectors, sensors, and electro-optical devices [1,2].
Studies also suggested that BT NPs have potential to be applied in biomedical fields, including tissue
engineering, drug delivery, and cancer therapy [3–6]. For instance, BT NPs enhance the cellular uptake
of the anticancer drug doxorubicin [7]. BT NPs are also being investigated as bone repair material
due to their excellent osteoinductivity [6,8]. Nevertheless, research on the underlying mechanisms of
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biological effects of BT NPs at cellular and molecular levels is scarce. Therefore, thorough study on the
interaction of BT NPs with human cells is indispensable before their applications in biomedical field.

Investigation on underlying mechanisms of toxicity of NPs is still in progress. However,
excessive production of reactive oxygen species (ROS) and oxidative damage of cell macromolecules
have been established now as some of the key toxicity mechanisms of NPs. Oxidative stress happens
when the intracellular level of ROS increases beyond a certain level and limits the antioxidant defense
ability of cells. Several recent studies suggested that NPs induce cytotoxicity through ROS generation
and oxidative damage of cellular constituents [9–11]. Recent research also indicated that generation
of intracellular ROS levels in a controlled way can be exploited as a therapeutic tool for cancer
treatment [12,13]. In this regard, relatively higher levels of ROS observed in cancer cells as compared
to their normal counterparts represent a promising tool to target cancer cell selectively [12].

Studies on nanotechnology-based novel drug delivery and cancer therapy are now gaining
recognition [14–16]. Several studies have demonstrated that defined dosages of semiconductor
NPs potentially killed cancer cells, while not much affecting the non-cancerous normal cells [17–19].
For example, ZnO NPs have shown inherent properties of killing cancer cells while sparing the
normal cells [20,21]. Our recent work indicated that SnO2 NPs have inherent characteristics of exerting
cytotoxicity to human breast cancer cells while sparing the normal human lung fibroblasts (IMR-90) [22].
Metal doped TiO2 NPs also showed selective toxicity against cancer cells [19,23]. These semiconductor
NPs may utilize the extreme conditions of oxidative stress of cancer cells. Increases in intracellular
ROS to a certain level due to NP exposure may damage the already ROS-stressed cancer cells without
much affecting the relatively less stressed normal cells.

This work was designed to investigate the cytotoxicity mechanisms of BT NPs in human lung
carcinoma (A549) cells. The objective of the present study was conducted by estimating the cell
viability, cellular morphology, activity of apoptotic enzymes (caspase-3 and -9), and mitochondrial
membrane potential in A549 cells following exposure to BT NPs for 24 h. Cytotoxicity mechanisms of
BT NPs were further delineated by measuring the several markers of oxidative stress, such as ROS,
hydrogen peroxide (H2O2), and various antioxidant enzymes. Human lung cancer cell line (A549)
was selected in this study because lung cancer is a leading cause of cancer-related mortality among
men and women [24]. To check the selective cytotoxicity of BT NPs against A549 cancer cells, we also
assessed the cytotoxic potential of BT NPs in normal human lung fibroblasts (IMR-90).

2. Materials and Methods

2.1. Synthesis of BaTiO3 Nanoparticles

Barium titanate (BaTiO3) nanoparticles were prepared by the facile sol–gel hydrothermal method
using titanium tetrachloride (TiCl4) and barium chloride (BaCl2) as precursor materials. In brief,
1 mL of TiCl4 was diluted in 2 mL of HCl (2M) to prepare a slightly yellow solution. Then, 2.5 g of
BaCl2 was dissolved in 20 mL of deionized water. The two solutions were mixed to form a barium
titanium solution. Under stirring and N2 bubbling, 15 mL of NaOH (6M) was added to this solution
to form a homogeneous colloidal barium titanium slurry. The colloidal solution of barium titanium
was transferred into 50 mL Teflon-lined stainless autoclave and heated at 100

◦

C for 2 h. After the
completion of reaction, the autoclave was allowed to cool to room temperature. The prepared solid
white powder of barium titanate was collected from the autoclave, washed several times with distilled
water and ethanol, and dried at 60

◦

C for h in a vacuum.

