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Abstract: Wastewater-based epidemiology (WBE) is a tool involving the analysis of wastewater for
chemicals and pathogens at the community level. WBE has been shown to be an effective surveillance
system for SARS-CoV-2, providing an early-warning-detection system for disease prevalence in the
community via the detection of genetic materials in the wastewater. In numerous nation-states, studies
have indicated the presence of SARS-CoV-2 in wastewater. Herein, we report the primary time-course
monitoring of SARS-CoV-2 RNA in wastewater samples in São José do Rio Preto-SP/Brazil in order
to explain the dynamics of the presence of SARS-CoV-2 RNA during one year of the SARS-CoV-2
pandemic and analyze possible relationships with other environmental parameters. We performed
RNA quantification of SARS-CoV-2 by RT-qPCR using N1 and N2 targets. The proportion of positive
samples for every target resulted in 100% and 96.6% for N1 and N2, respectively. A mean lag of
-5 days is observed between the wastewater signal and the new SARS-CoV-2-positive cases reported.
A correlation was found between the air and wastewater temperatures and therefore between the
SARS-CoV-2 viral titers for N1 and N2 targets. We also observed a correlation between SARS-CoV-2
viral titers and media wastewater flow for the N1 target. In addition, we observed higher viral
genome copies within the wastewater samples collected on non-rainy days for the N1 target. Thus,
we propose that, based on our results, monitoring raw wastewater may be a broadly applicable
strategy that might contribute to resolving the pressing problem of insufficient diagnostic testing; it
may represent an inexpensive and early-warning method for future COVID-19 outbreaks, mainly in
lower- and middle-income countries.

Keywords: SARS-CoV-2; wastewater; qRT-PCR; epidemiology

1. Introduction

The SARS-CoV-2 pandemic has global consequences on public health, the economy,
and society. The first confirmed SARS-CoV-2 case in the São José do Rio Preto metropolitan
area occurred on March 13, 2020, when the country had counted only 34 confirmed cases.
This means that this city was among the first in the national territory to identify the
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transmission of the virus [1]. Peaks in SARS-CoV-2-positive cases in São José do Rio Preto
were seen in July and August 2020, November 2020, and January 2021, with the highest
peaks in March and April 2021. The prevalent variant diversified over time, with seven
lineages detected in January and February 2021. An increase in the prevalence of the
Gamma lineage was observed from January 2021, replacing Zeta and other lineages [2].

Despite COVID-19 being a respiratory disease, SARS-CoV-2-viable virus and viral
RNA are present in bodily excreta such as saliva, sputum, and feces, which are dis-
carded in wastewater [3]; the viral shedding can vary among individuals, with means of
14–21 days [4,5]. The main route of SARS-CoV-2 transmission is inhalation via person-to-
person aerosols/droplets [6]. However, evidence indicates the need for deeper comprehen-
sion of the wastewater as a possible source of virus in epidemiological studies [7].

Wastewater monitoring has been used as a strategy of viral disease surveillance
through the detection of genetic material in wastewater [8–10]. Hence, monitoring of
SARS-CoV-2 in sewage is considered a sensitive method to analyze the dissemination of
the virus in the population and provide early detection of the virus in the community [11].

Recent reports indicated the presence of SARS-CoV-2 in wastewater in several nation-
states [12–15]. These reports highlight the requirement for effective environmental surveil-
lance. Wastewater-based epidemiology (WBE) as a public health surveillance tool involves
the screening of wastewater at the community level and serves as an early-warning sys-
tem [16]. This methodology is a cost-effective way to assess the dissemination of the
infection by monitoring the viral load in the wastewater that contains feces excreted from
both symptomatic and asymptomatic individuals, and, therefore, reduces the time and
resources spent on clinical surveillance [13,17].

Herein, we report the first time-course monitoring of SARS-CoV-2 RNA in wastewater
samples in São José do Rio Preto-SP/Brazil in order to describe the dynamics of the presence
of SARS-CoV-2 RNA during one year of the SARS-CoV-2 pandemic and to analyze a
possible relationship with several environmental parameters.

