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gastric cancer by a weighted improved random forest 
model: an application of machine learning in medicine
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A b s t r a c t

Introduction: It is essential to predict the survival status of patients based 
on their prognosis. This can assist physicians in evaluating treatment deci-
sions. Random forest is an excellent machine learning algorithm even with-
out any modification. We propose a new random forest weighting method 
and apply it to the gastric cancer patient data from the Surveillance, Epide-
miology, and End Results (SEER) program. We evaluated the generalization 
ability of this weighted random forest algorithm on 10 public medical data-
sets. Furthermore, for the same weighting mode, the difference between 
using out-of-bag (OOB) data and all training sets as the weighting basis is 
explored.
Material and methods: 110 697 cases of gastric cancer patients diagnosed 
between 1975 and 2016 obtained from the SEER database were included in 
the experiment. In addition, 10 public medical datasets were used for the 
generalization ability evaluation of this weighted random forest algorithm.
Results: Through experimental verification, on the SEER gastric cancer pa-
tient data, the weighted random forest algorithm improves the accuracy by 
0.79% compared with the original random forest. In AUC, macro-averaging 
increased by 2.32% and micro-averaging increased by 0.51% on average. 
Among the 10 public datasets, the random forest weighted in accuracy has 
the best performance on 6 datasets, with an average increase of 1.44% in 
accuracy and an average increase of 1.2% in AUC.
Conclusions: Compared with the original random forest, the weighted ran-
dom forest model shows a significant improvement in performance, and the 
effect of using all training data as the weighting basis is better than using 
OOB data.

Key words: random forest, machine learning, SEER, gastric cancer, survival 
time, prognosis, algorithm improvement.

Introduction

Compared with traditional statistical methods, a  machine learning 
algorithm can be designed for the purpose of computing an assigned 
value of each sample. It is also able to analyze more individuals than 
the experience of a single doctor. So in cases where it has excellent per-
formance, it can give doctors an alternative approach. Nowadays, it has 
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achieved remarkable results in the medical field 
using cutting-edge computer technology such as 
machine learning and artificial intelligence, for 
example, the use of artificial intelligence image 
recognition technology to accurately diagnose 
patients with COVID-19 pneumonia through com-
puted tomography [1], use of data mining technol-
ogy to analyze and predict survival status through 
prognostic data of gastric cancer patients [2, 3], 
and application of artificial intelligence in clini-
cal cancer imaging diagnosis [4]. All these appli-
cations are based on excellent algorithm models 
and effective data.

As a class of excellent machine learning algo-
rithms, ensemble learning is based on combining 
the prediction results of several base models to 
improve the generalization ability and accuracy 
over a  single model. According to Shahhosseini  
et al. [5], there is evidence that a onefold model 
can be outperformed by an ensemble of models 
with reduced bias, variance or both. Because an 
individual model cannot fully learn the character-
istics of the data to achieve the best prediction, 
and the principles between the various models are 
not all the same, so the learning efficiency when 
learning the training set and the generalization 
ability on the verification set are not the same. 
This is where integrating multiple models can sig-
nificantly improve prediction accuracy.

The three most popular methods for ensemble 
learning are summarized by as follows [6]:
•	 Bagging or averaging aimed at building multiple 

models (typically of the same type) from differ-
ent subsamples belong to the training dataset. 
The method’s basic principle is to build several 
independent estimators (bagging methods [7] 
and random forests [8]) and then to take their 
average predictions;

•	 Boosting: building multiple sequenced mod-
els (also typically of the same type), and each 
model learns to amend prediction errors in the 
preceding model (e.g., AdaBoost [9] and gra-
dient tree boosting [10]). To reduce the bias 
of the combined estimator, it built sequential 
base estimators and add tries to the last one 
in each step;

•	 Voting (also called stacking) is aimed at build-
ing multiple models (typically of different 
types). It uses simple statistics (such as calcu-
lating the mean) to combine predictions [7]. 
Based on the collected output which is calcu-
lated from the training data, it is possible to 
predict the response value with another learn-
ing algorithm [11].
Each model fusion method of ensemble learn-

ing has unique characteristics. Bagging does not 
function well with simple machine learning mod-
els because it tends to reduce variance [6]. Boost-

ing reduces bias by sequentially grouped weak 
learners. However, it is sensitive to noisy data and 
abnormal value and leads to overfitting [5]. Corre-
sponding to this, voting fixes the errors that base 
learners make by fitting one or more meta-models 
on the predictions made by base learners [4, 11].

