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To study the activation of macrophage and upregulation of costimulatory molecule of CD40 in lipopolysaccharide- (LPS-) induced
acute lung injury (ALI) model, and to investigate the pathogenecy of ALI, mice were randomly divided into two groups. ALI model
was created by injecting 0.2 mg/kg LPS in phosphate saline (PBS) in trachea. The pathologic changes of mice lungs were observed
by HE staining at 24 and 48 hours after LPS treatment, then the alveolar septum damage, abnormal contraction, alveolar space
hyperemia, and neutrophils or other inflammatory cells infiltration in the LPS group, but not in the control group, were observed.
The expression of CD40 mRNA and CD40 protein molecules were higher in LPS group as compared to the control group by
Northern blot and flow cytometry, respectively. Expression of Toll-like receptor-4 (TLR4) in activated macrophage (AMΦ) was
higher in LPS group as compared to the control group by RT-PCR. The activation of NF-κB binding to NF-κB consensus oligos
increased in LPS group by EMSA in macrophage. The concentrations of TNF-α, MIP-2, and IL-1β cytokines from bronchoalveolar
lavage fluid (BALF) were increased significantly in LPS group as compared to the control group by ELISA. The activation of AM and
upregulation of costimulatory molecule CD40 induced all kinds of inflammatory cytokines releasing, then led to ALI. Therefore,
both of them played vital role in the process of development of ALI.

Copyright © 2008 Liang Dong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

It is well known that almost all of respiratory diseases entail
acute lung injury (ALI); it is the end result of common
pathways initiated by a variety of local or systemic insults
leading to diffuse damage of the pulmonary parenchyma.
Despite the accumulation of abundantinformation regarding
the physiological and cellular basis of lung injury and
increasing sophisticated intensive care, an improvement in
prognosis has lagged behind. Therefore, the fatality rate
of ALI is higher and still remains as the major cause of
mortality in intensive care units (ICUs) [1]. It has become
clear that there is not one mediator responsible for ALI,
but rather a complex interplay including some inflammatory
mediators. Lipopolysaccharide (LPS) is a glycolipid that
constitutes the major portion of outmost membrane of
gram-negative bacteria, and it is capable of inducing severe
lung injury in Gram-negative bacteria sepsis and pneumonia,

which are among the most common predisposing causes
of ALI [2]. The interaction of the lipid A moiety of LPS
with macrophages, especially activated alveolar macrophages
(AMΦ) in the lung, appears to be especially important
because subsequent cellular activation results in the release
of inflammatory mediators and phenotypic changes [3, 4].
As inflammatory mediators, AMΦ could release systemically
active proinflammatory cytokines and chemokines, includ-
ing tumor-necrosis factor-α (TNF-α), Interleukin-1β (IL-
1β), and macrophage inflammatory protein-2 (MIP-2) [5].

CD40, a costimulatory molecule for antigen presen-
tation, is expressed by a wide variety of cells including
macrophages. Aberrant expression of CD40 is associated
with autoimmune inflammatory diseases. Interaction of
Toll-like receptor-4 (TLR4) with the Gram-negative bacteria
endotoxin LPS results in the induction of an array of
immune response genes [6, 7]. As numerous recent studies
have demonstrated, the CD40 ligation on APC is associated
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with the augmentation of inflammation as follow: secretion
of cytokines TNF-α, IL-1β, and MIP-2. A great number
of studies indicate that the CD40L on APC is related to
inflammatory amplification. The interaction of CD40-CDL
in the lung is a critical step to mediate the inflammation
[8]. In fact, the mechanism of the activation of macrophage
and upregulation of CD40 costimulatory molecule in ALI
is undetermined. Because the natural history of many of
these diseases is unknown, animal model studies have been
undertaken to fill in the gaps and to provide important clues
to their roles in ALI.

In this study, we describe that LPS is a strong inducer of
CD40 expression in macrophages in ALI mice model, which
occurs at the transcriptional level and involves the activation
of the transcription factors nuclear factor-κB (NF-κB). LPS-
induced CD40 expression involves a lot of cytokines such as
TNF-α, IL-1β, and MIP-2.

