European Heart Journal Supplements (2019) **21** (Supplement M), M40-M43 *The Heart of the Matter* doi:10.1093/eurheartj/suz212

Heart failure in dilated non-ischaemic cardiomyopathy

Petar M. Seferović^{1,2}*, Marija M. Polovina^{1,3}, and Andrew J.S. Coats⁴

KEYWORDS

Heart failure; Diabetes; Cardiomyopathy Heart failure (HF) is the prevailing cause of morbidity and mortality in patients with dilated non-ischaemic cardiomyopathy (DCM) and DCM is one of several causes of HF, with several distinct epidemiological and clinical features which may have important implications for its management and prognosis. This article reviews cardiovascular monitoring of specific characteristics of HF in DCM. DCM is defined as ventricular dilatation and systolic dysfunction in the absence of abnormal loading conditions or significant coronary artery disease, the predominant phenotypes of being HFmrEF or HFrEF. DCM accounts for $\sim\!40\%$ of all cardiomyopathies but its true prevalence among patients with HFrEF is difficult to ascertain with certainty.

Compared with patients with other HF aetiologies, individuals with DCM tend to be younger, more likely male and less likely to have associated comorbidities. A genetic aetiology of DCM is deemed responsible for $\sim\!40\%$ of cases. Confirmation of a specific genetic background is clinically relevant (e.g. Duchene or Backer muscular dystrophies, lamin A/C mutation), because those patients may be at a high risk of progressive left ventricular dysfunction or conduction system disease and sudden death, prompting early prophylaxis with an implantable cardioverter defibrillator. However, in most instances, HF in DCM has a multifactorial aetiology, with multiple factors needing to be systematically evaluated and/or monitored, since correction of reversible causes or (e.g. tachycardia-induced cardiomyopathy, alcohol intoxication, ironoverload, cancer therapies etc.) or targeting specific pathophysiological causes could lead to an improvement in clinical status.

The treatment of DCM encompasses HF-related pharmacological and device therapies, and aetiology-specific treatments. At present, options for aetiology-related therapies are limited, and their effectiveness mostly requires confirmation from larger scale randomized trials. Whether outcomes of patients with HF in DCM differ from those with other HF aetiologies is unresolved. DCM is attributable for >40% of patients receiving mechanical circulatory support for advanced HF and it is the leading indication for heart transplantation. More aetiology-specific information is needed both in the evaluation and treatment of dilated cardiomyopathy.

*Corresponding author. Tel/Fax: +381 11 361 47 38,

Email: seferovic.petar@gmail.com

¹Faculty of Medicine, University of Belgrade, Belgrade, Serbia;

²Serbian Academy of Sciences and Arts, Belgrade, Serbia;

³Department of Cardiology, Clinical Centre of Serbia, 8 Koste Todorovića, 11000 Belgrade, Serbia; and

⁴IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Roma, Italy

Introduction

Heart failure (HF) is the prevailing cause of morbidity and mortality in patients with dilated non-ischaemic cardiomy-opathy (DCM). In comparison with other aetiologies, HF in DCM has distinct epidemiological and clinical features with important implications for the management and prognosis. Hence, this review will focus on cardiovascular monitoring of specific characteristics of HF in DCM.

Dilated non-ischaemic cardiomyopathy is defined as ventricular dilatation and systolic dysfunction in the absence of abnormal loading conditions or significant coronary artery disease.^{2,3} Consequently, the predominant phenotypes of HF in DCM are either HF with midrange ejection fraction, or HF with reduced ejection fraction (HFrEF). The prevalence of DCM is ~36 patients per 100 000 population and it accounts for \sim 40% of all cardiomyopathies. The true prevalence of DCM among patients with HFrEF is difficult to ascertain because few studies have characterized HF aetiology beyond ischaemic or non-ischaemic. Recent data from a large northern European observational study suggests that DCM is the cause of HF in 7.9% of unselected patients admitted to hospital for HF.⁴ In the PARADIGM-HF trial, enrolling only patients with ejection fraction <35-40%, DCM was the specified aetiology in 19% of all HFrEF patients, and in 47% of those with non-ischaemic HFrEF.⁵ Significant geographical variations have been noted in epidemiology, with non-ischaemic DCM being the leading cause of HFrEF in Asia Pacific Region (28%), followed by Latin America (21%), whereas in Europe and North America DCM accounts for ~14% of HFrEF patients.^{5,6}

