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Abstract

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of imma-

ture myeloid cells with immunosuppressive properties. In cancer patients, the expres-

sion of lectin-type oxidized LDL receptor 1 (LOX-1) on granulocytic MDSC identifies a

subset ofMDSC that retains themost potent immunosuppressive properties. Themain

objective of the present work was to explore the presence of LOX-1+MDSC in bacte-

rial and viral sepsis. To this end, whole blood LOX-1+ cells were phenotypically, mor-

phologically, and functionally characterized. They were monitored in 39 coronavirus

disease-19 (COVID-19, viral sepsis) and 48 septic shock (bacterial sepsis) patients lon-

gitudinally sampled five times over a 3 wk period in intensive care units (ICUs). The

phenotype, morphology, and immunosuppressive functions of LOX-1+ cells demon-

strated that they were polymorphonuclear MDSC. In patients, we observed the signif-

icant emergence of LOX-1+MDSC in both groups. The peak of LOX-1+MDSC was 1

wkdelayedwith respect to ICU admission. In COVID-19, their elevationwasmore pro-

nounced in patientswith acute respiratory distress syndrome. Thepersistence of these

cells may contribute to long lasting immunosuppression leaving the patient unable to

efficiently resolve infections.
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1 INTRODUCTION

Myeloid-derived suppressor cells (MDSC) are a heterogeneous popu-

lation of immature myeloid cells with immunosuppressive properties

as they are potent repressors of T-cell responses.1 Two main subtypes

of MDSC are currently described.2 Polymorphonuclear MDSC (PMN-

MDSC), containing granulocytic progenitors, are phenotypically and

morphologically similar to neutrophils. Monocytic MDSC (M-MDSC),

containing monocytic progenitors, are phenotypically and morpho-

logically similar to monocytes. Early MDSC are also described, only

in mice. They are mostly immature and do not express any lineage

markers.3 MDSC have been first recognized for their role in attenu-

ating immune surveillance and antitumor immune response in various

cancer conditions.

More recently, MDSC have been reported to be involved in other

clinical contexts including acute and chronic inflammation.4 The salient

feature of MDSC in these conditions is their ability to inhibit T cell

function and thus to contribute to the occurrence of subsequent

immunosuppression. As an illustrative example, sepsis, defined as a

life-threatening organ dysfunction caused by a dysregulated inflamma-

tory host response to infection,5 is characterized by a delayed step of

immunosuppression.6 Recent studies have demonstrated the associa-

tion between elevated circulating MDSC (both PMN- and M-MDSC)

and increased and/or higher risk of nosocomial infections during

sepsis.7–9 Interestingly, the most severe cases of coronavirus disease-

19 (COVID-19, caused by SARS-CoV-2) are viral sepsis by virtue of

international definition (i.e., infection and one organ failure that is

acute respiratory failure). Once COVID-19 patients develop acute res-

piratory distress syndrome (ARDS), they similarly present with fea-

tures of immunosuppression: altered type-I IFN signaling,10 decreased

monocyteHLA-DR (mHLA-DR),11 lymphopenia,12 and altered lympho-

cyte functions.13 A couple of recent articles reported on the early

emergence of PMN-MDSC especially in the most severe COVID-19

patients.14,15

Although there is a growing interest in monitoring MDSC in clini-

cal practice, the lack of a specific phenotypic marker usable in whole

blood protocol renders their assessment difficult on a routine basis

due to the necessity to perform cell purification before staining. This is

especially true for PMN-MDSC, which are investigated among PBMCs

after isolation bydensity gradient centrifugation.3 In 2016,Condamine

et al. reported that the expression of lectin-type oxidized LDL recep-

tor 1 (LOX-1) identified a subset of MDSC that retained the most

potent immunosuppressive properties.16 Importantly, LOX-1 staining

can be performed in whole blood.16 Since this pioneering description,

LOX-1 expression in MDSC have been confirmed in few human cancer

studies.17,18

In this context, the question of the emergence of LOX-1+ PMN-

MDSC in bacterial and viral sepsis remained unsolved. Themain objec-

tive of the present work was thus to highlight the presence of these

cells in two etiologies of sepsis, that is, bacterial and viral (COVID-19)

and to verify that these cells identified inwhole blood possessed all the

characteristics ofMDSC.

