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Abstract: Growing microbial resistance to existing drugs and the search for new natural products
of pharmaceutical importance have forced researchers to investigate unexplored environments,
such as extreme ecosystems. The deep-sea (>1000 m below water surface) has a variety of extreme
environments, such as deep-sea sediments, hydrothermal vents, and deep-sea cold region, which are
considered to be new arsenals of natural products. Organisms living in the extreme environments
of the deep-sea encounter harsh conditions, such as high salinity, extreme pH, absence of sun light,
low temperature and oxygen, high hydrostatic pressure, and low availability of growth nutrients.
The production of secondary metabolites is one of the strategies these organisms use to survive in
such harsh conditions. Fungi growing in such extreme environments produce unique secondary
metabolites for defense and communication, some of which also have clinical significance. Despite
being the producer of many important bioactive molecules, deep-sea fungi have not been explored
thoroughly. Here, we made a brief review of the structure, biological activity, and distribution of
secondary metabolites produced by deep-sea fungi in the last five years.
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1. Deep-Sea Fungi: A Novel Source of Bioactive Molecules

Antibiotics and antifungal drugs are the most commonly used drugs in the world, but their role
in treating human diseases has been greatly reduced due to the development of pathogen resistance
against these drugs. Scientists are now looking for new, untapped and renewable resources for the
isolation of novel compounds to with clinical importance. Despite the fact that the ocean provides
habitats to a huge number of microbes, both fungi and bacteria for thousands of years, the microbes of
these extreme ecosystems and their potential for new drug discovery have not yet been fully realized
due to methodological and technical limitations. Fungi are the most diverse and abundant eukaryotic
organisms on the planet, and their presence in all possible extreme ecosystems make them an ideal
source for investigations of new drug development. Scientists are interested in the extraction of novel
and unique natural products, having clinical importance, from different organisms living in the extreme
environments. In addition to terrestrial extreme environments, the ocean could also be considered a
good reservoir of bioactive metabolites [1–4]. Fungi living in the deep-sea environments are known
to produce novel bioactive compounds. Although, it is not fully understood why the fungi living in
the extreme environments produce unique and novel products, it is assumed that fungal genome has
evolved to make necessary adjustments in order to sustain life in such harsh conditions and might be
involved in chemical defense and communication [5].

The ocean is considered to be one of the most diverse ecosystems. Compared to terrestrial and
coastal ecosystems, the deep-sea (water depths below 1000 m) has a variety of extreme environments,
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such as temperatures ranging from 0 to 400 ◦C, lack of light and oxygen, high hydrostatic pressure
up to 400 atm, and limited supply of nutrient substrates, making these habitats extremely difficult
for life [6,7]. In order to inhabit such extreme ecosystems, organisms should have the potential to
adjust to these conditions with different mechanism, such as regulating temperature, pH, and solute
concentration, as well as the production of biomolecules to control DNA, protein, and lipid damage.
This may be why microorganisms growing in these environments produce special metabolites.

Previously, drug investigators mainly considered bacteria, especially actinomycetes, as an
important source of antifungal and antibacterial drugs. Cephalosporin C was the first compound
derived from the marine fungus Cephalosporium sp. in 1949. After that, a number of important
drugs— for instance, polyketide griseofulvin, terpenoid fusidic acid, cephalosporins, etc.—have been
isolated from the marine fungi. Despite being the source of such important products, deep-sea fungi
have not received full attention [8]. With the increasing demand for new drugs, scientists are now
looking for new and unexplored resources for bioactive compounds, and the deep-sea consists of
some extreme ecosystems that are worth exploring for new metabolites. Studies about isolating new
bioactive molecules from marine environments are growing at an increasing rate, and hundreds of
new compounds are reported every year; for instance, in 2017, a total of 448 new compounds were
reported [9].

In this review, we present an overview of all those new and important bioactive metabolites
isolated from deep-sea fungi during the last five years. We include only those molecules which were
extracted from the deep-sea fungi associated with some kind of extreme environments, irrespective
of its isolation from terrestrial counterparts, while all those compounds were excluded which were
isolated from marine fungi and were not associated with extreme environments. This review will
benefit all those who are interested in extreme-marine-environment fungi and their bioactive molecules.
For more detailed information about other important secondary metabolites extracted from marine
fungi, one should refer to our previous review papers [10–12].