In this article, we focus on the random forest 
(RF), the most representative algorithm in the 
bagging ensemble learning algorithm. In order to 
obtain better prediction results, a  large number 
of studies have demonstrated that improving the 
original model can get better results. The most 
common of these are the following two types of 
improvement methods:
•	 Pruning of individual trees in the forest [12, 13];
•	 Weighing individual trees [14–18].

The major contributions of this work are to 
introduce a  weighting improvement method for 
RF. Different from the previous use of out-of-bag 
(OOB) data to weight the random forest, we pro-
pose a more concise and more direct way to eval-
uate the decision trees in the forest [16, 17], and 
use the weights captured from the evaluation as-
signed as the weight of the decision tree by class. 
Finally we realize tree-level weighted random for-
est (TLWRF) algorithm improvements, and apply 
the model to the gastric cancer patient data from 
the SEER database.

The weighted improvement of the random for-
est is not a  very innovative work. Since the day 
when the random forest algorithm was released 
from the author, improvement work has been on-
going. Whether it is pruning branches or improving 
weighting, their starting point is the shortcomings 
of the excellent algorithm of the random forest. 
In the process of improvement, a  large number 
of excellent papers were born. We compiled and 
summarized the papers on random forest weight-
ing improvement, and produced Table I [14, 16, 
17, 19–23].

Winham et al. [14] proposed a method of weight-
ed RF, an extension of RF motivated by the poor 
performance of RF to detect interactions in high-di-
mensional genetic data. This method mainly uses 
out-of-bag (OOB) data to detect the performance 
of the decision tree and use it as a weight, such 
as AUC, accuracy, etc. In addition to using OOB to 
evaluate the model, they also introduced a weight-
ed version of the mean decrease in accuracy (MDA) 
variable importance. Their studies demonstrated 
that the performance of their weighted RF model 
is at least as good as RF with equal tree weights, 
and in some situations the predictive capability is 
slightly improved. Byeon et al. [16] used OOB sam-
ples for deriving Akaike weights while averaging 
the tree results and used this weighted random 
forest to explore factors associated with Voucher 
Program for Speech Language Therapy for the pre-
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schoolers of parents with communication disorder. 
Xuan et al. [17] introduced refined weighted ran-
dom forests (RWRF) and tree weighting random 
forests (TWRF) to credit card fraud detection, and 
compared the performance between RF, TWRF and 
RWRF models. They strove to solve the problem 
that the OOB data used to evaluate each decision 
tree are not the same, which may cause the de-
tection performance of the two decision trees to 
be the same but their real performance to differ. 
Moreover, they used the margin between prob-
ability of predicting the true class and false class 
label, which measures the expectation of the gap 
between votes for the right class and other classes. 
The shortcoming of this study is that it only con-
siders the binary classification problem, and does 
not study the multi-classification problem. In the 
field of image classification, Jain et al. [19] pro-
posed a dynamic weighing scheme between test 
samples and the decision tree in RF. The correla-
tion is defined in terms of the similarity between 
the test data and the decision tree using the expo-
nential distribution. Hence, the proposed method 
is named as the exponentially weighted random 
forest (EWRF). The core of EWRF is to calculate the 
similarity between the sample and the test data, 
and the distance is calculated based on the length 
of the path taken by the test data in each deci-
sion tree. Shahhosseini and Hu proposed a stack-
ing-based RF model [20]. This model is based on 
the use of OOB data, and this model was compared 
with AUC and accuracy weighted RF, which is also 
measured by OOB data. The results showed that 