2. Methodology
2.1. Sampling

Twenty-four-hour composite samples of raw wastewater were collected three times
per week for one year (from 15 July 2020 to 15 July 2021) from the Preliminary Treatment
unit of the Sewage Treatment Plant (STP) Rio Preto. This plant processes 98–99% of all
sewage generated in the municipality, with a total flow of approximately 100,826 m3/day
and serving approximately 470,000 inhabitants. The samples were collected in a HACH
Sigma SD900 AWRS refrigerated automatic sampler (HACH, Loveland, CO, USA), with
a sampling program adjusted to the input flow, with the collection of 1 sample for every
3000 m3 processed by the plant (equivalent to approx. 36 sampling events/day). Once
collected, the samples were kept at below 4 ◦C and sent to STP Rio Preto Laboratories for
decantation for 10 min, followed by vacuum filtration on 47 mm glass fiber membranes
with a 1 µm pore size (PALL CORPORATION, Ann Harbor, MI, USA). After filtration,
on the day following sampling, 200 mL of each sample was transported to the São Paulo
State University Laboratory in glass flasks on ice. Upon receipt, the samples were concen-
trated by high-speed centrifugation at 40,000× g for 3 h at 4 ◦C using the ultracentrifuge
(Beckman Coulter, Indianapolis, IN, USA). Viral pellets were resuspended in 1 mL of DEPC-
treated water (Sigma-Aldrich, Saint Louis, MI, USA) and stored at −150 ◦C. Samples were
processed using Class II biological safety cabinets, and standard precautions were applied.

2.2. RNA Extraction and Quantitative PCR

RNA extraction of 200 µL of each sample was performed using Trizol reagent (Thermo
Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. RNA
was eluted in 30 µL of DEPC water (Sigma-Aldrich, Saint Louis, MI, USA) and stored
at −80 ◦C.
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SARS-CoV-2 RNA was detected and quantified using qPCRBIO 1-step Go (PCR Biosys-
tems, London, UK) and the RT-qPCR diagnostic-panel assays were validated by the US
Centers for Disease Control and Prevention [18]. The version of the kit with two sets of
oligonucleotide primers and probes was used to target two different SARS-CoV-2 regions
of the nucleocapsid (N) gene (N1 and N2). The sets of primers and probe (2019-nCoV
RUO Kit) (Integrated DNA Technologies, Leuven, Belgium) as well as the positive control
(2019-nCoV_N_Positive Control, 2 × 105 genome copies/µL (gc/µL)) were provided by
IDT (Integrated DNA Technologies, Leuven, Belgium). A measure of 5 µL of RNA was
added to the Reaction mix (15 µL), consisting of 7.5 µL 2X qPCRBIO 1-step Go mix, 0.15 µL
RTase Go (PCR Biosystems, London, UK), and 1.13 µL for each set of primers and probe.
The thermal cycling conditions were as RT at 50 ◦C for 10 min, preheating at 95 ◦C for
2 min and 40 cycles of amplification at 95 ◦C for 5 s and 60 ◦C for 30 s. All amplifications
were conducted on a QuantStudio 12 K Flex instrument (Applied Biosystems, Foster City,
CA, USA). Each RNA was analyzed in triplicate for each primer set and every RT-qPCR
assay included negative (nuclease-free water) and positive controls.

Serial tenfold dilutions of the standard plasmid of SARS-CoV-2, obtained from IDT
(Integrated DNA Technologies, Leuven, Belgium), were used to produce standard curves.
Molecular-biology-grade water was used as a non-template control. The amplification
efficiencies (E) were calculated based on the equation: E = 10(−1/slope) − 1. Negative
and positive controls were included in each RT-qPCR run and all RT-qPCR assays were
performed in triplicate. Samples were discarded if they did not meet the following condi-
tions: (i) standard curves with R2 ≥ 0.95; (ii) copies/reaction in linear dynamic range of the
curve; (iii) primer efficiency between 90% and 130% [19].

2.3. Detection Limit and qPCR Inhibition Control

The detection limit for the assay was estimated by spiking serial 10-fold dilutions
of SARS-CoV-2 synthetic plasmid in wastewater samples (n = 5). After the addition of
known concentrations of the virus, the spiked water samples were analyzed by real-time
RT-qPCR. The lowest concentration of the viruses in the spiked water samples that gave a
positive result in the RT-qPCR was taken as an estimate of the detection limit. Thus, the
limit of detection of the RT-qPCR assay was determined for N1 and N2 gene regions by
determining the number of copies per reaction, which corresponds to a detection rate of
≥95% (<5% false negatives), as recommended by the MIQE guidelines [19].

To check for the presence of inhibitors in our samples, all samples testing SARS-CoV-2
N2 negative (n = 5), twenty samples testing SARS-CoV-2 N1- and N2-positive, as well
as sterile water controls (in triplicate), were inoculated in parallel with a known amount
(105 Genome Copies) of SARS-CoV-2 synthetic plasmid containing N region of SARS-CoV-2
(Integrated DNA Technologies, Leuven, Belgium) and tested using a previously described
RT-qPCR assay targeting the N region. The SARS-CoV-2 plasmid was also analyzed by
PCR, without prior mixing with RNA from the samples. An increase in the threshold cycles
(Ct), after addition of the nucleic acid extracts by more than 1 cycle, was considered to
indicate inhibition. All qPCR reactions were carried out in triplicate on a QuantStudio 12 K
Flex instrument (Applied Biosystems, Foster City, CA, USA) [20].