2 MATERIALS AND METHODS

2.1 Study population

This clinical study was conducted on patients admitted to the inten-

sive care unit (ICU) of Edouard Herriot Hospital (Hospices Civils de

Lyon, Lyon, France). This project is part of two prospective observa-

tional studies: IMMUNOSEPSIS (on septic shock patients), and RICO

(REA-IMMUNO-COVID on COVID-19 ICU patients). Extended details

are provided in supplemental material.

2.2 Whole blood phenotyping

Fresh peripheral blood was collected using EDTA anticoagulant

tubes. A total of 100 μl of whole blood was labelled with antibodies:

CD45-KrO/CD10-PC7/CD16-PB (Beckman Coulter, Brea, CA, USA),

CRTH2-APC (Miltenyi, Bergisch Gladbach, Germany), CD15-AF700,

and LOX-1-PE or mouse IgG2a isotype control (Biolegend, San Diego,

CA, USA) and incubated for 15 min at room temperature in the dark.

Cells were then incubated with 1m of lysing solution (Versalyse, Beck-

man Coulter) for 10 min at room temperature in the dark and washed

with PBS before being analyzed by flow cytometry. Samples were run

on a Navios flow cytometer (Beckman Coulter). Calibration beads

(Flow Check and Flow Set, Beckman Coulter) were run daily to check

for routine alignment, day-to-day stability, and long-term performance

validation. Gating strategy involved a first step of PMN selection on

a biparametric CD45/side scatter histogram. Then, eosinophils were

excluded from gated PMN according to CRTH2 expression. LOX-1

expression was finally evaluated on the whole neutrophil population

(positivity threshold was based on isotype values set up at 0.5%).

Results were expressed as percentage of LOX-1 positive cells among

neutrophils. Maturity of PMN or PMN-MDSCwas also assessed based

on the expression of CD10 and CD16.

2.3 Cell isolation

Fresh PBMCs were isolated from whole blood by Ficoll density gra-

dient centrifugation. For coculture and microscopy (May-Grünwald-

Giemsa staining performed by an SP10 automatic system, Sysmex),

MDSCwere sorted by flow cytometry on a FACSAria II flow cytometer

(BD Bioscience, San Jose, CA, USA). The gating strategy for cell sorting

experiments was to select CD45dim LOX1+ cells for PMN-MDSC and
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CD45+ LOX1- cells for regular neutrophils among whole CD15+ neu-

trophil population (>90% purity). Viability of sorted cells was assessed

using propidium iodide staining (>90% viability). For coculture, T cells

were isolated fromhealthy volunteers (HV) samples by antibody-based

negative selection and Ficoll density gradient centrifugation using a

humanT-cell enrichment cocktail (Rosette Sep, StemCell Technologies,

Grenoble, France), as described in the manufacturer’s instructions. T

cell purity was assessed by flow cytometry (cells were labelled with

anti-CD3-APC [Beckman Coulter]).

2.4 Suppression assay

Freshly purified T cells were stimulated with anti-CD2/3/28 coated-

beads (T cell Activation/Expansion kit, 2 beads per T cell, Biolegend,

Bergisch Gladbach, Germany) and cultured alone or cocultured with

heterologous CD45dim LOX1+ or CD45+ LOX1- PMN at a 1:1 ratio

for 72 h at 37◦C and 5%CO2. T cell functionality was assessed bymea-

suring IFN-γ production in culture supernatant (ELLA, Proteinsimple,

San Jose, CA, USA), according to themanufacturer’s instructions.

2.5 Statistical analysis

Results regarding expression of CD45dimLOX1+ cells in patients are

presented as individual values and Tukey boxplots. For clinical parame-

ters, continuous data and biologic parameters are presented as medi-

ans and interquartile ranges (IQR) whereas categoric data are pre-

sented as numbers of cases and percentages among total popula-

tion (median and IQR). Results regarding IFN-γ production of T cells

in coculture are presented as means ± SD. Nonparametric Mann-

Whitney, Fisher, and χ2 tests were used to assess differences between
HV and patients or differences between viral and bacterial sepsis, and

the nonparametric Wilcoxon paired test was used to assess variations

between patients themselves at different time points. P-values lower

than 0.05were considered statistically significant.

