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ABSTRACT: Appropriate mud properties enhance drilling efficiency and
decision quality to avoid incidents. The detailed mud properties are mainly
measured in laboratories and are usually measured twice a day in the field
and take a long time. This prevents real-time mud performance optimization
and adversely affects proactive actions. As a result, it is critical to evaluate
mud properties while drilling to capture mud flow dynamics. Unlike other
mud properties, mud density (MD) and Marsh funnel viscosity (MFV) are
frequently evaluated every 15−20 min in the field. The goal of this study is to
predict the rheological properties of flat rheology synthetic oil-based mud
(SOBM) in real time using machine learning (ML) techniques such as
random forest (RF) and decision tree (DT). A proposed approach is
followed to first predict the viscometer readings at 300 and 600 RPM (R600
and R300) and then estimate the other mud properties using the existing
equations in the literature. A set of data contained MD, MFV, and viscometer readings (R300 and R600) for different samples from the
same mud type. The mud samples were collected after going through a shale shaker. MD and MFV are measured by a mud balance
and a Marsh funnel, respectively, while rheology is evaluated using a viscometer. The data were randomly split into training, testing,
and validation data sets. The ML models’ performance was evaluated through average absolute percentage error (AAPE) and
correlation coefficient (R). The proposed models predicted the viscometer readings as a middle stage with a low AAPE that did not
exceed 4.5% for both models. The suggested models forecasted the rheological properties with a good degree of accuracy, with an
AAPE being less than 7% for most of the parameters. The proposed models can save costs and time since there is no need to include
additional tools in the rig location. Furthermore, these models will significantly aid in avoiding serious problems and achieving better
rig hydraulics and hole cleaning, which in turn will technically and economically enhance drilling operations.

1. INTRODUCTION
Drilling fluids are a mixture of a base fluid and additional
ingredients in specific ratios used while drilling. Several materials
are added to adjust the mud properties such as, but are not
limited to, weighting agents for density control, viscosifiers for
rheology control (e.g., plastic viscosity (PV), yield point (YP),
and gel strength), and lost circulation materials. The cost of
drilling fluids is relatively low, but suitable mud programs and
modification of mud properties while drilling have an impact on
the entire well cost.1 Although mud represents 5−15% of total
drilling expenditures, it may address most of the drilling
problems. Drilling fluids are mainly classified as water-based
mud (WBM) and oil-based mud (OBM). OBM typically
contains a base oil representing the external continuous phase, a
saline aqueous solution representing the internal phase,
emulsifiers at the interface, additives for suspension, weighting
materials, and control additives for oil-wetting, fluid loss, and
rheology. OBM has two main categories named invert-emulsion
and all-oil drilling fluids.2 An inverted emulsion mud contains
approximately 50:50 to 95:5 volume oil-to-water ratio. An all-oil
mud contains 100% oil and does not have an aqueous internal

phase. The inverted emulsion drilling fluid is used to tackle some
drilling problems, such as shale instability, minimize damage to
water zones, and protect casing and tubing against corrosion.3,4

Invert emulsion mud is characterized by its low toxicity, and
brine is added to control salinity to prevent water molecules
from invading formations.5 It is mainly used to drill high-
pressure high-temperature wells owing to its thermal stability
that outperforms WBM and can be used in drilling up to 400 °F.6

Flat rheology SOBM is an inverted emulsion mud possessing
a flat rheology profile that maintains consistent fluid properties
that are independent of temperature and pressure. This flat
rheology profile is considered a major improvement over
conventional invert systems, which are known to have higher
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viscosities at low temperatures and lower rheology at high
bottom-hole temperatures. In comparison to conventional
invert systems, flat rheology SOBM systems provide lower
ECD, leading to fewer drilling problems and minimizing the loss
of whole drilling fluids. The advantage of a flat rheology profile is
that it allows pumping at higher flow rates compared to
conventional mud systems, thus increasing ROP while providing
lower ECD values. It can also be specially formulated and
customized to achieve the flatness of the gel strength structure.
The flat rheology SOBM develops a gel strength structure that
will reduce cutting slip velocities when pumps are off and
prevents sagging especially in deviated and extended reach
wellbores. The flat rheology SOBM system is different from
standard invert systems in two main areas. The first is that the
emulsifier and wetting agent package has a greater solid
tolerance as compared to conventional systems. The second is
that the content of organophilic clay has been significantly
reduced using a mixture of high-performance clays.