2.2. Characterization of BaTiO3 Nanoparticles

Crystallinity and phase purity of prepared BT nanopowder were examined by powder X-ray
diffraction (PXRD) (Malvern, WR14 1XZ, UK) equipped with a PanAnalytic X’Pert Pro X-ray
(Malvern, UK) diffractometer with nickel filter using Cu-Kα radiation (λ = 0.154 nm at 45 kV
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and 40 mA) as the X-ray source. BT NPs were also characterized by micro-Raman spectroscopy
(Horiba Raman system, IY-Horiba-T64000) (Northampton, NN3 6FL, UK).

Surface morphology of BT nanopowder was assessed by field emission scanning electron
microscopy (FESEM, JSM-7600F, JEOL, Inc., Tokyo, Japan) at an accelerating voltage of 15 kV. Shape and
size of BT NPs were determined by field emission transmission electron microscopy (FETEM, JEM-2100F,
JEOL, Inc., Tokyo, Japan) at an accelerating voltage of 200 kV. Briefly, a diluted suspension of BT NPs
(50 µg/mL in ethanol) was sonicated in a sonicator bath for 10 min at 40 W to obtain a homogenous
mixture. Then, a drop of suspension was placed onto a TEM grid, air dried, and observed with FETEM.

Hydrodynamic size and zeta potential of BT NPs in distilled water and culture media were
estimated by dynamic light scattering (DLS) (ZetaSizer Nano-HT, Malvern Instruments, UK). In brief,
BT nanopowder was suspended in distilled water and culture medium at a concentration of 50 µg/mL.
Then, the suspension was sonicated by a sonicator bath at room temperature for 10 min at 40 W, and DLS
experiments were performed. We chose a 50 µg/mL concentration of BT NPs for DLS measurement,
because this concentration was used in most of the biochemical studies.

2.3. Cell Culture and Exposure of BaTiO3 Nanoparticles

Human lung cancer cells (A549) and non-cancerous human lung fibroblasts (IMR-90)
(ATCC, Manassas, VA, USA) were maintained in Dulbecco’s modified Eagle’s medium (DMEM,
Invitrogen, Carlsbad, CA, USA) with the supplementation of 10% fetal bovine serum (FBS, Invitrogen),
100 U/mL penicillin, and 100µg/mL streptomycin (Invitrogen) at 37 ◦C in a humidified 5% CO2 incubator.

To remove endotoxin contamination (if present), prepared NPs were autoclaved at 121 ◦C for
30 min using saturated steam under 15 pounds per square inch (psi) of pressure. An endpoint
chromogenic limulus amebocyte lysate (LAL) assay further confirmed that prepared BT NPs were not
contaminated from endotoxins (Figure S1 of Supplementary Materials).

Cells were exposed for 24, 48, or 72 h to different concentrations (5–200 µg/mL) of BT NPs. Briefly,
BT NPs were suspended in culture medium (DMEM + 10% FBS) and diluted to desired concentrations
(5–200 µg/mL). Different dilutions of NPs were further sonicated utilizing a sonicator bath at room
temperature for 10 min to avoid agglomeration of NPs before exposure to cells. The ZnO NPs (25µg/mL)
was used as a positive control [22,25]. Preparation of ZnO NPs suspension was similar to BT NPs.
In some experiments, cells were co-exposed with 2 mM of N-acetylcysteine (NAC) (Sigma-Aldrich,
St. Louis, MO, USA) in the presence or absence of BT NPs/ZnO NPs. Cells without NP exposure served
as controls in each experiment.

2.4. Cytotoxicity Study

Both MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) [26] and NRU
(neutral red uptake) [27] methods were used for the cell viability assay with some important
changes [28]. Mitochondrial membrane potential was recorded with a microplate reader
(Synergy-HT, BioTek, Winooski, VT, USA) and a fluorescent microscope (DMi8, Leica Microsystems,
GmbH, Wetzlar, Germany) using the probe rhodamine-123 (Rh-123) (Sigma-Aldrich) [29]. Caspase-3 and
caspase-9 enzyme activities were determined using colorimetric assay kits of BioVision kits.
Morphologies of cells were captured through a phase-contrast microscope (DMIL, Leica Microsystems).
Brief descriptions of each parameter of cytotoxicity are given in the Materials and Methods section of
the Supplementary Materials.