2. MATERIALS AND METHODS

Reagents were obtained as follows: E.coil LPS was purchased
from Sigma-Aldrich (St. Louis, Mo, USA). Enzyme-linked
immunosorbent assay (ELISA) development kits for mouse
TNF-α, IL-1β, and MIP-2 were obtained from Genzyme
Techne Corporation (Minneapolis, Minn, USA). Anti-mouse
TNF-α, MIP-2, and IL-1β signal clone antibiotics were
from Sigma-Aldrich. Total cellular RNA extraction and
purification kits were purchased from Roche Corporation
(Basel, Switzerland). RT-PCR kits were obtained from Pro-
mage Corporation (Madison, Wis, USA). Rat anti-mouse
PE-conjugated CD40 antibody (clone 3/23) and rat-PE IgG
isotype control were from PtarMigen (San Diego, Calif,
USA). Antibodies against CD40 and actin were from Santa
Cruz Biotechnology (Santa Cruz, Calif, USA).

2.1. Induction of animal model

180 BALB/c wild-type (WT) mice (6-to-8 week old) from
Shandong University animal experiment center (Shandong,
China) were divided two groups named as LPS group (B
group) and control group (A group), respectively. Mice were
anesthetized with pentobarbital sodium followed by inject-
ing 0.2 mg/kg LPS in phosphate saline (PBS) intratrachealy
for group B and PBS alone for group A [9].

2.2. Collection and measurement of specimens

After mice were executed, a total of 2.5 mL brochoalveolar
lavage fluid (BALF) was collected [10]. The trachea was
cannulated, and the lungs were lavaged six times with PBS
(0.5 mL each time). Total cell numbers were counted with a
standard hemocytometer. After centrifugation, supernatants
were stored −80◦C for cytokine measure by ELISA, and cell
pellets were used to prepare cytospins.

2.3. Cell culture

A smear of BAL cells was prepared with cytocentrifugation
using acytospin 2 at 1000 rpm for 5 minutes and then stained

with Giesma solution [11]. Cell differentiation was exam-
ined by counting at least 200 cells using hemocytologic
criteria to classify the cells as neutrophils, eosinophils,
lymphocytes, or macrophages. By morphologic estimation
with Gimesa staining, it was confirmed that polled cells
from each group consisted of >98% AMΦ for separate
experiments. Cells were resuspended in RPMI-1640 medium
supplemented with 2 mM L-glutamine, 100 U/mL penicillin,
100 μg/lstreptomycin, 0.25 μg/L amphotericcin B, and 10%
fetal calf serum, which was used as a complete medium.
After allowing the cells to adhere to plates for 3 hours,
nonadjacent cells were removed with three washes. The
remaining adhesive cells were used as AMΦ. Macrophages
were about 1× 105/mL in inverted microscope.

2.4. RNA analysis by RT-PCR

Total cellular RNA was extracted according to manufacture’s
instruction. TLR4 primers were designed by Gene Toll
(616 bp) forward 5′TCCCACCACC GATTCACA3′, reverse
5′CAACC2CTTTCATTTCACA3′. PCR reaction conditions
were as follow: 94◦C denature 2 minutes, then 94◦C dena-
ture 30 seconds, 58◦C anneal 60 seconds, 68◦C extend 2
minutes, after 40 cycles, 68◦C extend 10 minutes. β-actin
(200 bp) (5′TGGGTCAGAAGGACTCCTATGTG3′, reverse
5′CGTCCCAGTTGGTAACAATGC) was used as internal
control for quantification by densitometry.

2.5. ELISA assay for TNF-α, MIP-2, and IL-1β

BALFs were collected as before, anti-mouse TNF-α, MIP-2,
and IL-1β and polyclonal horseradish peroxidase-conjugated
IgG were sequentially added as primary and secondary
antibodies, respectively. The color was developed with
o-phenylenediamine substrates, and read with universal
microplate reader.

2.6. EMSA for NF-κB

Nuclear and cytoplasmic extracts were obtained from cells
from two groups. Protein level was determined in all
extracts using the Bio-Rad dye reagent assay (Hercules,
Calif, USA). An equal amount (5 μg) of nuclear protein
from each sample and NF-κB consensus oligonucleotide
(5′-AGTTGAGGGGACTTTCCCAGGC-3′ (Promega) was
used for EMSA following the manufacture’s instructions as
previously described [12].