stacking-based RF models are better than the orig-
inal RF model and the RF model weighted by pure 
OOB data on most datasets (19/25) from the UCI 
machine learning repository. Pham and Olafsson 
[21], inspired by the potential instability of averag-
ing predictions of trees that may be of highly vari-
able quality, proposed a potential improvement of 
the RF that can be thought of as applying a weight 
to each tree before averaging; they replace the 
regular average with a  Cesáro average. Judging 
from the performance of 10 public datasets, the 
Cesáro random forest appears to be competitive 
with the original RF. But the Cesáro random forest 
has two obvious limitations, one of which is that it 
is sensitive to the order of decision trees. Another 
limitation is that the probability estimation will be 
lost after this improvement; the authors think that 
the trade-off between prediction accuracy and in-
formation gained may be worthwhile in some cas-
es. In addition, this study also confirms that the 
number of decision trees that construct RF is an 
important parameter. Kulkarni et al. [22] compared 
the split measures used for decision tree genera-
tion (information gain, information gain ratio, Gini 
index, c2, relief family). A theoretical study of dif-
ferent split measures was made which concluded 
that each split measure has its own pros and cons, 
and no split measure is the best. Then they pro-
posed a new approach of weighted hybrid decision 
tree model for the random forest classifier. They 
used OOB data to evaluate each decision tree, 
and assigned 3 as the weight to the tree whose 
OOB data error rate is lower than the average OOB 

Table I. Weighting methods for ensemble classifiers in the literature

Work Method applied Conclusion

[14] Tree-level weights in random 
forest

This method cannot significantly improve the predictive ability of high-
dimensional genetic data, but it can improve performance in other fields

[16] Variable importance-
weighted random forest

Improved accuracy compared to the original random forest

[17] Refined weighted random 
forest

All data (in-bag data and out-of-bag data) were used for training,  
and more accurate than the original random forest

[19] Exponentially weighted 
random forest

Calculate the similarity between each test example and the decision tree 
from the random forest to use as a weight. The results show that it is 

better than all random forests on most data sets

[20] Stacking-based random 
forest models

Four weighted improvement methods are proposed, they are based on 
k-fold cross-validation, AUC value of a single tree, OOB data measurement 

accuracy, and stacking-based random forest models

[21] Cesáro averages for 
weighted trees

On the decision tree, replace the regular average with a Cesáro average. 
There is an improvement between 0.2% and 0.5% on the data set listed 

by the author

[22] Weight assignment based on 
error rate of OOB data

In this approach, the authors assign the weight of each tree according  
to the relationship between the error rate of OOB data of each tree and 

the average OOB data error rate

[23] Weighted vote for trees 
aggregation

Each tree is evaluated by OOB data and used as a weight,  
and the classification result is obtained by comparing the aggregation  

of weight of each class
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Figure 1. Random forest model
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data error rate, 2 as the weight if it is the same as 
the average error rate of OOB data, and 1 as the 
weight when the average error rate of OOB data 
is higher than the average error rate of OOB data. 
At the same time, the authors think that the more 
decision trees are used to participate in ensemble 
learning, the better the performance of the model 
will be. Daho et al. [23] think that the prediction 
performance of RFs can still be improved by replac-
ing the GINI index with another index (twoing or 
deviance). They add the results of each tree evalu-
ated by OOB data by class, and finally get the clas-
sification result by comparing the value of each 
class, and also indicate that weighted voting gives 
better results compared to the majority vote.

Through the study of the achievements of the 
above scholars, we summarize the three weighted 
improvement strategies as follows.
•	 The decision result of the base learner is 

weighted according to the performance index 
of the base learner (using OOB data to mea-
sure accuracy, AUC).

•	 Weighted according to the similarity between the 
samples. The more similar the two samples are, 
the more likely they are to be in the same class.