3 RESULTS AND DISCUSSION

As a preliminary step, we first developed a whole blood protocol

to assess LOX-1 expression on circulating neutrophils. As regularly

performed in clinical flow cytometry, we used CD45 expression to

draw a leukogate in order to exclude debris. Then, neutrophils were

identified based on CD15 positivity and lack of CRTH2 (in order to

exclude eosinophils). As depicted in Figure 1, we were able to identify

a subset of neutrophils expressing LOX-1. These cells presented

with diminished CD45 expression (Fig. 1A) and an immature phe-

notype as they did not express CD16 nor CD10 (Fig. 1A). We next

performed LOX-1 staining after Ficoll purification on cells from both

Ficoll ring and pellet. As expected, LOX-1+ CD15+ neutrophils were

found in the Ficoll ring with PBMCs and were absent from the pellet

(Supporting Information Fig. S1). We confirmed that these LOX-1+

cells presented with low CD10 and CD16 expressions. In addition,

after staining with May-Grünwald Giemsa, sorted CD45dim CD15+

LOX-1+ population appeared as neutrophil precursors presentingwith

immature morphology (i.e., poorly segmented reniform nucleus). In

contrast, CD45+ LOX-1 negative cells (found in the pellet) appeared as

mature neutrophils exhibiting a well-segmented nucleus (Supporting

Information Fig. S1). In order to further qualify LOX-1+ neutrophils as

MDSC, we next investigated their suppressive functions.2 Due to the

limited biologic resources (i.e., small amount of available blood from

severely ill ICU patients), we assessed inhibition of IFN-γ production
by T cells that require fewer cells than proliferation assay. To this end,

CD15+CD45dim LOX-1+ andCD15+CD45+ LOX1- cells were sorted

and cocultured with heterologous T cells from healthy donors. After

72 h of culture, IFN-γ release was measured in culture supernatant.

Although addition of regular neutrophils (CD15+ CD45+ LOX-1-)

had no effect on IFN-γ release by stimulated T-cells, coculture with

CD15+ CD45dim LOX-1+ cells induced a fall in IFN-γ production

(Fig. 1B). Overall, our results identified a subpopulation of CD15+

CRTH2- CD10low CD16low CD45dim LOX-1+ neutrophils, which

presented with immature morphology, low-density characteristics,

and possessed immunosuppressive properties. This agreed with first

report on LOX-1 cells by Gabrilovich’s group16 and identified these

cells as PMN-MDSC. This allowed use of this phenotype in clinical

studies for the whole blood phenotyping of MDSC. Thereafter, those

cells will be named LOX-1 PMN-MDSC.

Forty-eight septic shock patients, 39 ICU COVID-19 patients, and

22 HV were included. Clinical and biologic characteristics are listed in

Table 1. Overall, patients mostly presented with low mHLA-DR values

and lymphopenia reflecting an immunosuppression state as usually

described in sepsis.6 Upon admission, patients with bacterial septic

shock did not exhibit increased percentage LOX-1PMN-MDSC in com-

parisonwithHV (median=0.15% [0.04–0.38] vs. 0.165% [0.063–0.25],

respectively) (Fig. 2A). Afterward, percentage LOX-1 PMN-MDSC sig-

nificantly increased atD3 (0.26% [0.13–0.87];P=0.021)with a peak at

D6 (3.10% [1.02–6.58] P = 0.003). D6 values were significantly higher

than those observed at D1 (P= 0.003) andD3 (P= 0.005). On patient’s

discharge from ICU, percentage LOX-1 PMN-MDSC decreased (0.43%

[0.15–0.73]) without returning to completely normal values. Indeed,

discharge values were still significantly higher than admission values

(P = 0.004). Emergence of LOX-1 PMN-MDSC was also observed

in COVID-19 patients (Fig. 2B). At each time point, values were

significantly higher than HV, even at patients’ ICU admission (0.73%

[0.47–1.94]; P = 0.007). Values of CD45dimLOX1+ MDSC then rose

up at D3 (2.83% [0.65–5.14]; P = 0.003) and reached a plateau at D6

(2.71% [1.52–5.47]; P= 0.009). The last day of their follow-up, patients

still had significantly higher LOX-1 PMN-MDSC values thanHV (1.47%

[0.745–3.450]; P = 0.007). Last, COVID-19 patients were analyzed in

regard with the development or not of ARDS within the first 3 d after

ICU admission. COVID-19 patients who developed ARDS showed a

significant elevation of LOX-1 PMN-MDSC values between the first

two samples (P = 0.002), whereas LOX-1 PMN-MDSC did not rise in

patients without ARDS (Fig. 2C).
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TABLE 1 Demographic, clinical, and immunologic data for coronavirus disease-19 (COVID-19) and septic shock patients