2.7. Northern blot and immunofluorescence flow
cytometry for CD40 mRNA and protein

Total cellular RNA was isolated at 24 and 48 hours after from
two groups. Mouse CD40 and GAPAH probe were prepared
as described previously [13, 14]. 20 μg of total RNA was
hybridized with probes at 42◦C overnight. The hybridized
mixture was treated with RNaseA/T1 (1 : 2000) and analyzed
by 5% denaturing polyacrylamide gel electrophoresis. Values
for CD40 mRNA levels were normalized to GAPDH mRNA
level for each experiment condition.
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Figure 1: Histopathological examination. Three pictures of pathological sections showing (a) pathological appearance from control group,
(b) pathological appearance from LPS group at 24 hours, and (c) pathological appearance from LPS group at 48 hours (HE∗300).

Cells were plated at 2 × 105 cells/well into 12 well plates
after 48 hours, and then incubated with 100 μL of 2.4G2
hybridoma supernatant (which contains rat-anti-mouse Fc
r R Ab) for blocking Fc r R. Cells were then incubated
with 10 μg/mL PE-conjugated anti-mouse CD40 Ab, and
analyzed on the FACStar (Becton Dickinson, Mountain View,
Calif, USA) [15]. Nagative controls were incubated with
IgG isotype-matched antibody. Fold induction of CD40
expression was calculated by dividing the value of mean
fluorescence intensity (MFI) of regents treated samples by
value of untreated samples.

2.8. Statistical analysis

Data were presented as means ±SD. Continuous variables
were tested by analysis of t-test. The P-values are two-tailed
and a P-value of less than .05 was considered statistically
significant.

3. RESULTS

3.1. Pathologic changes of lung tissue

Compared with mice in control group, the lung tissue from
LPS-treated mice demonstrated interalveolar septum col-
lapse, abnormal constraction, alveolar space and interstitial
congestion, and neutrophilic granulocyte infiltration (Figure
1).

3.2. TLR4 expresses in macrophages

The gene expression level of TLR4 in AMΦ detected by RT-
PCR is higher in LPS group as compared to the controls
(Figure 2).

3.3. LPS induces NF-κB binding to the NF-κB
consensus oligos

To investigate the role of LPS in regulation of transcription
factor activity, NF-κB activity of macrophage in control and
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Figure 2: mRNA expression of TLR4 in AMΦ by RT-PCR. A repre-
sentative agarose gel electrophoresis showing PCR amplification of
TLR4 and β-actin from cultured AMΦ with control group and LPS
group (at 24, 48 hours).

LPS groups were compared. LPS stimulation led to increased
NF-κB binding to NF-κB consensus oligos as demonstrated
by EMSA (Figure 3).

3.4. The expression levels of CD40 mRNA and protein

The expression level of CD40 mRNA was determined by
Northern blot as shown in Figure 4(a). LPS-induced CD40
mRNA expression increased in both 24 and 48 hours LPS
group as compared to the control group. The expression level
of CD40 protein determined by immunofluorescence flow
cytometry increased after 48 hours in LPS group as compared
to the control group (Figure 4(b)).

3.5. The expression levels of TNF-α, MIP-2, and IL-1β in
LPS-induced model

The inflammatory cytokine levels in BALF determined by
ELISA demonstrated an increased expression of TNF-α,
MIP-2, and IL-1β in LPS group as compared to the control
group (Table 1, Figure 5).



4 Journal of Biomedicine and Biotechnology

Table 1: Concentration of TNF-α, MIP-2, and IL-1β cytokines from BALF (x ± s).

Group n TNF-α (pg/mL) IL-1β (pg/mL) MIP-2 (pg/mL)

Control group 10 61.02± 10.7 10.7± 2.7 84.5± 15.8

LPS group 10 115.0± 29.6∗ 302.1± 17.3∗ 524.9± 99.1∗

(∗P < .05, compared with the control group).
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Figure 3: Activation of NF-κB by EMSA. NF-κB activity of
macrophage in control and LPS groups (at 24, 48 hours).