Monitoring of aetiology of heart failure in dilated non-ischaemic cardiomyopathy

Compared with patients with other HF aetiologies, individuals with DCM tend to be approximately 5-10 years younger at diagnosis and more likely to be male (70-78%). Owing to their younger age, they are less likely to have associated comorbidities, including hypertension, diabetes, atrial fibrillation, or stroke.⁵ Despite an overall lower burden of comorbidities, several important features increase the complexity of HF in DCM. The aetiology of DCM is often multifactorial. Although, genetic factors are deemed responsible for ~40% of cases, 1 monogenetic forms of DCM are rare in clinical practice. Nevertheless, confirmation of specific genetic background is clinically relevant (e.g. Duchene or Backer muscular dystrophies, lamin A/C mutation), because those patients may be at a high risk of progressive left ventricular dysfunction or conduction system disease and sudden death, prompting early prophylaxis with an implantable-cardioverter defibrillator. 7,8 However, in most instances, HF in DCM results from an interplay between familial predisposition and direct myocardial damage caused by infectious, immune-mediated, or toxic agents, as well as endocrine and metabolic abnormalities. These factors need to be systematically evaluated or monitored, since correction of reversible causes or (e.g. tachycardia-induced cardiomyopathy, alcohol intoxication, iron-overload, cancer therapies etc.) or targeting specific pathophysiology could lead to an improvement in clinical status and reverse left ventricular remodelling (i.e. improvement in left ventricular systolic function).

Monitoring of specific clinical features in dilated non-ischaemic cardiomyopathy

The complexity of HF in DCM is further outlined by data indicating that the mean left ventricular ejection fraction (LVEF) at presentation tends to be lower compared to LVEF of either unselected HF patients, or patients with other non-ischaemic HFrEF aetiologies, including hypertension or valvular heart disease. ^{4,5} In addition, patients often present with significantly impaired functional status [the New York Heart Association (NYHA) Class III-IV]^{4,5} and frequently require repeated hospitalization for HF, as suggested by a study reporting that approximately two-thirds of newly-diagnosed DCM patients had at least one HF hospitalization in the previous 6 months. ⁹ Lower baseline LVEF, higher NYHA class, and repeated HF hospitalization, as well as older age (>60 years) and male sex, have been consistently associated with poor outcomes of HF in DCM. ¹⁰⁻¹²

By monitoring specific clinical features, several indicators of adverse prognosis could be identified. Importantly, these features may not be present at diagnosis, but develop along the course of the disease and are amenable to treatment. This includes new-onset left bundle branch block, a sign of dyssynchronous mechanical contraction, associated with \sim three-fold greater all-cause mortality, ¹³ which could be reduced with cardiac resynchronization therapy. 14 Also, development of severe functional mitral regurgitation confers ~two-fold greater risk of death or worsening HF in DCM.¹⁵ Therefore, echocardiographic monitoring and surgical or interventional treatment for severe mitral regurgitation may be considered in selected patients.¹⁶ Occurrence of atrial fibrillation, even when asymptomatic, may cause severe deterioration of functional status and increase the risk of stroke and mortality. 17 Hence efforts to detect atrial fibrillation and provide oral anticoagulation (to all patients) and catheter ablation (in selected cases), could effectively improve outcomes and quality of life in those with HF in DCM. 18

In contrast, female sex, smaller left ventricular cavity size, and less mid-wall fibrosis on cardiac magnetic resonance may indicate individuals with a greater potential for reverse left ventricular remodelling. 9,19,20 Sustained improvement in left ventricular function is associated with $\sim 50\%$ lower mortality at long-term follow-up. 20

The role of monitoring in the treatment of heart failure in dilated non-ischaemic cardiomyopathy

