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Two-photon imaging of the trabecular meshwork
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Purpose: To image the trabecular meshwork (TM) in its native unfixed state using a non-invasive, non-destructive
technique.

Methods: Two-photon microscopy (2PM), including two-photon excitation fluorescence (2PEF) and second harmonic
generation (SHG), was used to image flat-mounted trabecular meshwork samples from human cadaver eyes. Multiple
images were analyzed along the tissue axis (z-axis) to generate a three-dimensional (3D) model of the region.

Results: A lattice of large collagen fibers (~10 um in diameter) were detected by inherent fluorescence (2PEF) and SHG.
There are regions of both tightly overlapping bundles as well as fluid-filled regions visible from the surface of the TM.
3D analysis of multiple images reveals that the open regions deep in the TM penetrate the juxtacanalicular TM (JTM) and
connect to the inner wall of Schlemm’s canal (IWSC). These open regions may represent low-resistance fluid pathways
between the anterior chamber and Schlemm’s canal (SC).

Conclusions: 2PM imaging of the outflow system of the human eye documented collagenous structures solely from
inherent optical properties, without addition of an exogenous fluorescent label. 2PM successfully imaged into the TM
without the need for fixation, embedding, or histological processing. Deep penetration using advanced optical techniques
revealed regions likely representing pores in the IWSC that have been documented by multiple electron microscope studies.
Our work reveals that 2PM imaging has potential as a new metric for evaluating the aqueous outflow region of the human
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eye and is worthy of further exploration.

In the conventional outflow system of the eye, aqueous
humor exits the anterior chamber through the trabecular
meshwork (TM), passing through Schlemm’s canal (SC) and
collector channels (CC) before finally draining into aqueous
veins and episcleral vessels. The TM cells, and more
specifically the juxtacanalicular TM (JTM) cells, do not
function properly in patients with glaucoma [1]. As a focal
point for the pathogenesis of glaucoma, measuring differences
in structure and function between the normal and diseased TM
cells would be of great importance. However, no current
clinical instrumentation exists that can image the structure
and/or function of TM cells with fine enough resolution to
validate this approach as a potential metric for diagnosing or
following the progression of glaucoma. Currently, clinical
imaging of the TM region of the eye is limited to use of a
mirror to visualize the region (a technique known as
gonioscopy). This technique allows for the gross detection of
surface abnormalities and is not generally relevant for the
diagnosis of open-angle glaucoma, which is the main type of
glaucoma affecting patients in the United States. Another
device used to examine the outflow system of the eyes is
optical coherent tomography (OCT). OCT uses computer
interpretation of the interference pattern from long-
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wavelength light to generate cross-sectional images of the eye
with a 18 um axial and 60 pm transverse resolution [2]. A
third device used to assess the drainage system of the eye is
ultrasound biomicroscopy, which has a similar resolution
(~15 um) [3] as OCT with better ability to detect small density
differences. Neither method has the resolution to accurately
image the conventional outflow pathway (SC and CC), or the
ability to distinguish individual TM cells.

The morphology of the TM has been examined by
electron microscopy (EM), with many studies revealing
differences in ultrastructure of the TM between normal and
glaucomatous eyes [4-10]. Exact agreement of the
differences, however, is lacking. In demonstrating the
exceptional images created by quick-freeze deep etching,
Gong et al. [10] hypothesized that these differences may result
from the loss of extracellular matrix in the JTM during the
processing steps necessary for conventional scanning EM. We
propose that two-photon microscopy (2PM) could be a better
method for imaging the TM in its native state, obviating the
need for fixation and histological processing.

Traditional one-photon microscopy (1PM), either
epifluorescence or confocal microscopy, is based on linear
absorption and emission processes where a single photon
excites and then is emitted by a fluorophore. In contrast, 2PM
is based on nonlinear optical processes that involve more than
one photon interacting simultaneously with a target molecule.
Since the probability of simultaneous absorption is extremely
low, the process only occurs with high photon flux. This is
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Figure 1. Autofluorescence (AF) of the cornea/TM region of a human eye from a 73-year-old donor. A section of a tissue was flat-mounted
with the anterior chamber facing the microscope objective. An AF window (452 nm to 644 nm) was collected from an 800 nm excitation. 100
z-sections were imaged at 1 micron intervals using a 25% objective. A: A flattened projection of all z-sections at of the junction of cornea/
TM. The curvature of the tissue where the cornea and TM meet (top of A) places it beyond the working distance of the objective lens, and
therefore it appears as a dark region. B: A higher resolution image of the TM region. C: Image snapshots of a 3D reconstruction of the cornea/
TM region, rotated around the y-axis, shown at intervals of 30°. White/black scale bars=100 pm.