•	 In the specific field of data, based on the in-depth 
understanding of the data, weighted by experi-
ence to achieve better results with the model.
In this study, we will use the first strategy in the 

above summary to make weighted improvements 

to the RF. In view of the defects of the same type 
of weighting improvement, a  more reasonable 
weighting model is proposed.

Next, we introduce the supporting materials of 
this research in the Materials and methods. In the 
Results and Discussion section, we will show the 
experimental results and explain the analysis of 
the results. An example is used to visualize the 
effect of the algorithm. In the Discussion section, 
we will evaluate the whole research work based 
on the experimental data.

Material and methods

Bagging tree

Bagging is an ensemble technique that is char-
acterized by the process of bootstrap. It is mainly 
used for models with a small bias and a large vari-
ance [7]. Bootstrap is a fixed number of samples 
collected from inside the training set, but after 
each sample collection, the samples are returned. 
The nth bootstrap sample can be calculated as 
shown in Equation (1).

Z(n) = (z1
(n), ..., z

N
(n)), where z

i
(n) = (x

i
(y), y

i
(n)), 

i = 1, ..., N.�
(1)

The bagging tree is built based on decision 
trees [24]. The decision tree model has a  large 
variance because a tree has a completely different 
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structure according to the first divided variable (j) 
and division point (s) [25]. Therefore, it is feasible 
to reduce the variance of an unstable decision tree 
model by getting the mean after constructing mul-
tiple tree models through bagging.

Random forest (RF)

RF (Figure 1) is an improved version of bagging 
tree, and bagging is still its core strategy, but with 
unique improvements [8]. First, use the bootstrap 
method to generate m training sets. Then, for 
each training set, construct a decision tree (DT). 
When the node finds the features to split, not all 
the features can be found to maximize the index, 
such as information gain in Equations 2 and 3, 
but randomly extract a part of the features from 
the features, find the optimal solution among the 
extracted features, apply it to the node, and split.

Ent(D) = –       p
k
log2pk

� (2)∑
|y|

k = 1

Gain(D, a) = Ent(D) –                 Ent(Dv) � (3)∑ |Dv|
D

v

v = 1

In fact, it is equivalent to sampling the sam-
ples and features (if the training data are regarded 
as a matrix, as is common in practice, then it is 
a process of sampling both rows and columns), so 
overfitting can be avoided.

OOB data weighted random forest 
(OOBWRF)

Using OOB data to evaluate DT in RF and us-
ing it as weighting is a  universal strategy in RF 
weighting improvement. The principle is to im-
prove the majority voting part of the RF model, 
instead of assigning the same weight to each tree 
as the original RF model. Because OOB data are 
not used in the process of fitting DT, it is feasible 
to use OOB data to evaluate the generalization 
performance of DT. We believe that it is reason-
able to give a higher vote weight to DT with better 
generalization performance, so we weighted the 
majority voting process according to the accura-
cy tested by class using OOB data for each tree 
in the forest, and called this weighting method 
OOBWRF (Figure 2). The specific operation steps 
of using OOB data to weight and improve RF are 
in Equations 4, 5, 6, where AccOOBn,p

 represents the 

Figure 2. OOBWRF model
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generalization performance of class p using OOB 
data to detect the nth tree, WOOBn,p

 represents the 
weight of class p of the nth tree, and prediction

n
 

represents the predicted result of the nth tree. The 
probability of predicting class p by the OOBWRF 
model is defined in Equation 6.