4. DISCUSSION

In this study, we demonstrated that the levels of inflam-
matory cytokines TNF-α, MIP-2, and IL-1β increased sig-
nificantly in BALF in LPS-induced ALI mice model. Such
cytokines have been studied more clearly than others in ALI,
which have played critical role in inflammation development
process. MIP-2, a functional analog of human IL-8, is an
important mediator in the recruitment of neutrophils, and
TNF-α acts locally to stimulate chemotaxis and activate
neutrophils. These cytokines might result in the injury of the
lung and eventually the development of ALI to some extent
[16].

LPS can induce increased gene expressions in AMΦ, such
as TLR4, CD40, TNF-α, MIP-2, and IL-1β, and activate some
signal transduction pathways such as TLR4-mediated NF-
κB activation, and CD40-CD40L interaction. These changes
will result subsequently in releasing of large amount of
inflammatory cytokines [17]. AMΦ was the first cell type
in the primary immunity to kill bacterium after infection
[18]. They are also the target cells to LPS. Organisms
can release a large number of inflammatory and anti-
inflammatory cytokines in endotoxemia [19]. TLR4 is a kind
of transmembrane receptor on LPS target cell in immunity
system [20]. It mediates the signal of LPS from outside
to inside cell. From our experiments, we observed that
TLR4 mRNA and TNF-α enhanced significantly in AMΦ
of LPS-induced ALI. TLR4 is then regarded as the specific
recognition receptor in the process of development ALI. The
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Figure 4: mRNA and protein expression of CD40 in AMΦ by RT-
PCR and flow cytometry, respectively, (a) a representative agarose
gel electrophoresis showing PCR amplification of CD40 and β-actin
from cultured AMΦ with control group and LPS group (at 24, 48
hours), (b) protein expression of CD40 in AMΦ with control group
and LPS group.

lung tissue was probably injured through increased secretion
of TLR4 and strengthening its signal pathway. Therefore,
TLR4 plays a vital role in a series of signals activation.
LPS-TLR4 compound is able to activate many kinds of
signals activation [21]: TLR4-induced NF-κB activation
promotes the CD40-CD40L pathway as well as the CD40 self-
activation, thus it causes the massive inflammation factors
release and expanded inflammation response.

Previous reports demonstrated that the LPS-TLR4 inter-
action activated NF-κB directly. Subsequently, they all bind
to the promoter of CD40, finally activated the CD40-CD40L
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Figure 5: Concentration of TNF-α, MIP-2, and IL-1β cytokines from BALF: (a) concentration of TNF-α, (b) concentration of MIP-2, (c)
concentration of IL-1β.

interaction pathway and the CD40 self-activation, led to the
release of inflammation factors and the anti-inflammation
factors, which activated the acquired immunity. Therefore,
the CD40 activation played a vital role in the process
of development of ALI. In our study, we demonstrated
that CD40 mRNA and the protein level increased in the
macrophage in LPS group.

Large body of literatures demonstrated the expression
of CD40L in the T lymphocytes and mast cells. Activation
of CD40-CD40L pathway may promote the massive inflam-
mation factors release, and the CD40-CD40L activation
also indicates that T-cell dependence immunity already
started [22, 23], which subsequently upregulated the other
costimulatory molecules and the cell adhesion molecules to
promote the massive preinflammation cell factor production
and release, as well as inflammation cell differentiation.
Our data demonstrated high concentrations of TNF-α,
MIP-2, and IL-1β cell factors in BALF from LIP group,
indicating that the CD40-CD40L pathway can enhance the
inflammation response and gather massive inflammation
cells, finally induces and aggravates the inflammation extent
of lung injury.

5. CONCLUSIONS

Our data demonstrated that LPS-induced CD40 gene tran-
scription, activated NF-κB transcription factors, increased
their affinity and finally bound to the promoter of CD40,
which led to the high expression of CD40 in the acute
lung injury. Studying the mechanism of LPS-induced, TLR4-
mediated in vitro CD40 transcription allowed us to provide
the experimental evidences of the important role of CD40
in the development of LPS-induced ALI. We thus predict
that blocking the expression of TLR4 or the inhibition of
expression of CD40 through interruption of its transcription
regulation complexes will be attractive targets to the treat-
ment of LPS-induced ALI.
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