Parameters COVID-19 (n= 39) Septic shock (n= 48) P-value

Age (years) 65 [59–71] 72 [55–78] 0.3

Gender—male, n (%) 27 (69) 25 (52) 0.5

McCabe score 0.07

0, n (%) 36 (92) 34 (71)

1, n (%) 3 (8) 13 (27)

2, n (%) 0 (0) 1 (2)

Delay between first symptoms (days) 8 |5–9] NA

SAPS II score 33 [28–40] 54 [47–70] <0.001

SOFA score 4 [3–5] 9 [7–12] <0.001

Respiratory dysfunction (COVID-19)

Mechanical ventilation, n (%) 34 (87%) NA

PaO2/FiO2 ratio on admission (mmHg) 108 [90–158] NA

Site of infection, n (%) <0.001

Pulmonary 39 (100) 9 (19)

Abdominal 0 (0) 16 (33)

Other 0 (0) 23 (48)

Follow-up

28 d nonsurvivors, n (%) 3 (8) 7 (15) 0.03

Secondary nosocomial infections, n (%) 18 (46) 13 (27) 0.003

Immunologic parameters

Monocyte HLA-DR (mHLA-DR; AB/C) 8344 [5986–8458] 5440 [3622–8169] 0.046

Absolute CD4+ T cell count (cell/μl) 319 [169–398] 367 [274–570] 0.05

Continuousdata andbiologic parameters are presented asmedians and interquartile ranges [Q1–Q3]. For clinical parameters, categoric data arepresented as

numbers of cases and percentages among the total population in brackets. SAPS II (simplified acute physiology score II) andMcCabe scores were calculated

at admission. SOFA (sequential organ failure assessment) score was measured during the first 24 h after ICU admission. Absolute CD4+ T cell count was

calculated on day 3 as well as mHLA-DR, expressed as numbers of anti-HLA-DR antibodies bound per monocyte (AB/C). Reference values from our lab:

mHLA-DR:> 15 000 ABC, CD4+: 336–1126 cells/μl. P-values: nonparametricMann-Whitney, Fisher, and χ2 tests when appropriate.

Sepsis, which by international definition is defined as an organ

dysfunction due to a dysregulated host response to an infection,19

is characterized by the occurrence of delayed immunosuppression

that associates with poor outcome and nosocomial infections.6,20

In this condition, MDSC emergence has been described and is

reported to contribute to mechanisms sustaining this state of

immunosuppression.7,21 Although mainly due to bacterial and fungal

etiologies, viral origin is also a cause for sepsis. COVID-19 is an illustra-

tive example of viral sepsis because patients infected by SARS-CoV-2

may develop (in worst cases) ARDS (that is a major pulmonary dys-

function). Interestingly, COVID-19 patients also present with marked

immunosuppression characterized by severe lymphopenia, decreased

mHLA-DR expression, or increased IL-10 concentrations.11,22–24

In addition to lymphopenia, T cell altered functionality, and

decreased mHLA-DR, the current results illustrate that LOX-1+

MDSC occurrence constitutes another similarity between sepsis and

cancer.25 Considering their potent immunosuppressive properties (T

cell inhibition, arginine depletion, reactive oxygen species synthesis,

production of PGE2, and anti-inflammatory cytokines), it is reasonable

to speculate on their participation in septic patients worsening due to

immunosuppression. In line, their elevation is amarker of severity asso-

ciated with occurrence of ARDS.

Another striking result of the present study is the similar rise of

these immunosuppressive cells in bacterial and viral sepsis and the

delayed maximal appearance of LOX-1+ MDSC because they peaked

approximately 1 wk after ICU admission in both etiologies of sepsis.