2.4. Data Analysis

Data were analyzed using descriptive statistics through measures of central tendency
(mean and median) and measures of dispersion (standard deviation). To test the distribution
of variables, the Kolmogorov–Smirnov test was applied. The data did not show normal
distribution, so non-parametric tests were applied for statistical inference. Variables N1
and N2 were normalized with reference to flow, as suggested by Nagarkar et al. (2022) [21].
To identify the correlation between N1 and N2, SARS-CoV-2-positive clinical cases, and
hydrological and meteorological data, the instantaneous correlation was initially evaluated
(lag = 0). The cross-correlation function was also used to assess the correlation between
N1 and N2 with positive clinical SARS-CoV-2 cases for various lags; each lag represents
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two/three days, since the wastewater sample was collected every two/three days (three
times per week).

To compare N1 and N2 between rainy and non-rainy days, the Mann–Whitney test
was applied. Statistical inference was applied considering a significance level of 5%. The
software used for statistical analysis was SPSS V24.

3. Results and Discussion

SARS-CoV-2 virus RNA was measured by RT–qPCR using the same N1 and N2 primer
sets. The percentage of positive samples for each target resulted in 100% and 96.6%, for N1
and N2, respectively. Virus RNA copies ranged from 1 × 103 copies/L to 1.3 × 105 copies/L
for N1 target of raw sewage and from 0 to 8.6 × 104 copies/L for the N2 target of raw
sewage (Table 1). All qRT–PCR concentration threshold (Ct) values were below 40, and
97% of all samples had a Ct value less than 38 for the N1 primer and 97.3% for the N2
primer. It is interesting to observe that N1 and N2 signals present a similar tendency in
wastewater samples (Figure 1), as also observed by long-term surveillance of wastewater
in France [22]. The concentrations of SARS-CoV-2 RNA (1 × 103 – 1.3 × 105 copies/L) in
wastewater samples in this study are in agreement with studies from the USA [23–25], South
Africa [26], and India [27]. Interestingly, the concentration of SARS-CoV-2 RNA in this
study was higher than that reported in Haramoto et al. in Japan [28], Hasan et al. in Saudi
Arabia [29], and Ahmed et al. in Australia [13], but lower than those reported by Balboa
et al. in Spain [30]. This could be attributable to differences in abundance of SARS-CoV-2 in
wastewater due to the pandemic level in the population; the number of SARS-CoV-2 RNA
gene copies in wastewater is correlated with the total number of SARS-CoV-2-positive cases
in a community, providing an indication of the total burden of disease on that population
beyond merely those individuals identified through SARS-CoV-2 testing. In addition,
different sampling methodologies for viral RNA detection and viral quantification analysis
may result in variation in the amount of SARS-CoV-2 detected in wastewater.

Table 1. Parameters of wastewater samples collected and SARS-CoV-2 RNA quantification using N1
and N2 targets.

Parameters Minimum Maximum Average Standard
Deviation Median (Md)

N1 RNA copies:
normalized to flow 10.7 × 1010 1333.2 × 1010 169.6 × 1010 183.7 × 1010 125.9 × 1010

N2 RNA copies:
normalized to flow 0.00 837.4 × 1010 85.7 × 1010 110.6 × 1010 54.4 × 1010

SARS-CoV-2-
positive cases 12.00 613.00 188.34 140.11 174

Air temperature
(◦C) 0.00 34.30 24.41 3.70 24.5

Average flow (L/s) 1019.00 1394.00 1169.55 71.62 1162

Total flow
(m3/day) 87,876.00 121,542.00 100,826.41 6150.29 100,067

pH 7.04 7.81 7.51 0.11 7.5

Wastewater
temperature (◦C) 18.00 30.80 26.03 2.37 26.4

Chemical oxygen
demand (mg/L) 411.00 2039.00 725.60 283.56 622.5

The in vitro-transcribed viral RNA was detected to a limit of detection (LOD) of
1000 copies/L in both the N1 and N2 RT-qPCR assays and the standard curves demonstrate
good linearity for RT-qPCR in a range from 1000 to 108 copies/L for N1 and N2 primers.
The LOD in this study was similar to that observed by Ahmed et al. [31]. The linearity
and LOD are important parameters according to MIQE guidelines [19] and, although RT-
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qPCR is a sensitive and specific technique for viral quantification, the reproducibility and
reliability of the assay are important parameters.
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Figure 1. SARS-CoV-2 RNA quantification of the wastewater from São José do Rio Preto and
SARS-CoV-2-positive cases in São José do Rio Preto. (A) SARS-CoV-2 RNA quantification in the
wastewater samples in São José do Rio Preto during one year using the N1 target (blue line) and the
N2 target (red line) and (B) SARS-CoV-2-positive cases in São José do Rio Preto diagnosed during
one year.