2. Bioactive Compounds from Deep-Sea Fungi

According to the literature survey, we found 151 novel bioactive compounds isolated from marine
fungi extracted from different extreme environments in the last five years. The majority of these
compounds were isolated from two fungal genera i.e., Penicillium (63, 41.2% of the total compounds)
and Aspergillus (43, 28.1% of the total compounds). Table 1 lists the detail of these compounds, which
fall into different categories according to their structure.

2.1. Polyketide Compounds

Twenty-four polyketide compounds (1–24; Figure 1) with important biological activities were
isolated from fungi extracted from different deep-sea environments. Among them, compounds
1 and 2 were isolated from Penicillium spp., which showed antibiotic activity (MIC of 32 µg/mL
against Bacillus subtilis) and nuclear factor NF-kB inhibition activity, respectively [13,14]. Compounds
3–11 were from Aspergillus sp. 16-02-1, which exhibited cytotoxicity (with a 10%–80% inhibition
rate at 100 µg/mL against various cancer cell lines i.e., K562, HL-60, HeLa, and BGC-823) [15].
Similarly, compounds 12–24 were isolated from the species belonging to Ascomycetes, Engyodontium,
and Lindgomycetaceae, out of which compounds 12–13 and 23–24 showed strong antibiotic activities
against Bacillus subtilis, Acinetobacter baumannii, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis,
Staphylococcus epidermidis, and Propionibacterium acnes, while compounds 14–22 exhibited strong
cytotoxic activity (IC50 4.9 µM) against U937 cells (Table 1) [16–18].
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Figure 1. Structures of polyketide secondary metabolites obtained from deep-sea fungi. 
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Figure 1. Structures of polyketide secondary metabolites obtained from deep-sea fungi.

2.2. Nitrogen-Containing Compounds

Twenty-four novel alkaloid-bioactive compounds (25–48; Figure 2) have been reported from
deep-sea fungi since 2013, out of which compounds 25–40 were isolated from Penicillium spp.,
and showed cytotoxic activities against BV2 cell (IC50 of 27–45 µg/mL), brine shrimp (IC50 of 14.1
to 38.5 µg/mL), SMMC-7721 (IC50 of 54.2 µM), BEL-7402 ((IC50 of 17.5 µM), and BEL-7402 (IC50 of
19.8 µM) [19–21]. Compounds 41–46 were identified from Aspergillus spp., in which compounds 41 and
45–46 displayed antibiotic activity (MIC of 30 to 40µg/mL) against BCG, Candida albicans, Bacillus subtilis,
Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, and Escherichia coli,
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while compounds 47 and 48 were extracted from other genera and showed antimicrobial activity
(MIC between 16 and 64 µg/mL against Escherichia coli, Aeromonas hydrophila, Micrococcus luteus,
Staphylococcus aureus, Vibrio anguillarum, Vibrio harveyi, and Vibrio parahaemolyticus) and cytotoxic
activity against human cervical carcinoma HeLa, respectively [22–26].
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2.3. Polypeptides

Twenty-two polypeptides with novel structures (49–70; Figure 3) were reported from fungi
inhabiting different marine environments during 2013–2019. Compounds 49 and 50 were isolated
from Penicillium canescens and displayed antibiotic activity against Bacillus amyloliquefaciens and
Pseudomonas aeruginosa at 100 µM, while compounds 51–55 were extracted from Aspergillus spp.,
in which 51–54 showed cytotoxic activity (IC50 of 15–25 µg/mL) against HepG2, SMMC-7721, Bel-7402,
and human glioma U87 cell lines, while compound 55 showed inhibitory effects (IC50 value of
5.11 µmol/L) against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) [27–30].
However, compounds 56–64, which were obtained from Simplicillium obclavatum, and 65–70, obtained
from Trichoderma asperellum, displayed cytotoxicity (IC50 of 39.4–100 µM) against human leukemia
HL-60 and K562 cell lines and antibiotic activity (IC50 of 39.4–100 µM) against Gram-positive bacteria
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(e.g., Bacillus amyloliquefaciens, Staphylococcus aureus) and Gram-negative bacteria (e.g., Pseudomonas
aeruginosa and Escherichia coli), respectively [28,31].
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2.4. Ester and Phenolic Derivatives