The treatment of DCM encompasses HF-related pharmacological and device therapies, and aetiology-specific treatment. Guideline-directed therapies of chronic HFrEF confer a consistent improvement in outcomes, regardless of aetiology.²¹ Over the last two decades, a consistent reduction in hospital admissions, HF-related mortality and

M42 P.M. Seferović et al.

the risk of sudden death has been observed with contemporary treatment. ^{12,22} In the treatment of acute HF, there is a suggestion that milrinone might be beneficial in patients with non-ischaemic HF unlike those with ischaemic aetiology. ²³ The treatment of chronic HF in DCM should continue indefinitely, even in patients with left ventricular functional recovery, due to a high risk of relapse upon withdrawal of targeted therapies. ²⁴

At present, options for aetiology-related therapies are limited, and their effectiveness mostly requires confirmation from randomized trials. Available evidence indicates a beneficial role of bromocriptine (in conjunction with anticoagulation) for left ventricular functional recovery and reduction in morbidity and mortality in peripartum cardiomyopathy. There is a suggestion that immunosuppression could have salutary effects for the treatment of virusnegative inflammatory DCM, giant-cell or eosinophilic myocarditis, and cardiac sarcoidosis. Sec. 26-28 Also, immunoadsorption of circulating antibodies is currently evaluated as a potential treatment in selected patients with DCM.

Whether outcomes of patients with HF in DCM differ from those with other HF aetiologies is unresolved. Earlier reports have suggested worse outcomes in ischaemic compared with non-ischaemic HF, but amongst non-ischaemic aetiologies, patients with DCM had greater mortality than those with hypertensive of valvular heart disease. 4,30 Conversely, recent data indicates similar survival across different HF aetiologies, possibly owing to beneficial effects of contemporary treatment. However, despite advancements in treatment, DCM often has an unfavourable course leading to advanced HF. Monitoring of HF progression is a key element in indication for a timely referral to specialized advanced HF centres. Indeed, DCM is attributable for >40% of patients receiving mechanical circulatory support for advanced HF.31,32 Likewise, it is the leading indication for heart transplantation, accounting for 64% and 51%, respectively, of all transplantations in younger (18-39 years) and middle-aged adults (40-59 years).33 Only after the age of 60 years, HF in DCM is preceded by ischaemic heart disease as the most frequent cause of heart transplantation. Following transplantation, patients with DCM have a favourable long-term prognosis, owing to their younger age and lower burden of comorbidities, with a median survival of 12 years post-transplantation.

Conflict of interest: Outside of this work, in the last 3 years, Professor Coats declares having received honoraria and/or lecture fees from: Astra Zeneca, Bayer, Menarini, Novartis, Nutricia, Servier, Vifor, Actimed, Cardiac Dimensions, CVRx, Enopace, Faraday, Gore, Impulse Dynamics, Respicardia, Stealth Peptides, V-Wave. Others declare no Conflicts.

References

- Seferovic PM, Polovina M, Bauersachs J, Arad M, Gal TB, Lund LH. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019;21:553-576.
- Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Classification of the cardiomyopathies: a position statement from the European Society