Most drilling muds show behaviors that can be described as
non-Newtonian fluids. Dilatant (shear-thickening) and pseudo-
plastic (shear-thinning) fluids are both non-Newtonian in which
the relationship of viscosity versus shear rate is not linear. A
typical mud has a yield point and exhibits shear-thinning
behavior. At elevated shear rates, most models simulate a typical
mud well. Differences among the models are mostly observed at
small shear rates that are most important for hole cleaning and
weighting material suspension. The Bingham plastic (BP) model
has a yield point; however, it does not accurately describe the
fluid behavior at low shear rates. The power law (PL) model
more accurately describes the behavior at low shear rates;
however, it does not contain a yield point that gives inaccurate
results at extremely low shear rates. A typical mud has a behavior
between the BP model and the PL model. This type of behavior
can be approximated by Herschel Bulkley’s (HB) model.7 The
fluid consistency index (K) and flow behavior index (n) are the
parameters of the PL model. Generally, K describes the fluid
thickness and is somehow comparable to effective viscosity. If
mud viscosity increases, then K should increase to describe the
stress/rate relationship. n represents the degree of non-
Newtonian behavior. When n equals 1, the PL model turns
out to be the Newtonian model. If n is higher than 1, the fluid is
described as a dilatant, where effective viscosity goes up with an
increasing shear rate. For mud, pseudoplastic behavior is
common and characterized by an n-value between 0 and 1.7

Rheological models are mathematical equations between shear
rate and shear stress that are used to predict fluid flow behavior.8

Mud rheology in the oil and gas industry can be described by
different models such as the BP model (eq 1), PL model (eq 2),
and HB (yield power law, YPL) model (eq 3).9,10 The HB model
more precisely describes the mud rheological behavior than
other models and gives acceptable estimations of measured
rheological properties for both WBM and nonaqueous mud.
The HB model collapses to the BP model when n equals 1 and
the PL model when τ0 = 0. The HB model is complex and
requires three measurements as a minimum to solve for its
unknowns.9

= + ×YP PV ( ) (1)

= K( )n (2)

= + ×K ( )n
0 (3)

where τ0 is the fluid yield stress, lbf/100 ft2 or Pa, and γ is the
shear rate, 1/s.

The advancement of technology has made it possible to
measure, collect, and store increasingly vast quantities of
information. The term drilling data analytics refers to the
process of utilizing drilling data to gain valuable insights and
improve the performance of drilling operations. The funda-
mental idea behind data-driven models is to identify connections
between the input and output variables of a system, without
relying on an explicit understanding of the system’s physical
behavior. Data-driven models were introduced in the petroleum
industry for different purposes, such as sonic velocities and times
prediction,11−13 static Young’s modulus estimation,14 and oil
production and dynamic risk profile prediction in production
systems.15 The use of machine learning techniques in data-
driven models can provide significant benefits compared to
conventional analytical or numerical models. These benefits
include adaptable model inputs, improved accuracy in
predicting outcomes, and the capability to identify hidden
patterns.16

ML is a discipline that straddles the boundaries of computer
science, statistics, artificial intelligence, and mathematical
optimization. The structure of statistical and differential
equation-based models is determined by assumptions about
the system to be modeled. The strategy in ML is to let data
govern the model. Rather than establishing assumptions about
the model’s shape, an algorithm is used to grow up the model
structure.17 ML has different techniques, such as ANN,
functional networks, support vector machines, ANFIS, RF,
and DT, which show a good performance for prediction and
classification.18 Different ML models were developed for various
purposes, such as fracture pressure prediction,19 density log
generation,20 resistivity prediction,21−23 pore pressure gradient
prediction while drilling,24−27 formation lithology prediction,28