2.5. Oxidative Stress Study

Intracellular levels of reactive oxygen species (ROS) were recorded with a microplate reader
(Synergy-HT, BioTek, Vinooski, VT, USA) and a fluorescent microscope (DMi8, Leica Microsystems,
Wetzlar, Germany) using the fluorescent probe 2’-,7’-dichlorodihydrofluorescein diacetate
(H2DCFDA, Sigma-Aldrich) [29,30]. Intracellular hydrogen peroxide (H2O2) level was estimated by
a MAK164 fluorescence kit (Sigma-Aldrich, St. Louis, MO, USA). Glutathione content was assayed
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using Ellman’s method [31]. The activity of glutathione reductase (GR) enzyme was assayed according
to the procedure described by Carlberg and Mannervik [32]. Rotruck’s protocol was applied for the
glutathione peroxidase (GPx) enzyme assay [33]. A colorimetric assay of the superoxide dismutase
(SOD) enzyme was done using a kit from the Cayman Chemical Company (Michigan, OH, USA) [34].
Protein estimation was done by Bradford’s method [35]. Brief procedures of each parameter of oxidative
stress are given in the Materials and Methods section of the Supplementary Materials.

2.6. Statistical Analysis

One-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison tests were
used for statistical analysis. A p-value <0.05 was assigned as statistically significant.

3. Results and Discussion

3.1. Characterization of BaTiO3 Nanoparticles

Figure 1A represents the XRD spectra of BT NPs. All the peaks were well-matched with JCPDS
no. 892475, exhibiting the formation of the cubic phase of BT NPs. The peaks at 31.81◦, 39.12◦, 45.44◦,
51.08◦, 56.34◦, and 66.06 were attributed to (110), (111), (200), (210), (211), and (220) planes, respectively.
Average particle size was determined from the strongest peak (110) using Scherrer’s equation [19].
The average particle size was estimated to be around 15 nm. Raman spectroscopy is a very sensitive
technique to probe atomic structures of materials. Raman spectra of prepared BT NPs are given in
Figure 1B. Peaks at 281 cm−1, 305 cm−1, 514 cm−1, and 720 cm−1 presented Raman shifts of BT NPs.
These peaks suggested the crystalline cubic phase of BT NPs [36,37]. This result was in agreement with
XRD spectra.
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Figure 1. (A) XRD and (B) Raman spectra of barium titanate nanoparticles (BT NPs). XRD: X-ray diffraction.

Morphological characterization was done by FESEM and FETEM. Figure 2A–C represent the typical
SEM and TEM images of BT NPs. The average size calculated from TEM image (>100 particles) was
around 16 nm, which was well-matched with the size calculated from XRD spectra. A high resolution
TEM image (Figure 2D) suggested the clear lattice fringes and crystallinity of BT NPs, supporting
the XRD data. The distance between adjacent planes was found to be 0.286 nm, corresponding to the
(110) plane of the cubic BT NPs (Figure 2D). Characterization data of BT NPs were in accordance with
recently reported studies [6,38].
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Figure 2. (A) FESEM, (B and C) low resolution FETEM, and (D) high resolution FETEM images of
BT NPs. FESEM: field emission scanning electron microscopy, FETEM: field emission transmission
electron microscopy.

Physicochemical characterization of BT NPs in distilled water and culture medium is given in
Table 1. Hydrodynamic size of BT NPs was 6–7 times higher than the size of nano-powder (primary size)
calculated from XRD and TEM. Higher hydrodynamic size of BT NPs was due to the tendency of
NPs to agglomerate in aqueous medium [19]. Zeta potential results indicated that BT NPs suspended
in water had positive surface charges, whereas BT NPs suspended in culture medium had negative
surface charges. Negative surface charges of BT NPs in culture media could be due to adsorption
of negatively charged proteins on the surface of NPs. Physicochemical characterization of ZnO NPs
(positive control) in distilled water and culture medium is also given in Table 1 [25].