AccOOBn,p
 = Accuracy(OOB

n
)class p� (4)

WOOBn,p
 =� (5)

AccOOBn,p
 + 1,     p = prediction

n

                              
1,     otherwise

Probability(Class p) =� (6)
Πntree WOOBi,pi = 1

∑nclass Πntree WOOBi,jj = 1 i = 1

Tree-level weighted random forest (TLWRF)

After rigorous experiments and analysis on 
the OOBWRF weighting method, we found that 
since the OOB data used to evaluate each tree 
are randomly generated through the bootstrap 
step in RF, the OOB data of each tree are different, 
so there are certain problems with the validity of 
the weights used for weighting, and the problem 
is found to be very serious through experimental 
results. In response to the above problems, based 

on the weighting framework of OOBWRF men-
tioned above, combined with the defects of using 
OOB data to weight, we propose TLWRF (Figure 3),  
which is defined in Equation 7, 8, 9. Replace the 
OOB

n
 data used to evaluate each tree with the 

total training data Data
n
, and rename the p class 

weight of the new nth tree as WTLn,p
 in Equation 8.

AccDatan,p
 = Accuracy(Data

n
)class p� (7)

WTLn,p
 =� (8)

AccDatan,p
 + 1,     p = prediction

n

                              
1,     otherwise

Probability(Class p) =� (9)
Πntree WTLi,pi = 1

∑nclass Πntree WTLi,jj = 1 i = 1

Algorithm analysis

Although the above formula has clearly ex-
plained how the algorithm works and how to 
improve the original algorithm, a set of formulas 
do not intuitively let the reader understand how 
it works in a short period of time. So we use an 
example to describe how the model works ideal-
ly. We compare the original RF algorithm with our 
proposed TLWRF, this comparison is only to more 

Figure 3. TLWRF model
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Figure 4. Comparison of work details between RF and TLWRF
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intuitively show how TLWRF works, without any 
evaluation of the comparison results, and we only 
took out three trees in the forest for comparison. 
The comparison result is shown in Figure 4.

Results

Performance measures

A proper evaluation is crucial for models built 
with any statistical learning algorithm. In this 
experiment, we used accuracy and area under 
the receiver operating characteristic curve (AUC) 
as the performance evaluation methods of the 
model. Accuracy is the most basic performance 
evaluation index, but it is easily affected by the 
sample distribution, and it cannot well measure 
the performance of the model, so we introduced 
AUC as a  supplement. We give the definition of 
accuracy in Equation 10. The receiver operating 
characteristic curve (ROC) is a  curve drawn with 
different threshold points on the axes of TPR (true 
positive rate) and FPR (false positive rate). AUC is 
the area under the ROC curve. AUC is defined in  
Equation 11, where M and N are the number of 
positive and negative samples, while rank

i
 indi-

cates that the probability score of all samples are 
arranged from small to large, and the serial num-
ber of the i th sample.

Accuracy =� (10)
Correct calssification

All samples

AUC =� (11)
∑

i∈PositiveClass 
rank

i
 – 

M × N

M × (M + 1)
2

In the process of testing multi-classified data-
sets, AUC will be averaged in two ways, micro and 
macro. In Experiment I, we give the AUC, based on 
these two averaging methods respectively, while 
in Experiment II, since both binary and multi-clas-
sified datasets are involved, we only list the AUC, 
under the macro averaging method in order to 
have a unified reference standard for the perfor-
mance evaluation of the model.

Experiment I

In the treatment of cancer patients, it is ex-
tremely important to predict the survival status of 
patients according to their prognosis. Experienced 
doctors will evaluate the survival of patients 
based on their own experience through the medi-
cal index data of patients, but this is very difficult 
in countries and regions with an underdeveloped 
medical industry, so it is a very efficient means to 
realize the evaluation of patients through machine 
learning technology. We used TLWRF to fit the 
data of 110 697 cases of gastric cancer patients 

diagnosed from 1975 to 2016 obtained from the 
SEER database, so as to obtain a model that could 
predict the survival status of patients, and com-
pared it with DT, RF and OOBWRF to verify that 
TLWRF played a role in improving the performance 
of the model in this experiment.