- Of Cardiology Working Group on Myocardial and Pericardial Diseases. *Eur Heart J* 2007; **29**:270-276.
- 3. Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Böhm M, Duboc D, Gimeno J, de Groote P, Imazio M, Heymans S, Klingel K, Komajda M, Limongelli G, Linhart A, Mogensen J, Moon J, Pieper PG, Seferovic PM, Schueler S, Zamorano JL, Caforio ALP, Charron P. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 2016;37:1850-1858.
- Pecini R, Møller DV, Torp-Pedersen C, Hassager C, Køber L. Heart failure etiology impacts survival of patients with heart failure. Int J Cardiol 2011;149:211-215.
- Balmforth C, Simpson J, Shen L, Jhund PS, Lefkowitz M, Rizkala AR, Rouleau JL, Shi V, Solomon SD, Swedberg K, Zile MR, Packer M, McMurray JJV. Outcomes and effect of treatment according to etiology in HFrEF: an analysis of PARADIGM-HF. JACC Heart Fail 2019;7: 457-465.
- Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, Francis GS, Lenihan D, Lewis EF, McNamara DM, Pahl E, Vasan RS, Ramasubbu K, Rasmusson K, Towbin JA, Yancy C. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 2016;134:e579-e646.
- 7. van Rijsingen IAW, van der Zwaag PA, Groeneweg JA, Nannenberg EA, Jongbloed JDH, Zwinderman AH, Pinto YM, dit Deprez RHL, Post JG, Tan HL, de Boer RA, Hauer RNW, Christiaans I, van den Berg MP, van Tintelen JP, Wilde AAM. Outcome in phospholamban R14del carriers: results of a large multicentre cohort study. *Circ Cardiovasc Genet* 2014;7:455-465.
- Fayssoil A, Nardi O, Orlikowski D, Annane D. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. *Heart Fail Rev* 2010:15:103-107
- Kubanek M, Sramko M, Maluskova J, Kautznerova D, Weichet J, Lupinek P, Vrbska J, Malek I, Kautzner J. Novel predictors of left ventricular reverse remodeling in individuals with recent-onset dilated cardiomyopathy. J Am Coll Cardiol 2013;61:54-63.
- Lin AH, Chin JC, Sicignano NM, Evans AM. Repeat hospitalizations predict mortality in patients with heart failure. *Mil Med* 2017;182: e1932-e1937.
- 11. Halliday BP, Gulati A, Ali A, Newsome S, Lota A, Tayal U, Vassiliou VS, Arzanauskaite M, Izgi C, Krishnathasan K, Singhal A, Chiew K, Gregson J, Frenneaux MP, Cook SA, Pennell DJ, Collins P, Cleland JGF, Prasad SK. Sex- and age-based differences in the natural history and outcome of dilated cardiomyopathy. Eur J Heart Fail 2018;20: 1392
- McNamara DM, Starling RC, Cooper LT, Boehmer JP, Mather PJ, Janosko KM, Gorcsan J, Kip KE, Dec GW. Clinical and demographic predictors of outcomes in recent onset dilated cardiomyopathy: results of the IMAC (Intervention in Myocarditis and Acute Cardiomyopathy)-2 study. J Am Coll Cardiol 2011;58:1112-1118.
- Aleksova A, Carriere C, Zecchin M, Barbati G, Vitrella G, Di Lenarda A, Sinagra G. New-onset left bundle branch block independently predicts long-term mortality in patients with idiopathic dilated cardiomyopathy: data from the Trieste Heart Muscle Disease Registry. Europace 2014;16:1450-1459.
- Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004; 350:2140-2150.
- 15. Rossi A, Dini FL, Faggiano P, Agricola E, Cicoira M, Frattini S, Simioniuc A, Gullace M, Ghio S, Enriquez-Sarano M, Temporelli PL. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 2011;97:1675-1680.
- 16. Stone GW, Lindenfeld J, Abraham WT, Kar S, Lim DS, Mishell JM, Whisenant B, Grayburn PA, Rinaldi M, Kapadia SR, Rajagopal V, Sarembock IJ, Brieke A, Marx SO, Cohen DJ, Weissman NJ, Mack MJ. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med 2018; 379:2307.
- 17. Zafrir B, Lund LH, Laroche C, Ruschitzka F, Crespo-Leiro MG, Coats AJS, Anker SD, Filippatos G, Seferovic PM, Maggioni AP, De Mora