coal pay zones identification,29 rock geomechanical parameters
prediction,30 stuck pipe prediction,31 equivalent circulation
density prediction,32,33 rheological properties prediction,2,34

carbon dioxide solubility estimation in ionic liquids,35

compressibility factor estimation,36 ROP prediction,37 water
saturation prediction,38 early kick detection and estimation in
managed pressure drilling,39 and lithology classification.40 ML is
widely used in the petroleum industry at large and drilling
engineering in different areas, such as drilling fluids, drilling
problems, and well control.16,41 In this study, DTs and RF were
employed to provide two predictive models for viscometer
readings that can be used to estimate different rheological
properties, such as PV, YP, apparent viscosity (AV), n, and K,
using the existing equations in the literature.

Drilling fluid literature studies have been flooded with many
publications over the last two decades that presented models for
mud rheology. Empirical, theoretical, and ML models, as well as
ensembles of models, have all been used in the development of
these models. Mud rheology modeling has the advantage of
predicting mud behavior in extreme conditions such as high
stress, high temperature, and high pressure when conducting
experiments is difficult.42 Table 1 summarizes some efforts done
to predict the rheological properties of various mud types using
ML.

Real-time/dynamic/operational data feed into operations can
enhance the economics, safety, and integrity of the systems in
the oil and gas industry with ML method incorporation.
Mamudu et al.15 introduced prediction models for oil
production and dynamic risk profile in production systems.
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The authors mentioned that the suggested approach may
provide field operators with an improved chance to receive
current predictions regarding the probability of any potential
production decline at any given moment during production
activities. The proposed method is cost-effective that reduces
the computational workload involved in history-matching
processes. It also fills the gaps in current oilfield development
systems by providing dynamic risk forecasts and production
predictions. Onalo et al.11 provided a data-driven model for
sonic wave prediction as these logs are not available in all wells.

The authors described their model as a cost-effective and robust
tool for formation evaluation and can provide log data if the data
have been corrupted for any reason.11 The previous two
examples show the importance of data-driven models in terms of
assessing and reducing risks, cost reduction, safety enhance-
ment, and nonproductive time reduction.

For proper hydraulic control, accurate and frequent measure-
ments of mud rheological parameters are required. It is
particularly vital for intelligent drilling since it provides mud
data for establishing the ROP optimization model. Proper mud
properties can enhance drilling efficiency and minimize drilling
problems. The mud properties are mostly measured in the lab,
making real-time mud optimization and decision-making
challenging. If mud properties cannot be monitored and
decisions cannot be quickly taken, ROP may slow down,
potentially resulting in accidents and significant financial losses.
Consequently, it is significant to find a way to estimate mud

Figure 1. Methodology flow chart for the prediction models.

Figure 2. Relationship of outputs (R600 and R300) with each input (MD
and MFV) for the SOBM in terms of R.

Table 1. Summary of the Related Research on Mud Rheological Property Prediction

reference mud type technique inputs outputs

Razi et al.43 WBM artificial neural networks (ANN) shear stress at 600 rpm, shear rate, temperature, and
concentration

PV, YP, and
AV

Elkatatny et al.44 invert emulsion mud ANN MFV, solid content, and MD PV, YP, and
AV

Elkatatny45 KCl polymer mud ANN MF viscosity, solid content, and MD PV, YP, and
AV

Elkatatny and
Mahmoud46

NaCl WBM ANN MF viscosity, solid content, and MD PV, YP, and
AV

Bispo et al.47 WBM ANN temperature, concentrations of barite, bentonite, and
xanthan gum.