The cases evaluated in this analysis were ex-
tracted from the SEER-18 registry [26]; in order to 
achieve this, SEER*Stat software (Version 8.3.5) 
was used. The date of SEER data submission was 
November 2018. We introduced the Cox regres-
sion model to summarize the data in Equation 12, 
where b1, b2, ..., bm

 is the partial regression coeffi-
cient of the independent variable; it is the param-
eter to be estimated from the sample data; h0(t)  
is the benchmark hazard rate of h(t, X) when the 
X vector is 0; it is the quantity to be estimated 
from the sample data. The Cox regression model is 
used to analyze the characteristics of patient data, 
and the details of the analysis results are shown 
in Table II. Through this table, the characteristics 
of the data can be understood objectively and 
directly. The coef attribute in Table II is b in the 
Cox regression model, and exp(coef) is common-
ly called the hazard ratio (HR). In cancer research,  
HR < 1 is called a  good prognostic factor, while  
HR > 1 is called a bad prognostic factor. Consid-
ering the attributes in the table, especially the 
p-value and HR, we obtain the following conclu-
sions about this data set, and this will provide an 
important reference for model evaluation after we 
use machine learning methods for modeling. All 
attributes except PRCDA 2016, sequence number, 
and total number of benign/borderline tumors for 
patient have a p-value of less than 0.005, which 
means that most attributes are expressed sig-
nificantly. Among them, male patients have a 7% 
higher probability of death than female patients; 
total number of in situ/malignant tumors for the 
patient had a 12% negative impact on HR; stage 
group can reflect the patient’s survival status to 
the greatest extent compared to other attributes; 
patients with primary tumors have a 14% lower 
risk of death than patients with secondary tu-
mors; marital status and histological grade both 
had a 6% impact on HR.

h(t, X) = h0(t) exp(b1X1 + b2X2 + ... + b
m
X

m
)� (12)

We carry out the preprocessing steps of vacant 
value processing, numerical replacement, one-
hot encoding and so on. Considering the incom-
plete record of surviving patient data, only the 
data of deceased patients were used in the mod-
eling process (n = 95648). Considering the im-
balance of data target attribute distribution, we 
introduced the synthetic minority oversampling 
technique (SMOTE) algorithm for overfitting the 
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data [27], and the data target attribute distribu-
tion after processing is the same (n = 328 988). 
According to the survival time of patients, the 
target classification attribute was calculated 
in terms of 3 years, 5 years, 10 years and over  
10 years. Details of target attribute are shown in 
Table III, and this attribute is taken as the predic-
tion target. The segmentation of the training set 
and the test set is such that 70% of the data is 
used for model training and 30% of the data is 
used for model validation. For all ensemble learn-
ing models, we conduct experiments on the base 
learner according to the number of 100. The ex-
perimental result data are shown in Table IV, and 
the details of the ROC curve of each model are 
shown in Figure 5.

It can be learned from Table IV that compared 
with the original RF model, the two weighted 
models we proposed have been improved for all 
evaluation indexes. Among them, OOBWRF and 
TLWRF are 0.43% and 0.79% higher than RF in 
accuracy, respectively. In the AUC index, it is in-
creased by 2.63% and 10.59% in Class 0, 0.25% 
and –2.09% in Class 1, 0.37% and –1.13% in Class 
2, and 1.08% and 1.93% in Class 3, respectively. 
On the two average AUCs, macro increases by 
1.08% and 2.32%, respectively, and micro increas-
es by 0.2% and 0.51%, respectively.

Overall, the TLWRF we proposed is the best per-
forming model compared to the other three listed 
models. We believe that through our experiment, 
doctors and patients will have a  clearer under-
standing of the condition of gastric cancer from 
the perspective of machine learning. Only relevant 
indicators of the patient’s condition can be used 
to make use of this more accurate model. So we 
think this experiment is meaningful, especially for 

those areas with  an underdeveloped medical lev-
el and inexperienced doctors.

Experiment II

In order to verify that the performance of TL-
WRF has been improved based on the original 
model, we obtained 10 public medical datasets 
from the UCI machine learning repository [28] to 
verify the performance of the model, including  
7 binary datasets and 3 multi-classification data-
sets. The details of the datasets used are given in 
Table V.