achieved using a high-intensity near infrared laser (Titanium: a single photon of the appropriate emission wavelength. 2PEF
Sapphire laser) with an extremely short pulse duration occurs with both endogenous and exogenous fluorophores.
(femtosecond) as the excitation source. As aresult, 2PM offers When 2PEF is used to excite endogenous fluorophores such
intrinsic axial cross-sectioning because the process only as collagen and elastin it is called two-photon excitation
occurs at the focus of the objective (where the laser intensity autofluorescence or autofluorescence (AF) in short. Another
is greatest.) As a result, 2PM offers equivalent resolution as nonlinear process that occurs with 2PM is second harmonic
confocal microscopy but does not require the use of a pinhole. generation (SHG). SHG can only occur with non-
An additional advantage of using a near infrared laser source centrosymmetric (asymmetric) macromolecular structures.
is deeper tissue penetration due to reduced light scattering of =~ Macromolecules such as collagen (but not elastin) can
the longer wavelengths of light. simultaneously “scatter” two lower-energy photons as a single
2PM includes both two-photon excitation fluorescence photon of twice the energy. SHG signal, therefore, occurs at
(2PEF) and second harmonic generation (SHG). 2PEF is very ~ a distinct wavelength (half the excitation wavelength) and can
similar to traditional fluorescence, except two photons of a  be separated from tissue autofluorescence using a spectral
lower energy are simultaneously absorbed to excite a  detector.
fluorophore. The excited fluorophore subsequently fluoresces
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Figure 2. A 3D reconstruction of the
cornea/TM region shown in Figure 1.
The region of TM/cornea shown in
Figure 1 was imaged by AF at 1 pm
intervals. A total of 100 z-sections were
projected into a 3D-animation with
rotation about the y-axis. Rotation
begins with a side-on view of the tissue.
The AF signal from the collagen
‘beams’ within the TM are quite evident
due to the low AF signal from the
surrounding fluid spaces. In contrast,
the AF signal from the cornea is fairly
homogenous. This animation can be
viewed in the html version of the article.
This image is a representative frame of
the animation.

In this study we evaluated the ability of 2PM for imaging
the TM region of human cadaver eyes. The results of this study
show an unevenly distributed collagen network over which
TM cells are localized as well as optically clear areas
extending to the inner wall of SC (IWSC), likely representing
areas of fluid flow exiting the anterior chamber.

METHODS

Human eyes: Human cadaver eyes were obtained from the San
Diego Eye Bank (San Diego, CA). Approval was obtained
from the Colorado Multiple Institutional Review Board for
the use of human material and the tenets of the Declaration of
Helsinki were followed. Informed consent was obtained from
donors or relatives for use in research. Eyes were from
pseudophakic donors with no history of glaucoma. Ages of
donors were 73 and 88 years old.

Two-photon microscopy imaging: 2PM imaging was
performed using a confocal microscope (LSM 510 META on
Axiovert 200M platform; Carl Zeiss Microlmaging Inc.,
Gottingen, Germany) with Zeiss 510 control software
(AxioVision, upgraded to Zen) equipped with a tunable mode-
locked Ti:Sapphire laser (Chameleon Ultra II; Coherent Inc.,
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Santa Clara, CA) operating at 800 nm center wavelength, with
100-200 fs pulses at 80 MHz repetition rate. The excitation
source (Ti:Sapphire laser) was focused on the human tissue
samples by a LCI “Plan-NeoFluar” 25/0.8 NA objective with
a 0.21 mm working distance (Carl Zeiss Microlmaging Inc.).
The emitted signal was first passed through a BG39 filter to
remove residual excitation laser light. The two signals were
separated in the Zeiss META spectral detector with user-
defined filter ranges of 388 nm to 409 nm for the SHG signal
and 452 nm to 644 nm for autofluorescence. Where
applicable, filter ranges were set to 388 nm to 409 nm for the
SHG signal, 473 nm to 505 nm for the Hoechst 33342 signal,
and 537 nm to 623 nm for autofluorescence. Image stacks
were collected and processed in the Zeiss 510 control
software. Laser power used was between 16 and 28 percent
of 3.5 mW (100%).