AV

Al-Azani et al.48 OBM ANN MFV, MD, solid percent PV and AV
Avcı49 WBM ANN shear rate, and temperature Shear stress
Abdelgawad et al.50 bentonite spud mud ANN MFV, MD, and solid percent PV, YP, and

AV
Elzenary51 invert emulsion mud ANN and adaptive neuro fuzzy inference

system (ANFIS)
MFV, MD, and solid percent PV, YP, and

AV
Gowida et al.52 CaCl2 brine ANN MFV and MD PV, YP, and

AV
Gomaa et al.53 high-overbalanced

bridging mud
ANN MFV and MD PV, YP, and

AV
Oguntade et al.54 mud with modified

biopolymer
ANN water volume, the concentration of bentonite, and the

concentration of biopolymer
PV, YP, and

AV
Gowida et al.55 high-bentonite mud ANN MFV and MD PV, YP, and

AV
Alsabaa et al.2 invert emulsion mud ANFIS MFV and MD PV, YP, and

AV
Elkatatny56 NaCl mud ANN MFV and MD PV, YP, and

AV
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properties while drilling. Rheological properties are estimated
using a manually controlled rotational viscometer. Given the
complexity of indirect determination of drilling fluid rheology in
the field, various approaches have been introduced in the
literature. Recently, some researchers have investigated the real-

time estimation of mud rheology. The real-time estimation of
mud rheology includes four main techniques: (1) online
rotational Couette viscometer, (2) pipe viscometer, (3) Marsh
funnel-based models (ML or mathematical models), and (4)
tuning fork technology.57 The goal of this work is to predict the

Figure 3. Summary of the prediction framework in this study.

Figure 4. Cross-plots of the predicted versus actual viscometer readings using the DT-based model for training (a) and testing (b).
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rheological properties of flat rheology SOBM in real-time by ML
using frequent measurements such as MD and MFV, usually,
measured every 15−20 minutes. A proposed approach is
introduced to first predict the viscometer readings (R600 and
R300) as an intermediate stage and then estimate the other mud
properties using the existing equations in the literature. The ML
models can save costs and time as there is no need to use
additional tools in the rig location. In addition, these models will
help to avoid serious problems and achieve better rig hydraulics
and hole cleaning, which in turn will technically and
economically enhance drilling operations. Section 2 shows the
methodology, data description along with their statistical
analysis, the ML approaches, and their optimization scheme,
followed by Section 3, which introduces the obtained results of
the models with an in-depth discussion, Section 4 is designed for

the validation stage of the proposed models, and lastly, Section 5
summarizes the work outcomes.

2. MATERIALS AND METHODOLOGY
This work used field data that were measured while drilling using
various flat rheology SOBM samples. Figure 1 briefly shows the
workflow followed to develop two ML models (RF and DT) for
rheological property prediction in real time. The workflow
started with data acquisition, data cleaning, and filtration to get
high-quality data, the training stage for ML models and
optimizing the model hyperparameters, testing model accuracy,
re-training the model in case of low accuracy, and finally
validating the proposed models using a blind holdout data set
that was not involved in training and testing stages.

2.1. Data Description and Preparation. Any learning
algorithm is as good as its input parameters, and usually, input

Figure 5. Profiles of the predicted versus actual values of YP, PV, and AV using the developed DT-based model.
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data are complex and are collected from different sources with
various formats. Due to this complexity, the biggest part of the
efforts put into ML projects is dedicated to data preparation and
exploration stage.58 The collected data set (533 data points)
contained MD, MFV, and viscometer readings at 300 (R300) and
600 (R600) RPM for different samples from the same mud type.
PV, YP, AV, n, and K were estimated using R300 and R600 through
eqs 4−8.7 The mud samples were collected after going through a
shale shaker. MD and MFV are measured by a mud balance and
a Marsh funnel, respectively, while the rheology is evaluated
using a viscometer. The data set covered broad ranges, which is

Figure 6. Profiles of the predicted versus actual values of n and K using the developed DT-based model.

Table 2. Statistical Analysis of the SOBM Data Set

parameter MD MFV R600 R300

min. 70 27 36 24
max. 120 120 178 104
mean 95.8 67 87 52
standard deviation 13.98 12.63 30.76 16.49
range 50 93 142 80
skewness −0.35 0.50 0.90 0.99
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essential to have reliable general models that could confidently
capture the problem’s nature as follows: MD ranged from 70 to
120 pcf with a mean of 95.8 and standard deviation (σ) of 13.98,
MVF from 27 to 120 s/quart with a mean of 67 and σ of 12.63,
R600 from 36 to 178 with a mean of 87 and σ of 30.76, and R300
from 24 to 104 with a mean of 52 and σ of 16.49. Table 2
summarizes the statistical analysis of the data used for training
and testing in this study. Table 3 presents a typical sample of the
flat rheology SOBM data.