Six new ester derivatives (71–76; Figure 4) were extracted from Aspergillus ungui NKH-007 and
showed inhibition of sterol O-acyltransferase (SOAT) enzymes in Chinese hamster ovary (CHO) cells
and are thus considered to be good candidates for an anti-atherosclerotic agent [32]. Five new
phenolic compounds (77–81; Figure 4) isolated from Penicillium sp. and Aspergillus versicolor
showed potent activity against Staphylococcus aureus and Bacillus subtilis, with MIC values of
2–8 µg/mL [33,34]. However, compounds 78–81 expressed antiviral activity toward HSV-1, with EC50

values of 3.12–6.25 µM [34].Mar. Drugs 2020, 18, 9 7 of 19 
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2.5. Piperazine Derivatives

Fourteen new piperazine derivatives (82–95; Figure 5) reported from marine fungi during the last
five years. These derivatives were isolated from genera of Penicillium, Aspergillus, and Dichotomomyces
collected from deep-sea sediments. Compounds 82–84 showed strong cytotoxicity with IC50 of 1.7
and 2 µM against K562 and mouse lymphoma cell line, respectively; similarly, compounds 91–95 also
showed strong cytotoxic activity [35–37]. Compounds 85–89 showed antibacterial activity against
Staphylococcus aureus with the MIC values of 6.25–12.5 µg/mL [21]. The new compound 90 also showed
stronger inhibition activity against α-glucosidase with IC50 value of 138 µM [37].
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2.6. Terpenoid Compounds

Thirty-six new and important bioactive terpenoids (96–131; Figure 6) have been isolated from
marine fungi extracted from the deep-sea sediments since 2013. Compounds 96–113 were isolated
from Penicillium spp., while compounds 114–131 were extracted from Aspergillus spp. Breviones
(96–99), isolated from the deepest sediment-derived fungus Penicillium sp. (5115 m depth), displayed
diverse activities, such as cytotoxicity against HeLa, MCF-7, and A549 cells with IC50 values of
7.44 to 32.5 µM, respectively, and growth inhibition of HIV-1 with EC50 value of 14.7 µM against
C8166 cells [22,38]. Compounds 100–110 showed antibiotic and inhibition activities against silkworm,
while 20-nor-isopimarane diterpenoids, including aspewentins (114–118), asperethers (121–125),
asperoloids (119–120), and compounds 130 and 131, showed cytotoxic activities [33,39–45]. However,
the spirocyclic diterpenes (111–113) exhibited strong anti-allergic effect with 18% inhibition at
20 µg/mL [46]. Interestingly, four new compounds (126–129) were extracted from hydrothermal
vent-derived Aspergillus sydowii, through activation of a new pathway for secondary metabolite
production by the addition of a 5-azacytidine (a DNA methyltransferase inhibitor). These compounds
showed anti-inflammatory and antidiabetic activities and are thus the first secondary metabolites
isolated from fungi which have both antidiabetic and anti-inflammatory activities [47].
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2.7. Other Unrelated Compounds

Twenty secondary metabolites with different structures were isolated from deep-sea fungi,
mainly from Penicillium spp. and Aspergillus spp. (132–151; Figure 7). Penipacids A–F (134–139),
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polyoxygenated sterol (132), dicitrinone B (133) and butanolide A (140), which were isolated from
deep-sea sediments-derived Penicillium spp., showed cytotoxic activities against RKO, MCF-7, PTP1B
and A375 cancer cell lines with IC50 values of 8.4–28.4 µM [38,42,48,49]. Similarly, four isocoumarins,
penicillisocoumarin A–D (147–150), and an isocoumarins aspergillumarin B (151) were also isolated
from Penicillium which showed weak antibacterial activities [33]. Four antibiotic cyclopenin
derivatives compounds (141–144) and a series of antitumor wentilactones (145,146) were isolated from
Aspergillus spp. [50,51].
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Table 1. Secondary metabolites extracted from deep-sea fungi during 2013–2019.

Metabolites Fungal Species Source Location Depth (m) * Bioactivity Ref.

Polyketide

Methyl-isoverrucosidinol (1) Penicillium sp. Y-50-10 Sulfur-rich Sediment hydrothermal vent, Taiwan _ Antibiotic [13]

Penilactone A (2) Penicillium crustosum PRB-2 Sediment Prydz Bay, Antarctica 526 NF-kB inhibition [14]

Aspiketolactonol (3)
Aspilactonols A–F (4-9)
Aspyronol (10)
Epiaspinonediol (11)

Aspergillus sp. 16-02-1 Hydrothermal vent water Lau Basin, Southwest Pacific Ocean, 2255 Cytotoxic [15]

Ascomycotin A (12)
Diorcinol (13) Ascomycota sp. Ind19F07 Sediment Indian Ocean 3614 Antibiotic [16]