Image analysis: Single plane projections of multiple z-
sections shown in the Figures, as well as three-dimensional
(3D) reconstructions shown in the supplemental videos were
generated using AxioVision/Zen software (Carl Zeiss
Microlmaging, Inc.). This software was also used to adjust
overall brightness and contrast of the images.
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Aqueous face

Scleral face

Figure 3. AF of the TM region of a human eye from a 73-year-old donor. Another section TM tissue was flat-mounted with the anterior
chamber facing the microscope objective. AF was collected as in Figure 1. Single image snapshots from the 3D reconstruction of the TM
region are shown along with corresponding degree of rotation (around the y-axis). 0° represents the aqueous humor face of the TM, while
180° represents the scleral-directed face. A non-fibrous structure present at the aqueous surface (black arrow) can be viewed from the scleral
face through an open pore-like structure (white arrow). White scale bar=20 pm.
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Figure 4. A 3D reconstruction of the TM
region shown in Figure 3. The region of
TM shown in Figure 3 was imaged by
AF at 1 pm intervals. A total of 75 z-
sections were projected into a 3D-
animation with rotation about the y-axis.
The AF signal from the collagen within
the TM reveals a meshwork of collagen
structures interwoven with what appears
to be fluid spaces. The animation begins
with a view of the aqueous face of the
TM,; rotation by 180 degrees reveals an
open pore-like structure that penetrates
the entire thickness scanned. The non-
fibrous structure present at the aqueous
surface can be viewed through the pore.
This animation can be viewed in the
html version of the article. This image is
a representative frame of the animation.

RESULTS

2PM was performed on a human eye with the TM flat-
mounted toward the 25% (0.8 NA) objective lens. With this
numerical aperture and an excitation wavelength of 800 nm,
the estimated lateral resolution is ~0.6 um and the longitudinal
resolution is ~3 um. Figure 1 shows images from the aqueous
humor face of the TM/cornea. Autofluorescence (AF) from
the extracellular matrix was imaged in the TM and cornea in
a series of 100 parallel images spaced at 1 pum, and the
resulting stack flattened into a single image, shown in Figure
1A. Higher resolution imaging of the collagen within the TM
by AF yields the image in Figure 1B. In these flattened
projections, the collagen network appears as a meshwork of
~10 um thick fibers easily visible by their inherent fluorescent
properties. Projection of the sections in Figure 1A into 3-
dimensions (3D) yields an animation shown in Figure 2;
snapshots of this movie were taken every 30° and shown in
Figure 1C.

Further analysis was performed on a region of TM similar
to that shown in Figure 1B but at a higher optical zoom. A
region of TM was flat-mounted and visually sectioned by 2PM
at 1 um intervals to a depth of 75 pm. This depth should
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encompass the area of JTM and the IWSC. The AF signal of
the multiple z-sections were imaged and then computer
modeled to show the 3D-aspect of these structures (Figure 3).
Snapshot images of the 3D projection shown in Figure 3 are
taken at 45° intervals, as rotated about the y-axis. The aqueous
humor face of TM (Figure 3; 0°) shows numerous collagen
fibers by AF as well as an amorphous collagen structure (black
arrow). Rotation of the 3D structure by 180° shows an open
pore-like structure (white arrow) that bridges the area of JTM
and IWSC. The non-fibrous structure present at the aqueous
surface can be viewed through it. This structure is similar to
pores found within the IWSC by several different electron
microscopy studies (reviewed in [11]) that cannot be
attributed to artifacts formed during the fixation and
processing of the sample [12]. The 3D animation of the multi-
layer reconstruction is present in Figure 4.

We also performed simultaneous imaging of AF and
second harmonic generation (SGH) in a third region of human
TM. SHG and AF emission windows were collected using the
META spectral detector as described in the methods. The TM
was flat-mounted and visually sectioned by 2PM at 0.5 um
intervals to a depth of 50 um and then computer modeled into
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Figure 5. Second-harmonic generation (SHG) and AF of TM region of a human eye from a 73-year-old donor. A section of a human eye was
flat-mounted with the anterior chamber facing the microscope objective. Images represent a projection of the multiple z-sections flattened
into a single plane. A: The SHG emission (388 nm to 409 nm) collected from an 800 nm excitation of TM. B: AF collected simultaneously
as described in Figure 1. C: Merged image of SHG (blue) and AF (green) emission. Black scale bar=50 um.