= R RPV 600 300 (4)

= RYP PV300 (5)

=
R

AV
2
600

(6)

= ×
i
k
jjjjj

y
{
zzzzzn

R
R

3.32 log 600

300 (7)

=K
R

1022n
600

(8)

The data should be filtered and analyzed since it came from
the field where there may be human or/and instrumental errors
during measurements. Moreover, data filtration is a crucial step
for enhancing data quality, which in turn provides a better
machine learning prediction.59 First, the data set was
investigated searching for any missing value, repeated data
points, negative values, and unreasonable magnitudes which
miss the engineering sense. Then, the outliers can be eliminated

in various ways such as a box and whisker plot. The relationship
of each output with each input was checked using the R-value.
The R-value may take any value between −1 and 1 inclusive. A
high R-value reflects a strong linear relationship. The positive R-
value means the existence of a direct relationship, while a
negative value means an inverse relationship between the two
variables. Almost no linear relationship exists when the R-value
is around zero.60 As shown in Figure 2, R600 had R-values of

Figure 7. Cross-plots of the predicted versus actual viscometer readings using the RF model for training (a) and testing (b).

Table 4. Summary of theDifferentMetrics for the Viscometer
Reading Prediction Using the DT Model

metric R600 train R600 test R300 train R300 test

AAPE (%) 2.3 4.2 1.8 3.6
MAE 1.88 3.36 0.95 1.74
RMSE 3.09 5.85 1.57 3.00
R 0.995 0.975 0.996 0.977
R2 0.990 0.950 0.991 0.955

Table 3. Sample of the SOBM Field Data

MD (pcf) MFV (s/quart) R600 R300

104 65 124 68
98 82 91 53
77 56 49 32

115 72 106 62
86 55 66 41

120 65 120 69
73 48 59 38
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0.748 and 0.75 with MD and MFV, respectively. Similarly, R300
data had R-values higher than 0.74 with all inputs. This proves a
remarkable dependence of viscometer readings on the chosen
input variables. ML can discover the direct and indirect relations
between inputs and target variables. As mud weight increases
which can be translated into more solid content, viscosity and
viscometer readings will most probably go up, which agrees with
the R-values presented in Figure 2. The frequent measurements
of the flat rheology SOBM such as MD and MFV were used as
input parameters to predict the viscometer readings (R600 and
R300) as a middle stage to be substituted in the existing equations
of rheological properties to get PV, YP, AV, n, andK. The SOBM
rheological property prediction framework introduced in this
work can be summarized in Figure 3.

2.2. Machine Learning Algorithms. 2.2.1. DT Model. DT
learning or induction of DT is a predictive modeling approach

utilized in statistics, data mining, and ML. A DT is a
nonparametric supervised learning technique for classification
and regression problems. It utilizes a decision tree to transfer
from observations of an element (represented by branches) to
conclusions about the element’s target value (represented by
leaves). A classification tree is a tree model in which the output
variable is the class (discrete) to which the data belong; in this
tree structure, the leave represents the class label and the branch
represents the feature conjunction that leads to the class label. A
regression tree is a decision tree in which the output variable can
be continuous values (usually real numbers). DTs are among the
most popular ML approaches owing to their intelligibility and
simplicity.61 The DT technique is simple to be understood and
interpreted and trees can be graphically displayed in a way that is
easy for nonexperts to interpret.62 Statistical tests can be used to
validate the predictive model, which makes it possible to check

Figure 8. Profiles of the predicted versus actual values of YP, PV, and AV using the developed RF-based model.
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the model’s reliability. It is a nonparametric technique that
makes no assumptions about the training data. It closely reflects
human decision-making more than other techniques.