Table 1. Physicochemical characterization of BaTiO3 NPs and ZnO NPs.

BaTiO3 NPs ZnO NPs [25]

Parameters Mean Value Parameters Mean Value

Primary size Primary size
TEM 16 nm TEM 41 nm
XRD 15 nm XRD 43 nm

Hydrodynamic size # Hydrodynamic size #

Distilled water 105 ± 5 nm Distilled water 113 ± 7 nm
Culture medium 114 ± 3 nm Culture medium 155 ± 6 nm

Zeta potential # Zeta potential #

Distilled water 23 ± 2 eV Distilled water 17 ± 3 eV
Culture medium −27 ± 3 eV Culture medium −19 ± 2 eV

TEM: transmission electron microscopy, XRD: X-ray diffraction, culture medium: DMEM + 10% fetal bovine serum,
# data presented are mean ± SD of three independent experiments (n = 3).
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3.2. Cytotoxic Response of BaTiO3 Nanoparticles

Cells were exposed to different concentrations (5–200 µg/mL) of BT NPs for different time intervals
(24, 48, and 72 h), and cell viability was measured by MTT and NRU assays. The MTT assay is
utilized to determine metabolic activity as an indicator of cell viability. The NRU assay is based on
the capability of live cells to integrate and bind the supravital dye neutral red (NR) in the lysosomes.
MTT results showed that BT NPs decreased cell viability in a concentration (25–200 µg/mL)- and time
(24–72 h)-dependent manner (Figure 3A). In agreement with MTT data, NRU results also demonstrated
that BT NPs decreased cell viability in a concentration (25–200 µg/mL)- and time (24–72 h)-dependent
manner (Figure 3B). Moreover, the positive control ZnO NPs (25 µg/mL) also decreased the cell viability
time-dependently. A recent study also reported that nitrogen-doped TiO2 NPs inhibit the proliferation
of malignant MDA-MB-231 breast cancer epithelial cells [39]. Based on cell viability results, we utilized
the 25–100 µg/mL concentration range for further apoptosis and oxidative stress studies.
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Figure 3. Cell viability of A549 cells exposed for 24, 48, and 72 h to different concentrations (5–200µg/mL)
of BT NPs. (A) MTT cell viability. (B) NRU cell viability. ZnO NPs (25 µg/mL for 24 h) were used as a
positive control. Data are provided as mean ± SD of three independent experiments (n = 3). * Indicates
statistically significant difference from the control group (p < 0.05).