Engyodontiumones A–J (14-22) Engyodontium album DFFSCS021 Sediment South China Sea 3739 Cytotoxic [18]

Lindgomycin (23)
Ascosetin (24) Lindgomycetaceae strains KF970 and LF327 Sediment Greenland Sea, Baltic Sea 3650 Antibiotic [17]

Nitrogen-containing compounds

Brevicompanines D–H (25-29) Penicillium sp. F1 Sediment _ 5080 LPS-induced
inflammation [22]

Cyclopiamide B–J (30-38) Penicillium commune DFFSCS026 Sediment South China Sea 3563 Cytotoxic [24]

Penipanoid A (39)
Quinazolinone (40) Penicillium paneum SD-44 Sediment South China Sea 201 Cytotoxic [23]

(±) Brevianamide R (41) Aspergillus
versicolor MF180151 Sediment Bohai Sea, China _ Antibacterial [21]

Circumdatin F and G (42-43) Aspergillus westerdijkiae SCSIO 05233 Sediment South China Sea 4593 Cytotoxic [20]

Oximoaspergillimide (44)
Neohydroxyaspergillic (45)
Neoaspergillic (46)

Aspergillus sp. (CF07002) Water Pacific Ocean off the coast of Panama Cytotoxic
Antibiotic [19]

Varioxepine A (47) Paecilomyces variotii EN-291 Deep sea water _ _ Antibiotic [26]

Neoechinulin A (48) Microsporum sp. (MFS-YL) Red alga Guryongpo, Korea _ Cytotoxic [25]

Polypeptide

Canescenin A and B (49-50) Penicillium canescens SCSIO z053 Water East China Sea 2013 Antibacterial [27]

Clavatustide A and B (51-52) Aspergillus clavatus C2WU Hydrothermal vent crab Taiwan Kueishantao _ Cytotoxic [29]

Aspergillamides C and D (53-54)
Butyrolactone I (55) Aspergillus terreus SCSIO 41008 Sponge Guangdong, China _ Cytotoxic

Antibiotic [30]

Simplicilliumtides A–I (56-64) Simplicillium obclavatum EIODSF 020 Sediment East Indian Ocean 4571 Cytotoxic [31]

Asperelines A–F (65-70) Trichoderma asperellum Sediment Antarctic Penguin Island _ Antibiotic [28]
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Table 1. Cont.

Metabolites Fungal Species Source Location Depth (m) * Bioactivity Ref.

Esters

7-chlorofolipastatin (71)
Folipostatin B (72)
Unguinol (73)
2-chlorounginol (74)
2,7-dichlorounguinol (75)
Nornidulin (76)

Aspergillus ungui NKH-007 Sediment Suruga Bay, Japan _
Anti-atherosclerotic
Cytotoxic
Antibiotic

[32]

Phenolic

Pestalotionol (77) Penicillium sp. Y-5-2 Hydrothermal vent water Kueishantao off Taiwan _ Antibiotic [33]

Aspergilol G–I (78-80)
Coccoquinone A (81) Aspergillus versicolor SCSIO 41502 Sediment South China Sea 2326

Anti-HSV-1
Antioxidant
Antifouling

[34]

Piperazine

Fusaperazine F (82) Penicillium crustosum HDN153086 Sediment Prydz Bay, Antarctica _ Cytotoxic [35]

N-methyl-pretrichodermamide B (83)
Pretrichodermamide C (84) Penicillium sp. (WN-11-1-3-1-2) Hypersaline sediment Wadi El-Natrun, Egypt _ Cytotoxic [36]

(±) 7,8-epoxy-brevianamide Q (85)
(±) 8-hydroxy-brevianamide R (86)
(±) 8-epihydroxy-brevianamide R (87)
Brevianamide R (88)
Versicolorin B (89)

Aspergillus versicolor MF180151 Sediment Bohai Sea, China _ Antibiotic [21]

Dichotocejpins A (90)
6-deoxy-5a,6-didehydrogliotoxin (91)
Gliotoxin (92)
Acetylgliotoxin (93)
6-acetylbis(methylthio)-gliotoxin (94)
1,2,3,4-tetrahydro-2-methyl-3-methylene-
1,4-dioxopyrazino [1,2-a] indole (95)

Dichotomomyces cejpii FS110 Sediment South China Sea 3941
α-Glucosidase
inhibition
Cytotoxic

[37]

Terpenoid

Brevione F–I (96-99) Penicillium sp. (MCCC 3A00005) Sediment Pacific Ocean 5115 Cytotoxic
HIV-1 inhibition [22,38]

Dehydroaustin (100)
Dehydroaustinol (101)
7-hydroxydehydroaustin (102)
Austinone (103)
Austinol (104)
Austin (105)
Austinolide (106)

Penicillium sp. Y-5-2 Hydrothermal vent water Kueishantao off Taiwan 8 Antibacterial
Anti-insectal [33]
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Table 1. Cont.