The datasets used all go through data prepro-
cessing steps such as numerical replacement and 
missing value processing. 70% of the data set is 
used for model training and 30% for model verifi-
cation. The tool used for the simulation experiment 
is sklearn (version 0.23.1), using train_test_split to 
divide the data into a training set and test set. The 
base learners used are 100 decision trees. The oob_
score parameter is set to true, and the rest of the 
parameters are RandomForestClassifier’s default 
parameters. In the course of the experiment, all the 
parameters that need to be used for random con-
trol, such as random_state, are set to 0 to ensure 
that the experimental results can be reproduced.

Accuracy and AUC mentioned in the Perfor-
mance Measures section are used as evaluation 
indexes for the experiment. The two indexes will 
be listed respectively and the model with the 
highest score will be highlighted in Table VI.

The performance of the four models on 10 pub-
lic datasets can be seen from Table VI. In the ac-
curacy index, the number of DT with the highest 
score was 0/10, with an average score of 74.93%; 
the number of RF with the highest score was 1/10, 

Table III. Details of target attribute distribution

Variable 3 Years 5 Years 10 Years >10 Years

Original
n = 95 648

82247 (85.99%) 4836 (5.06%) 4754 (4.97%) 3811 (3.98%)

Oversampled
n = 328 988

82247 (25.00%) 82247 (25.00%) 82247 (25.00%) 82247 (25.00%)

Table IV. Experimental I results of OOBWRF and TLWRF compared to DT and original RF. The best-performing clas-
sifier for each evaluation index is highlighted

Variable DT RF OOBWRF TLWRF

Accuracy 79.81% 85.12% 85.55% 85.91%

Class 0 AUC 64.23% 70.29% 72.92% 80.88%

Class 1 AUC 52.14% 67.63% 67.88% 65.55%

Class 2 AUC 55.99% 79.00% 79.37% 77.86%

Class 3 AUC 66.00% 89.52% 90.60% 91.45%

Macro-average AUC 59.59% 76.61% 77.70% 78.94%

Micro-average AUC 86.31% 95.18% 95.38% 95.69%



Cheng Xu, Jing Wang, Tianlong Zheng, Yue Cao, Fan Ye

1218� Arch Med Sci 5, 1st September / 2022

Figure 5. Details of the ROC curve of each model
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Table V. Details of the test datasets downloaded from the UCI machine learning repository

Number Name Size Classes Features

1 Adult 32561 2 14

2 Breast Cancer (Coimbra) 116 2 9

3 Breast Cancer (Michalski) 286 2 9

4 Breast Cancer (Wisconsin) 683 2 10

5 Extension of Z-Alizadeh sani 303 2 55

6 Haberman’s Survival Data Set 306 2 3

7 Heart failure clinical records Data 583 2 10

8 Dermatology 366 6 34

9 Ecoli 336 8 8

10 Lymphography Data Set 148 4 18

with an average score of 79.98%; the number of 
OOBWRF with the highest score was 3/10, with 
an average score of 77.83%; the number of TLWRF 
with the highest score was 9/10, with an average 

score of 81.42%. Compared with RF, the average 
accuracy OOBWRF decreased by 2.15%, and av-
erage accuracy TLWRF increased by 1.44%. In the 
AUC index, the number of DT with the highest 
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score was 0/10, with an average score of 72.94%; 
the number of RF with the highest score was 4/10, 
with an average score of 85.78%; the number of 
OOBWRF with the highest score was 1/10, with 
an average score of 84.27%; the number of TLWRF 
with the highest score was 6/10, with an average 
score of 86.98%. Compared with RF, the average 
AUC OOBWRF decreased by 1.51%, and average 
AUC TLWRF increased by 1.2%.