Apoptotic response of BT NPs in A549 cells was examined by measuring the MMP level and activity
of caspase-3 and -9 enzymes. Apoptosis is triggered by various factors such as stress, nutrient deficiency,
starvation, foreign particles, and certain drugs [40]. MMP is a reliable indicator of cellular stress and
ongoing processes of apoptosis. Our quantitative analysis suggested that BT NPs induced MMP loss in
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a dose-dependent manner (25–100 µg/mL) (Figure 4A). Fluorescent microscopy data also depicted that
the brightness of the Rh-123 probe (red fluorescence) was lower in BT NP-treated cells in comparison
to controls (Figure 4B). The brightness of the red fluorescence of the Rh-123 probe decreased with
decreasing MMP level. ZnO NPs also decreased the MMP level of A549 cells. Caspases belongs to
the proteases family present in mitochondria and play crucial roles in the apoptotic pathway [41].
Among these proteases, caspase-3 and -9 are known to be critically involved in initiation and execution
of the apoptotic process. Cytochrome c releases from the mitochondrial intermembrane space and
binds to apoptotic protease activating factor-1 (Apaf-1) that further binds with pro-caspase-9 to form
a complex called apoptosome. This complex cleaves the pro-caspase-9 to its active form, caspase-9,
which further activates caspase-3. Activated caspase-3 can cleave several structural and regulatory
proteins involved in the apoptotic process [42]. In the present study, we observed that BT NPs induced
the activity of caspase-3 and -9 enzymes in a dose-dependent manner (Figure 4C,D). Positive control
ZnO NPs also decreased the MMP level and increased the activity of caspase-3 and -9 enzymes in
A549 cells. Marino and co-workers reported that remote ultrasound-mediated piezo-stimulation of
BT NPs allowed in vitro growth of glioblastoma cells to be significantly decreased [4]. Another study
reported that BT NPs in combination with tumor-treating fields exhibited antitumor activity against
breast cancer cells by manipulating the cell cycle-related apoptosis pathway [3]. The apoptotic response
of other ceramic NPs were also previously reported [9].
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Figure 4. (A) MMP level of A549 cells exposed for 24 h to different concentrations (25–100 µg/mL) of
BT NPs. (B) Fluorescent images of the Rh-123 probe (indicator of MMP level) after exposure to BT NPs
(50 µg/mL) for 24 h. (C and D) Caspase-3 and caspase-9 enzyme activity of A549 cells exposed for 24 h
to different concentrations (25–100 µg/mL) of BT NPs. ZnO NPs (25 µg/mL for 24 h) was used as a
positive control. Data are provided as mean ± SD of three independent experiments (n = 3). * Indicates
statistically significant difference from the control group (p < 0.05).

3.3. Oxidative Stress Response of BaTiO3 Nanoparticles

Studies have suggested that NPs induce cytotoxicity through oxidative stress. Oxidative stress is
the state where excess pro-oxidant generation limits the antioxidant defense capacity of the cells [43].
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Excessive generation of ROS leads the disturbance of cellular redox homeostasis and/or injury to
cell macromolecules [44]. In this study, we assessed the ROS, H2O2, GSH, and activity of several
antioxidant enzymes in A549 cells exposed for 24 h to 50 µg/mL of BT NPs in the presence or absence
of NAC (ROS scavenger). Fluorescence microscopy data demonstrated that the brightness of the DCF
probe (marker of ROS generation) increased in cells exposed to BT NPs or ZnO NPs as compared to
control cells (Figure 5A). These images also suggested that the increased level of ROS in BT NPs or
ZnO NP-treated cells was effectively abrogated by NAC co-exposure (Figure 5A). Quantitative data
of ROS generation also indicated that significant increases in ROS levels due to BT NP or ZnO NP
exposure were efficiently alleviated by NAC co-exposure (Figure 5B). Pro-oxidant H2O2 levels in BT
NP or ZnO NP exposed cells were significantly higher as compared to controls (Figure 5C). Again,
BT NP- or ZnO NP-induced H2O2 level was successfully mitigated by NAC co-exposure.
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Figure 5. Pro-oxidant levels of A549 cells exposed for 24 h to 50 µg/mL of BT NPs with or without NAC
(2 mM). ZnO NPs (25µg/mL for 24 h) were used as a positive control. (A) Fluorescent microscopic images
of DCF intensity in cells (an indicator of ROS generation). (B) Quantitative analysis of intracellular
ROS level. (C) Quantitative analysis of intracellular H2O2 level. Data are provided as mean ± SD of
three independent experiments (n = 3). * Indicates statistically significant difference from the control
group (p < 0.05). # Indicates that NAC effectively abrogated the effect of BT NPs or ZnO NPs.