After checking data quality, 533 data points were selected to
build the predictive models. The obtained data had been divided
into two groups with approximately 80:20 ratio for training and
testing. The DT hyperparameters should be tuned to get the
optimum prediction performance. The DT model hyper-
parameters, including different combinations of various available
options for DT hyperparameters, were optimized by running

many scenarios for each hyperparameter. The R-value and
different types of errors (root mean squared error (RMSE),
mean absolute error (MAE), and AAPE) were calculated. The
hyperparameters giving the highest R and the lowest errors
between the actual and the predicted outputs were chosen. The
max_features hyperparameter has different options, such as
“auto”, “sqrt”, and “log 2,” which indicates the maximum
number of features DT is allowed to try when looking for the
best split. In case the “sqrt” option is selected, then max_features
= sqrt (n_features), and so on. The max_depth shows the

Figure 9. Profiles of the predicted versus actual values of n and K using the developed RF-based model.
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maximum depth of the tree or the maximum number of levels in
the tree. The min_samples_leaf indicates the minimum number
of samples required to be at a leaf node. When the algorithm
splits the data, the goal is to reduce impurity as much as possible.
The lower the impurity is, the greater the informative power of
the split is. The quantity of impurities in the tree reduces as it
grows deeper. The hyperparameter called min_impurity_de-
crease is used to prevent the tree from splitting further.
2.2.2. RF Model. RF is an ensemble learning approach for

regression and classification problems.63 It contains hundreds or
thousands of trees in which individual tree training is performed
using a slightly different observation set.64 It employs a
technique known as bootstrapping, which is an iterative
resampling technique for estimating population statistics by
sampling the data with replacement. In a procedure known as
aggregation, the forecasts of every tree are averaged to get the
final prediction. Bootstrapping excludes approximately one-
third of the original data set, and this sample is used to internally
test the RF model accuracy.65 RF is better than a single DT
owing to the capability of limiting overfitting without increasing
the error margin.66 The same procedure for data preparation and
division is followed for the RF model. The RF hyperparameters
should be tuned to get the optimum prediction performance. RF
shares many hyperparameters with DTs in addition to some

specific ones. For instance, the n_estimator parameter indicates
the number of trees in the forest.

3. RESULTS AND DISCUSSION
3.1. DT Model. After the optimization process, the DT

model managed to predict R600 and R300 with good R-values of

Figure 10. Cross-plots of the predicted versus actual viscometer readings using the DT-based model for the validation.

Figure 11. Cross-plots of the predicted versus actual viscometer readings using the RF-based model for the validation.

Table 5. RF Model Optimum Hyperparameters

hyperparameter options selection

max_features [“auto”, “sqrt”, “log2”] Sqrt
max_depth [3, 4, 5, ···, 30] 8
N_estimators [3, 4, 5, ···, 150] 100

Table 6. Summary of theDifferentMetrics for the Viscometer
Reading Prediction Using the RF Model

metric R600 train R600 test R300 train R300 test

AAPE (%) 2.5 4.5 2.6 3.9
MAE 2.12 3.48 1.32 1.88
RMSE 3.23 5.66 1.87 3.02
R 0.995 0.976 0.994 0.977
R2 0.990 0.953 0.988 0.954

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06656
ACS Omega 2023, 8, 14371−14386

14380

https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06656?fig=fig11&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06656?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


around 0.995 and 0.98 and with a coefficient of determination
(R2) of 0.99 and 0.95 for training and testing, respectively. The
different types of errors for viscometer reading prediction are
listed in Table 4 showing a high prediction accuracy. The
optimum hyperparameters of the DT model were max_depth of
10 and max_features of log 2. A remarkable matching was
observed between the estimated and recorded outputs as
indicated in Figure 4, proved by high R-values and low errors for
both the training and testing stages. Figures 5 and 6 show the
profiles of the predicted versus actual rheological properties
showing a reasonable prediction accuracy.

3.2. RF Model. After the optimization process, the optimum
RF hyperparameters are listed in Table 5. The RF model
managed to estimate R600 and R300 with good R-values of around
0.99 and 0.98 and with an R2 of 0.99 and 0.95 for training and

testing, respectively. The different types of errors for viscometer
reading prediction are listed in Table 6 showing a high
prediction accuracy. Figure 7 presents the cross-plots of the
estimated versus the recorded viscometer readings in which the
points remarkably coincide with the 45° line, which is confirmed

Figure 12. Profiles of the predicted versus actual YP, PV, and AV using the developed models for the validation data set.