a single-plane projection (Figure 5). Figure SA and Figure 5B
show the SHG and AF fluorescence, respectively. Although
the SGH signal is comparatively weaker than the AF, these
two signals are qualitatively the same when overlapped in
Figure 5C (blue=SHG, green=AF). Since collagen is the most
common non-centrosymmetric macromolecule in the TM, the
SGH signal is highly suggestive that the structures seen by AF
(Figure 1 and Figure 3) are in fact collagen fibers. In these
images of the TM, the majority of collagen fibers of the TM
appear as smooth bundles of between 10 and 20 pm, although
the occasional ~1 pm collagen fibers is visible. These bundles
have a fairly consistent diameter over short distances, but over
longer distances (>250 um) commonly split or join other
bundles. The end result is a meshwork of collagen interwoven
with varying-sized regions of non-fluorescent signal, which
we assume to be fluid spaces. The 3D animation of the SHG
projection shown in Figure 5A is presented in Figure 6.

Toward the goal of imaging TM cells within unfixed
tissue, we measured endothelial cells in the TM region using
the fluorescent nuclear stain (Hoechst 33342). The dye was
injected into the anterior chamber of an intact donor eye. The
eye was then opened, and a section of TM was flat-mounted
with the aqueous-surface facing the microscope objective. We
imaged the TM cell nuclei (Figure 7; shown in blue) by 2PEF
of'the fluorescent dye. The collagen fibers within the TM were
imaged simultaneously by SHG (Figure 7; white). This figure
represents a z-planes created by stitching together several
overlapping images. At the magnification used in this
measurement, the long collagen fibers are just visible,
organized into multiple bundles of parallel strands. There are
regions of both tightly overlapping collagen bundles (Figure
7; imaged by SHG, shown in white). There are also fluid-filled
regions (up to ~100 pm in diameter) extending from the
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surface of the TM (Figure 7; 0 um) toward the JTM (=5 pm
and —10 um). These open regions are not to be confused with
the SC which would be much larger in size and oriented
perpendicular to the imaging plane. Finally, the Hoechst
staining (blue) shows the sparse distribution of TM
endothelial cells adhering to the collagen bundles throughout
the TM region. A 3D animation of the SHG signal from a
40 um deep region of the central fluid-space of Figure 4 is
presented in Figure 8.

DISCUSSION

2PM includes both two-photon excitation fluorescence
(2PEF) and second harmonic generation (SHG). 2PEF is very
similar to traditional fluorescence, except two photons of a
lower energy are simultaneously absorbed to excite a
fluorophore. The excited fluorophore subsequently fluoresces
a single photon of the appropriate emission wavelength. 2PEF
occurs with both endogenous and exogenous fluorophores.
2PEF can be used to excite endogenous biologic
chromophores such as NAD(P)H, collagen, elastin, and
melanin [13-15]. Imaging by this method is often referred to
as two-photon excitation autofluorescence (2PAF) or
autofluorescence (AF) in short, since the fluorescence results
from the intrinsic properties of these molecules and not from
any external fluorescent label. Another nonlinear process that
occurs with 2PM is second harmonic generation (SHG). SHG
can only occur with non-centrosymmetric (asymmetric)
macromolecular  structures.  Collagen  fibers  can
simultaneously “scatter”” two lower-energy photons as a single
photon of twice the energy. SHG signal occurs at a distinct
wavelength (half the excitation wavelength) and can be
separated from tissue autofluorescence using a spectral
detector.
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Figure 6. A 3D reconstruction of the TM
region from Figure 5. The region of TM
shown in Figure 5 was imaged at 0.5 pm
intervals (for a total of 100 z-sections).
For this animation, only the SHG signal
was projected into a 3D-animation. The
animation begins with a view of the
aqueous face of the TM, with rotation
about the y-axis. While the SHG signal
is weaker than the AF signal (animation
in Figure 4), it shows qualitatively the
same interwoven 'beam' structures
surrounded by fluid-filled spaces. This
animation can be viewed in the html
version of the article. This image is a
representative frame of the animation.

1PM uses excitation wavelengths in the visible range
(400-600 nm), which undergo significant optical scattering
and material absorption in biologic samples. This limits 1PM
visualization to within 100 um of the surface of the tissue
(reviewed in[16]). 2PM is therefore much better suited to deep
tissue imaging. For example, living skin has been imaged by
2PM to a depth of 350 um by visualizing the AF of the skin’s
extracellular matrix and melanin [17]. The resolution in this
study was determined to be 0.5—1 um lateral by 3—5 pm axial,
which is on par with typical a 5 pm thick histological section.
Because of its great penetrating ability, 2PM has been used to
successfully image the intact human cornea [18] as well as
flat-mounts of human retina and retinal pigment epithelium
(RPE) [19,20]. Furthermore, 2PM has been used to image the
RPE and retina within the intact eye of rodents [21]. A recent
publication performed the first simultaneous 2PEF and third
harmonic imaging on the cornea to detect elastin and collagen
structures, and also showed the collagen and elastin structures
ofthe TM [22]. The authors were able to discern the prominent
Schwalbe’s line, but they did not perform the deep-tissue
imaging that is presented here, and also did not perform
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parallel imaging with a nuclear stain to simultaneously detect
TM endothelial cells.