All 150 measures traced the increase and decrease in SARS-CoV-2 infections during
the 52-week period studied and we analyzed the instant correlation between SARS-CoV-2
and environmental parameters as well as SARS-CoV-2-positive clinical cases. The time-
course monitoring of viral load in wastewater displayed two peaks: one on 7 May 2021
and one on 31 May 2021 for both primers. These were followed by a slight decrease (1-log
reduction in average). The peaks of the SARS-CoV-2-positive clinical cases on these days
were not observed, presenting some peaks on different days such as, for example, one
on 29 July 2020 and another on 15 January 2021. A significant relation of viral titers with
SARS-CoV-2-positive clinical cases was not observed when instant correlation was applied
(Figure 2, Lag 0). We also analyzed the correlation of viral titers with SARS-CoV-2-positive
clinical cases; applying a cross correlation of 20 lags allowed an estimation of relationships
between viral time-series results and the reported population-testing data. We used the
wastewater sample date as a reference and determined the lag time of clinical cases in
relation to the wastewater’s SARS-CoV-2 RNA concentration. A negative lag means that
the detection of SARS-CoV-2 RNA in the wastewater was observed before the SARS-CoV-2-
positive cases, and a positive number indicates that wastewater follows the incidence rate
(i.e., changed after). An average lag of −5 days was observed between the detection of
SARS-CoV-2 RNA in the wastewater and the new SARS-CoV-2-positive cases reported
(Figure 2). This result corroborates a study from the USA that observed a lag of 7–9 days
between SARS-CoV-2 RNA concentration and SARS-CoV-2-positive cases reported [32].
In addition, there are reports that SARS-CoV-2 was detected in wastewater earlier than
medical reporting by 2 days in Canada [33] and by 2–4 days in the USA [34]. Interestingly,
based on clinical tests, Kumar et al. realized the seriousness of the pandemic situation in
India 1–2 weeks before the official reports [35]; these time lags between the wastewater
signal and the SARS-CoV-2-positive reported cases is coherent with the average 4–5 day
incubation period from SARS-CoV-2 infection to symptom onset. On the other hand, a
study from Greece applied several statistical models to determine the association between
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SARS-CoV-2 RNA concentrations in sewage and data for 7 days of cumulative cases and
observed no clear evidence that wastewater measurements can anticipate SARS-CoV-2-
positive reported cases [36]. These differences in results are observed because wastewater-
based epidemiology depends on the viral shedding dynamics relative to symptom onset
and the divergence between detection of SARS-CoV-2 RNA in the wastewater and clinical
data reporting [37]. The majority of methods for tracking SARS-CoV-2 infection primarily
rely on clinical test results, but this process involves intrinsic delays that preclude real-time
tracking of the outbreak; to overcome this issue, we compared our wastewater surveillance
data with SARS-CoV-2 clinical positive cases collected from the same day.
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Alterations in the environment can influence the viral viability and temperature
was identified as a significant variable controlling microbial decay and the persistence
of viruses in environmental systems. Seasonal variations in wastewater temperature
during a year differ around the world. In addition, seasonal changes in air and soil
temperature influence the transference of heat between wastewater and the surrounding
environment [38]. A negative correlation was found between the air and wastewater
temperatures and the SARS-CoV-2 viral titers for N1 (air: R = −0.361, p < 0.01; wastewater:
R = −0.375, p < 0.01) and N2 (air: R = −0.3000, p < 0.01; wastewater: R = −0.185, p < 0.05)
primers (Table 2). Our results corroborate a mixed-model effect, which showed that
temperature levels were significantly correlated with SARS-CoV-2 gene recovery [39]. It
was reported that with increasing temperature, the incidence of the disease decreased
in most of the cities analyzed [40]. One study reported that, frequently, SARS-CoV-2
tends to be rapidly inactivated at high temperatures instead of at low temperatures [41].
Kampf et al. conducted a study in which it was observed that for a 1 ◦C increase in
the minimum ambient air temperature, the cumulative number of cases decreased by almost
1%. However, at ambient temperatures higher than 30 ◦C, the duration of SARS-CoV-2
detection is reduced [42]. Henwood et al. (2020) suggested that a temperature of 56 ◦C for
90 min or a temperature of 67 ◦C for 60 min can inactivate SARS-CoV-2 [43]. Therefore,
the persistence of the virus is insignificant and mostly gets destroyed in high ambient and
water temperatures.