This agrees with previous results showing that decreased mHLA-DR,

observed in septic shock and COVID-19 patients, is associated with

unfavorable outcomes in a delayed manner, that is, from day 4 after

septic shock.6,20 Over days persistence of low mHLA-DR predicted

nosocomial infections occurrence as well as mortality,8,26,27 whereas

inaugural values did not. Here, at ICU discharge, patients still pre-

sented elevated LOX-1+MDSC values. Importantly, despite constant

improvements in the management of patients, the long-termmortality

in sepsis has remained dramatically high.28 Increased mortality may

last few years after sepsis.29 The first cause of rehospitalization and

death after sepsis are infectious diseases evoking a role for a long-term

persistence of immunosuppression. This phenomenon is hypoth-

esized to be due to persistent inflammation, immunosuppression,

and catabolism syndrome, and/or chronic critical illness, defined as
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F IGURE 2 Monitoring of lectin-type oxidized LDL receptor 1 polymorphonuclearmyeloid-derived suppressor cells (LOX-1+ PMN-MDSC)
overtime in septic shock and coronavirus disease-19 (COVID-19) patients. Percentages of LOX-1+ PMNMDSC among total neutrophils were
measured in peripheral blood from 22 healthy volunteers (HV) and (A) 48 septic shock patients (day 0/2, n= 37; day 3/5, n= 44; day 6/9, n= 24;
above day10, n= 9), or (B) 39 COVID-19 ICU patients (day 0/2, n= 29; day 3/5, n= 18; day 6/9, n= 12; above day10, n= 15). Missing values
corresponded to patients who died or left ICU before the end of the study and tomissing samples during the weekends for which staining was not
possible since lab was not operating 24/7. Data are presented as individual values and Tukey boxplots. (C) Acute respiratory distress syndrome
(ARDS) in COVID-19. For COVID-19 ICU patients with paired samples at day 0/2 and day 3/5, kinetics of CD45dim LOX1+ percentage in patients
with (n= 10) or without (n= 8) ARDSwas evaluated. NonparametricMann-Whitney test was used to assess differences betweenHV and patients.
The nonparametricWilcoxon paired test was used to assess variations between patients themselves at day 0/2 and day 3/5; *P< 0.05, **P< 0.01

more than 14 d spent in ICU associated with organ dysfunction and

immunosuppression. In both cases, chronic low-grade inflammation

perpetuates long-term immunosuppression that in turn favors addi-

tional infectious events. In that respect, proinflammatory compounds

such as alarmins (S100A9/S100A8, HMGB-1) are believed to induce

MDSC proliferation/differentiation during late bacterial sepsis by

promoting immune repressor functions in bone marrow.9,30–33 Most

importantly, S100A8 (also known as calgranulin) has been demon-

strated to be an important early maker of severity in COVID-19

patients.34 We can thus speculate that this nonresolving inflammation

observed in septic shock and COVID-19 patients, which is also a fea-

ture of various cancers may represent a common mechanism leading

to the induction ofMDSC known to lower immune surveillance.25

Nevertheless, our study has limitations. Immunosuppressive abil-

ities of LOX-1+ MDSC may be confirmed with additional functional

testing such as lymphocyte proliferation. The relatively small sample

size of the cohort (less than 50 patients in each cohort) did not allow

us to deeply study the relationships with clinical outcomes. However,

considering the previously described roles of these cells in cancer and

their kinetics in sepsis (i.e., peak that synchronously occurs during sec-

ondary immunosuppressive step of the disease), we may hypothesize

that LOX1+ MDSC participate in a deleterious immunosuppressive

process.7,21,35–37 Further larger studies are needed to confirm our pre-

liminary results.

To conclude, emergence of LOX-1+ neutrophils with proven MDSC

phenotype, morphology, and function was detected for the first time

in septic patients, whatever sepsis origin. In COVID-19, their eleva-

tion was more pronounced in patients with ARDS. The peak of LOX-

1+ MDSC was delayed with respect to ICU admission. In addition,

we demonstrated the feasibility of LOX-1+ MDSC measurement in

whole blood by flow cytometry, which should facilitate larger clini-

cal research studies. Upon demonstration of a causative and delete-

rious role of MDSC in sepsis-induced immunosuppression leaving the

patient unable to effectively resolve infections, the repositioning of

various drugs proved to be efficient as adjunctive anticancer agents by

tackling MDSC could appear as a realistic therapeutic option.38 This is

all the more true because, in contrast to other putative immunoreg-

ulatory targets (regulatory T cells, inhibitory checkpoint molecules),

MDSC are not present (or at very low concentration) in steady-state

conditions providing thus a unique opportunity to act on immune

response while minimizing side effects on immune homeostasis.38
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SUPPORTING INFORMATION

Additional supporting informationmay be found online in the Support-

ing Information section at the end of the article.
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