In this study, 2PM was used to image the native TM
region of the human eye by AF and SHG. This method has the
advantage over light microscopy of histological sections or
EM on ultra-thin sections by being performed on unprocessed
tissue. This eliminates distortions within the tissue due to
infusion of fixatives, shrinkage of tissue due to alcohols, and
changes to fine tissue morphology that can occur with heat-
infusion of paraffin. There is presently no evidence that image
artifacts are created from the hardware or software that we
discuss in this report. In fact, since the software is calibrated
to the optical properties of the objective lens, the software
should correct for any distortions introduced by the imaging
hardware. The TM was imaged en face by SHG and the
‘meshwork’ was found to have fluid spaces of non-uniform
size, in confirmation of the organizational structures shown
by quick-freeze deep etching EM of Gong et al. [10].
Additionally, we were able to detect structures consistent with
pores found in the IWSC (reviewed in [11]). In contrast 2PM
allows additional capabilities in comparison to EM by
allowing fluorescent staining to highlight certain cell


http://www.molvis.org/molvis/v16/a103

Molecular Vision 20105 16:935-944 <http://www.molvis.org/molvis/v16/a103> © 2010 Molecular Vision

100 wm

0 um -5 um -10 um
(surface)

Figure 7. 2-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) of TM region of a human eye from an 88-year-old
donor. A section of a human eye was labeled with the cell-permeable nuclear stain (Hoechst 33342) then flat-mounted with the anterior
chamber facing the microscope objective. A 2PEF emission window for Hoechst (473 nm to 505 nm) and a SHG emission window (388 nm
to 409 nm) was collected from an 800 nm excitation. Multiple tiled scan were performed at the aqueous humor surface of the TM (0 pm) and at
—5 and —10 microns below the surface. White=SHG signal, blue=Hoechst. White scale bar=100 pum.

structures or proteins, and by allowing chemical-specific anterior fluid drainage system of the eye. It is clear that
imaging by auto-fluorescence. The ability of z-resolution  surrogate metrics for glaucoma, such as IOP, are not fool-
imaging to obtain full 3D structures of unprocessed samples proof in diagnosing disease. Patients with elevated IOP often
is another key advantage. do not develop glaucoma and patients with glaucoma do not
necessarily have high IOP [23,24]. Other metrics are needed
for the care of glaucoma patients to identify cellular
dysfunction in vivo rather than using the surrogate metrics that
have limited diagnostic sensitivity and specificity. This study
shows that 2PM is useful for imaging tissues responsible for
the regulation, or dysregulation, of aqueous humor outflow
from the eye. Further studies are needed to explore the safety
of implementing this imaging device in clinical practice, and
to move forward with the creation of novel methods to bypass
the limbal tissues that shield the drainage system from the
reach of currently available 2PM imaging microscopes.

The imaging presented here represents microscopy
starting from the aqueous humor face of the TM toward the
JTM region, with the microscope objective located within a
millimeter of the surface of the tissue. We realize that this
would not be amenable to the clinical imaging of patient TM,
but we believe these 2PM images validate this method and
represent a great leap forward in understanding the native
structures within the TM. These findings have served as the
foundation for performing current studies investigating 2PM
imaging techniques in perfused whole human eye specimens
using proprietary systems.

The hallmark indicator of glaucoma, elevated intraocular
pressure (IOP), is believed to result from dysfunction in the
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Figure 8. A 3D reconstruction of a TM
region from Figure 7. The area of TM
shown in Figure 7 that encompasses the
large ‘fluid space’ near the center was
imaged at 0.5 pm intervals. A total of 85
z-sections were projected into a 3D-
animation, with the 2PEF from the
Hoechst-labeled nuclei shown in blue
and the SHG from collagen in white.
The animation begins with a view of the
aqueous face of the TM, with rotation
about the y-axis. The pattern of blue-
stained nuclei indicates that TM
endothelial cells are evenly distributed
throughout the collagen bundles of this
region. This animation can be viewed in
the html version of the article. This
image is a representative frame of the
animation.
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