We further examined the effect of BT NPs on the antioxidant defense system of A549 cells. Cells
were exposed for 24 h to 50 µg/mL of BT NPs with or without NAC. Results demonstrated that BT NPs
or ZnO NPs significantly decreased the GSH level and as well as the activity of several antioxidant
enzymes (GPx, GR, and SOD) in A549 cells as compared to controls (Figure 6A–D). We further noticed
that the effects of BT NPs or ZnO NPs on antioxidant defense systems were successfully reverted by
NAC co-exposure. These results suggested that BT NPs have potential to generate oxidative stress in
A549 cells in a similar fashion as in ZnO NPs. Barium oxide (BaO) NPs also exhibited genotoxic and
apoptotic effects in L929 cells, most likely due to generation of ROS [45]. An earlier study demonstrated
that Ag-doped TiO2 NPs induced reactive oxygen species generation and oxidative stress in various
types of human cancer cells [19].
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3.4. BaTiO3 Nanoparticles Induced Cytotoxicity via Oxidative Stress

We examined the role of oxidative stress in BT NP-induced cytotoxicity in A549 cells. It has been
reported that oxidative damage of cells due to particles or drugs can be minimized by supplementation
of external antioxidants such as vitamins and NAC. For example, NAC has shown potential to mitigate
the oxidative damage of cells through ROS scavenging and GSH replenishment [46]. Our data also
showed that cytotoxicity exerted by BT NPs or ZnO NPs was effectively attenuated by NAC co-exposure.
As we can see in Figure 7A, cell damage induced by BT NPs was significantly reverted by NAC
co-exposure. MTT data (Figure 7B) also demonstrated that reduction in cell viability after exposure
to BT NPs was successfully reverted when co-exposed with NAC. These results suggested that BT
NP-induced cytotoxicity was mediated through oxidative stress. Most importantly, the cytotoxicity
mechanism of BT NPs was similar in mode of action to that of ZnO NPs. Copper doping also enhances
oxidative stress-mediated-cytotoxicity of TiO2 NPs in A549 cells [47]. Our previous study also showed
that Zn-doped TiO2 induced cytotoxicity in human breast cancer (MCF-7) via oxidative stress [23].
Elucidating the possible mechanisms of selective toxicity of BT NPs against cancer cells still remains a
daunting task.

It cannot be dismissed that NPs, particularly when they were not stored under sterile
condition, may be contaminated with endotoxins during preparation or handling. Therefore,
endotoxin contamination might influence the toxicity of NPs [48]. Endpoint chromogenic limulus
amebocyte lysate (LAL) assay further confirmed that prepared BT NPs were not contaminated from
endotoxins (Figure S1 of Supplementary Materials).
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3.5. Effect of BaTiO3 Nanoparticles on Non-Cancerous Normal Cells

To see the selective toxicity of BT NPs, we assessed the effects of BT NPs in non-cancerous human
lung fibroblasts (IMR-90). Results showed that BT NPs did not exert toxicity to IMR-90 cells (Figure 8).
As expected, ZnO NPs also did not induce cytotoxicity to IMR-90 cells. The benign nature of ZnO
NPs was reported previously [20,21]. Dubey and co-workers found that BT NPs did not induce any
systemic toxicity in BALB/c mice [49]. Selective toxicity of semiconductor NPs against cancer cells is
now being investigated by researchers [50,51].
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Figure 8. Effect of BaTiO3 NPs in non-cancerous human lung fibroblasts (IMR-90). Cells were exposed
for 24, 48, and 72 h to different concentrations (5–200µg/mL) of BT NPs, and cytotoxicity was determined
by MTT assay. ZnO NPs (25 µg/mL) was used as a positive control. Data are provided as mean ± SD of
three independent experiments (n = 3).
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4. Conclusions

We observed that BT NPs induce a dose- and time-dependent cytotoxicity to human lung carcinoma
(A549) cells. MMP loss and higher activity of caspase-3 and -9 enzymes due to BT NP exposure were also
observed. Moreover, BT NP-induced cytotoxicity, pro-oxidant generation, and antioxidant depletion
were effectively attenuated by co-exposure of an antioxidant (N-acetyl-cysteine), suggesting that BT
NP-induced toxicity was mediated through oxidative stress. Importantly, cytotoxicity mechanisms of
BT NPs against human lung cancer cells were similar in mode of action to those of ZnO NPs. Overall,
this preliminary study indicated that BT NPs have potential to kill cancer cells while sparing their
normal counterparts. This preliminary report warrants further research on cytotoxicity mechanisms of
BT NPs against various types of cancer cells and their normal counterparts.
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