We also observed a negative correlation between SARS-CoV-2 viral titers and media
wastewater flow for the N1 primer (R = −0.298; p < 0.01). The SARS-CoV-2 RNA can be
influenced by sample location and type, as well as the time of collection. This may change
depending on where and when the sample is collected in the wastewater treatment facility
because of the differences in the sewage compositions and dilutions. The SARS-CoV-2
RNA detection may also be influenced by sampling type (grab versus composite), and the
time of day when it is collected [44]. Thus, it is suggested that a time composite sampling



Viruses 2022, 14, 2333 7 of 10

mode may under- or overestimate viral quantification when the flow varies, and when flow
and viral titers are positively or negatively correlated [45].

Table 2. Spearman non-parametric correlation of environmental and wastewater parameters and
SARS-CoV-2 N1 and N2 targets. Correlation coefficients: high—R > = 0.6; modest—0.3 < R < 0.6;
low—R < 0.3 [46,47].

N1 N2

SARS-CoV-2-Positive cases

Correlation Coefficient −0.033 0.000

Sig. (bilateral) 0.69 0.999

N 150 150

Air Temperature (◦C)

Correlation Coefficient −0.361 ** −0.300 **

Sig. (bilateral) >0.001 >0.001

N 150 150

pH

Correlation Coefficient 0.215 ** 0.281 **

Sig. (bilateral) 0.008 >0.001

N 150 150

Wastewater Temperature (◦C)

Correlation Coefficient −0.375 ** −0.185 *

Sig. (bilateral) >0.001 0.024

N 150 150

Average Flow (L/s)

Correlation Coefficient −0.298 ** 0.063

Sig. (bilateral) >0.001 0.447

N 150 150
* 5% significance; ** 1% significance.

In addition, there is a significant difference in the SARS-CoV-2 viral titers when
comparing rainy days (n = 40) with non-rainy days (n = 110) (U = 1595.00; p = 0.010),
i.e., there are more viral genome copies in the wastewater samples collected on non-
rainy days for the N1 primer (Mdrain=5855.00; Mdnon-rain=13,603.00) (Table 3). Lazuka
et al. observed that SARS-CoV-2 RNA quantification appeared to be strongly influenced
by rainfall events as SARS-CoV-2 RNA quantification decreased on rainy days. However,
we need to consider that the virus keeps circulating in the population on rainy days and a
decrease in concentration or the absence of SARS-CoV-2 RNA detection must be considered
with caution when rain events occur [22].

Table 3. Descriptive analysis of the parameters (Flow, N1 and N2 copies) related to periods with and
without rainfall.

Descriptive Statistics

Rainfall N Mean Standard
Deviation

Minimum Maximum
Percentiles

25thg. 50th (Median) 75th

0

Total
Flow 110 99,792.7 5139.1 87,876.0 120,384.0 96,797.7 99,877.5 102,610.7

CopiesN1 110 19,518.2 21,077.7 1076.0 132,348.0 6112.0 13,603.0 26,180.5

CopiesN2 110 9283.9 12,740.1 0 86,292.0 2422.8 5855.0 11,384.5

1

Total
Flow 40 103,668.9 7707.1 91,892.0 121,542.0 98,543.7 101,957.0 109,617.5

CopiesN1 40 10,719.9 8621.5 1400.0 36,542.0 4246.5 7990.0 15,051.0

CopiesN2 40 6653.4 5646.2 1352.0 23,572.0 2756.0 4482.0 8792.5
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4. Conclusions

In conclusion, SARS-CoV-2 RNA concentrations in wastewater treatment plant in-
fluent (raw sewage) were analyzed over one year and compared with environmental
and populational parameters. Monitoring raw sewage is a broadly applicable strategy
that can contribute to the problem of insufficient diagnostic testing and provide an early-
warning tool for future SARS-CoV-2 outbreaks, mainly in lower- and middle-income
countries. In addition, wastewater-based epidemiology can be used as a tool to aid decision
making in the SARS-CoV-2 post-isolation phase and reinstatement of isolation facing a
seasonal re-emergence.
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