Metabolites Fungal Species Source Location Depth (m) * Bioactivity Ref.

1-chloro-3β-acetoxy-7-
hydroxytrinoreremophil-1,6,9-trien-
8-one (107)
Eremophilane-type sesquiterpenes (108)
Eremofortine C (109)

Penicillium sp. PR19N-1 Sediment Prydz Bay, Antarctica 526 Cytotoxic [40,41]

Guignarderemophilane F (110) Penicillium sp. S-1-18 Sediment Antarctic 1393 Antibacterial [42]

Spirograterpene A (111)
Conidiogenone C and I (112-113) Penicillium granulatum MCCC 3A00475 Water Prydz Bay of Antarctica 2284 Antiallergic [46]

Aspewentin A and D–H (114-118)
Asperethers A–E (121-125)
Asperolides D and E (119-120)

Aspergillus wentii SD-310 Sediment South China Sea 2038
Antimicrobial
Cytotoxic
Anti-inflammatory

[39,43,44]

(7S)-(+)7-O-methylsydonol (126)
(7S,11S)-(+)-12-hydroxysydonic acid (127)
7-deoxy-7,14-didehydrosydonol (128)
(S)-(+)-sydonol (129)

Aspergillus sydowii Sediment Hsinchu, Taiwan _ Anti-inflammatory [47]

6b,9a-dihydroxy-14-p-
nitrobenzoylcinnamolide (130)
Insulicolide A (131)

Aspergillus ochraceus Jcma1F17 Marine alga Coelarthrum sp. South China Sea _ Antiviral
Cytotoxic [45]

Other compounds

Sterolic acid (132) Penicillium sp. MCCC 3A00005 Sediment East Pacific Ocean 5115 Cytotoxic [38]

Dicitrinone B (133) Penicillium citrinum Sediment Langqi Island, Fujian, China _ Antitumor [49]

Penipacids A–F (134-139) Penicillium paneum SD-44 Sediment South China Sea _ Cytotoxic [48]

Butanolide A (140) Penicillium sp. S-1-18 Sediment Antarctic seabed 1393 Cytotoxic [42]

7-Methoxycyclopeptin (141)
7-Methoxy dehydro cyclopeptin (142)
7-Methoxy cyclopenin (143)
9-Hydroxy-3-methoxyviridicatin (144)

Aspergillus versicolor XZ-4 Hydrothermal vent crab Kueishantao, Taiwan Antibiotic [50]

Wentilactone A and B (145-146) Aspergillus dimorphicus SD317 Sediment South China Sea 2038 Antitumor [51]

Penicillisocoumarin A–D (147-150)
Aspergillumarins B (151) Penicillium sp. Y-5-2 Hydrothermal vent water Kueishantao off Taiwan 8 Antibacterial [33]

* Depth represents water depth below the surface.
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3. Conclusions and Perspective

The results of current studies indicate that the deep-sea extreme environmental fungi are one
of the rich and unexploited sources of important medicinal lead compounds. Most of the fungi
(e.g., Penicillium spp. and Aspergillus spp.) living in the extreme environments of the deep-sea have
the potential to synthesize new bioactive compounds. However, the research on deep-sea fungi
and their metabolites is very limited due to the difficulty of sampling and the limitation of culture
technology. Thanks to the advances in genome technology and the implementation of the deep-sea
drilling program, novel compounds with great biological activities are expected from these fungi in the
near future. From the literature review, we can say these fungi from the extreme environments have
the potential to produce clinically important natural products. The compounds we discussed in this
review show strong bioactivities and might have the potential to be a future anticancer drug. Among
them, terpenoid derivatives were the most important and abundant compound category which were
mainly isolated from deep-sea derived Penicillium spp. and Aspergillus spp. This class of compounds
showed strongest antibiotic and cytotoxic activities as compared to other classes of compounds and
has the potential to be a future candidate for anticancer drugs, especially brevione, which was isolated
from the deepest part of the sea and showed the strongest cytotoxic activity.
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