- Martin M, Polonski L, Silva-Cardoso J, Amir O. Prognostic implications of atrial fibrillation in heart failure with reduced, mid-range, and preserved ejection fraction: a report from 14 964 patients in the European Society of Cardiology Heart Failure Long-Term Registry. *Eur Heart J* 2018:39:4277-4284.
- Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, Merkely B, Pokushalov E, Sanders P, Proff J, Schunkert H, Christ H, Vogt J, Bänsch D. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med 2018; 378:417-427.
- Martinez-Selles M, Doughty RN, Poppe K, Whalley GA, Earle N, Tribouilloy C. Gender and survival in patients with heart failure: interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis. Eur J Heart Fail 2012:14:473-479.
- Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G. Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 2011;57:1468-1476.
- Seferovic PM, Ponikowski P, Anker SD, Bauersachs J, Chioncel O, Cleland JGF. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of The Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019;21:1169-1186.
- Shen L, Jhund PS, Petrie MC, Claggett BL, Barlera S, Cleland JGF, Dargie HJ, Granger CB, Kjekshus J, Køber L, Latini R, Maggioni AP, Packer M, Pitt B, Solomon SD, Swedberg K, Tavazzi L, Wikstrand J, Zannad F, Zile MR, McMurray JJV. Declining risk of sudden death in heart failure. N Engl J Med 2017;377:41-51.
- Felker GM, Benza RL, Chandler AB, Leimberger JD, Cuffe MS, Califf RM, Gheorghiade M, O'Connor CM. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol 2003;41:997-1003.
- 24. Halliday BP, Wassall R, Lota AS, Khalique Z, Gregson J, Newsome S, Jackson R, Rahneva T, Wage R, Smith G, Venneri L, Tayal U, Auger D, Midwinter W, Whiffin N, Rajani R, Dungu JN, Pantazis A, Cook SA, Ware JS, Baksi AJ, Pennell DJ, Rosen SD, Cowie MR, Cleland JGF, Prasad SK. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 2019;393:61-73.
- Hilfiker-Kleiner D, Haghikia A, Berliner D, Vogel-Claussen J, Schwab J, Franke A, Schwarzkopf M, Ehlermann P, Pfister R, Michels G, Westenfeld R, Stangl V, Kindermann I, Kühl U, Angermann CE, Schlitt A, Fischer D, Podewski E, Böhm M, Sliwa K, Bauersachs J. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur Heart J 2017;38:2671-2679.

- Frustaci A, Russo MA, Chimenti C. Randomized study on the efficacy
 of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 2009;30:
 1995-2002.
- Cooper LT, Hare JM, Tazelaar HD, Edwards WD, Starling RC, Deng MC, Menon S, Mullen GM, Jaski B, Bailey KR, Cunningham MW, Dec GW. Usefulness of immunosuppression for giant cell myocarditis. Am J Cardiol 2008;102:1535-1539.
- 28. Caforio ALP, Adler Y, Agostini C, Allanore Y, Anastasakis A, Arad M, Böhm M, Charron P, Elliott PM, Eriksson U, Felix SB, Garcia-Pavia P, Hachulla E, Heymans S, Imazio M, Klingel K, Marcolongo R, Matucci Cerinic M, Pantazis A, Plein S, Poli V, Rigopoulos A, Seferovic P, Shoenfeld Y, Zamorano JL, Linhart A. Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur Heart J 2017;38: 2649-2662
- Weinmann K, Werner J, Koenig W, Rottbauer W, Walcher D, Keßler M. Add-on immunoadsorption shortly-after optimal medical treatment further significantly and persistently improves cardiac function and symptoms in recent-onset heart failure—a single center experience. Biomolecules 2018;8:133.
- Frazier CG, Alexander KP, Newby LK, Anderson S, Iverson E, Packer M, Cohn J, Goldstein S, Douglas PS. Associations of gender and etiology with outcomes in heart failure with systolic dysfunction: a pooled analysis of 5 randomized control trials. *J Am Coll Cardiol* 2007;49:1450-1458.
- 31. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL, Meier P. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001;345:1435-1443.
- Yoshioka D, Li B, Takayama H, Garan RA, Topkara VK, Han J, Kurlansky P, Yuzefpolskaya M, Colombo PC, Naka Y, Takeda K. Outcome of heart transplantation after bridge-to-transplant strategy using various mechanical circulatory support devices. *Interact Cardiovasc Thorac Surg* 2017;25:918-924.
- 33. Lund LH, Edwards LB, Dipchand AI, Goldfarb S, Kucheryavaya AY, Levvey BJ, Meiser B, Rossano JW, Yusen RD, Stehlik J. The Registry of the International Society for Heart and Lung Transplantation: thirty-third Adult Heart Transplantation Report-2016; Focus Theme: primary Diagnostic Indications for Transplant. J Heart Lung Transplant 2016;35:1158-1169.