Discussion

In view of the defect that the random forest 
model assigns the same weight to all base learn-
ers, we proposed a  weighting strategy for base 
learners, and used this strategy to propose two 
improved models, TLWRF and OOBWRF. From the 
numerical results, two weighted models, OOBWRF 
and TLWRF, are both of practical significance. The 
performance of TLWRF in Experiment I and Exper-
iment II is the best among the four models listed. 

In Experiment I, we used the TLWRF proposed 
in this paper to model the data of 110  697 pa-
tients with gastric cancer obtained from the SEER 
database, and got a better modeling method than 
the original random forest algorithm. It is mean-
ingful for the integration of medicine and machine 
learning. A more accurate model will be obtained 
by using our improved algorithm, so as to improve 
the accuracy and efficiency of diagnosis. Through 
some medical indicators of patients, the prognosis 
of patients can be predicted and analyzed quickly. 
Meanwhile, we obtained 10 public medical data-
sets from the UCI machine learning repository to 
test and compare the generalization performance 
of each model in Experiment II. The results show 
that our proposed model can not only improve the 
data modeling of gastric cancer patients, but also 

improve the performance in other medical classifi-
cation tasks. And through these two experiments, 
we also reach the following two conclusions:
1.	 Weighting the base learners of random forest 

according to their performance is an effective 
method to improve the defects of random forest;

2.	 From the experimental results, unlike the 
customary use of OOB data test results as 
a weighted basis, we tend to use the test re-
sults of all training data as a weighted basis, 
because models that use this basis generally 
produce better performance.
Admittedly, because the machine is not af-

fected by individual subjective factors, doctors 
with high level medical training will introduce ad-
vanced artificial intelligence or machine learning 
methods into daily diagnosis and treatment as 
one of the reference indicators. This is particularly 
important under the influence of COVID-19 virus 
all over the world. Artificial intelligence and ma-
chine learning technology will be more and more 
irreplaceable in the development of medicine in 
the future. Nevertheless, in the field of medicine, 
artificial intelligence and machine learning are not 
so reliable today, although it is believed that this 
situation will be improved in the future.

According to this research, we believe that 
more studies that may be carried out in the future 
include:
1.	 A user-friendly medical auxiliary decision plat-

form that can be practically used is built using 
the achievement of this research.

2.	 Exploring the influence of the parameters in 
the random forest model on the weighted ran-
dom forest model;

3.	 Combining other machine learning models to 
integrate the random forest weighting method;

Table VI. Experimental II results of OOBWRF and TLWRF compared to DT and original RF. The best-performing 
classifier for each dataset is highlighted according to accuracy and AUC. The last row shows the average accuracy 
of all models considering all datasets

Number Accuracy AUC

DT RF OOBWRF TLWRF DT RF OOBWRF TLWRF

1 81.09% 85.34% 84.53% 85.54% 74.86% 90.60% 88.82% 89.70%

2 62.86% 62.86% 63.35% 65.71% 62.42% 74.84% 74.93% 75.18%

3 70.24% 78.57% 80.95% 80.95% 57.26% 72.47% 69.90% 71.83%

4 93.66% 95.12% 92.68% 95.12% 92.46% 99.37% 99.37% 99.36%

5 72.53% 81.32% 74.73% 82.42% 68.69% 92.54% 92.16% 92.59%

6 60.87% 63.04% 65.22% 65.22% 62.75% 73.91% 62.75% 79.45%

7 66.29% 68.57% 70.29% 69.71% 59.28% 72.19% 72.19% 73.29%

8 87.96% 95.37% 89.81% 96.30% 95.71% 99.80% 98.95% 99.40%

9 78.22% 85.15% 72.28% 86.55% 76.07% 84.46% 86.06% 90.56%

10 75.56% 84.44% 84.44% 86.67% 79.91% 97.62% 97.62% 98.44%

Mean 74.93% 79.98% 77.83% 81.42% 72.94% 85.78% 84.27% 86.98%
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4.	 Combine pruning and weighting to better im-
prove the performance of random forest;

5.	 More weighting methods, etc.
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