Table 7. Statistical Analysis of the SOBM Data Det

parameter MD MFV R600 R300

min. 70 27 36 24
max. 120 120 178 104
mean 95.8 67 87 52
standard deviation 13.98 12.63 30.76 16.49
range 50 93 142 80
skewness −0.35 0.50 0.90 0.99
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by high R-values and low errors for both training and testing
stages. Figures 8 and 9 show the profiles of predicted versus
actual rheological properties showing a reasonable estimation
accuracy.

4. MODEL VALIDATION
To check the performance of the proposed models, another
blind holdout data set (95 examples) was used for validation

purposes. The data included the frequent mud measurements
(MD and MFV) with their respective viscometer readings in
addition to their different rheological properties. The MD and
MFV were used as inputs to feed the proposed models and the
results were compared with the actual outputs values. Table 7
lists the statistical parameters of the validation data set used for
prediction evaluation. The validation data fall within the same
ranges of the data used for developing ML models. A good
matching was observed between the estimated and the recorded

Figure 13. Profiles of the predicted versus actual n and K using the developed models for the validation data set.
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R600 and R300 readings as shown in Figures 10 and 11. The R-
value of the RF model was slightly higher than that of the DT
model for both R600 and R300. Moreover, the AAPE of the RF
model was lower than that of the DT model that did not exceed
4.1% for both models. Figures 12 and 13 show the profiles of the

predicted rheological properties versus the actual values with
their respective AAPE. The results showed that the RF model
outperformed the DT model, which gave the lowest errors in all
properties except YP.

Recently, ML algorithms have shown promising results in
predicting drilling fluid rheology. Research into new types of
drilling fluids, including those with novel rheological properties,
can expand the understanding of fluid behavior and lead to
improved models. Integrating drilling data with rheology
predictions can lead to a more comprehensive understanding
of drilling fluid behavior and its effect on drilling performance.
The prediction models should be tested and validated in
different drilling environments, such as offshore, onshore, and
unconventional drilling, to understand their performance and
accuracy under different conditions.

5. COMPARISON BETWEEN THE DEVELOPED AV
MODELS AND EXISTING MODELS

Two models were introduced in the literature to estimate AV.
MD and MFV were used as input parameters to predict AV as
introduced by Pitt (2000) in eq 9. Then, Almahdawi et al.
modified Pitt’s equation to include a constant equal to 28 instead
of 25 as presented in eq 10 because the authors found that the
new constant gave better results.

= D TAV ( 25) (9)

= D TAV ( 28) (10)

where AV in cP, D is the mud density in g/cc, and T is the MF
time in s/quart.

For a fair comparison, the validation data set that was not
included in building the ML models was used. The AV values
were calculated using the different models and the metrics such
as AAPE, RMSE, R, and R2 were compared as listed in Table 8.
ML models outperformed the other models by AAPE not
exceeding 4.1% and an R of 0.98. The other models in the
literature gave AAPE in the range of 40−49% and a smaller R-

Figure 14. Cross-plot of the predicted versus actual AV values using
different models.

Figure 15. Relative importance of the input parameters on R600, and
R300 ML models.

Figure 16. Sensitivity analysis distribution for (a) constant MFV and varying MD values and (b) constant MD and varying MFV.

Table 8. Summary of the Different Metrics for AV Prediction
Using Different Models

parameter
Pitt

correlation67
Almahdawi

correlation68
DT

model
RF

model

AAPE (%) 49.26 40.03 4.14 3.93
RMSE 27.39 23.34 3.42 2.98
R 0.90 0.90 0.98 0.98
R2 0.82 0.81 0.95 0.97
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value of around 0.81. Figure 14 shows a comparison cross-plot
for AV prediction using different models. It shows that the Pitt
and Almahdawi correlations overestimate the AV values.

6. INPUT IMPORTANCE AND SENSITIVITY ANALYSIS
To examine the relative importance of the input parameters and
their effect on the output parameters, the relative importance
method in the RF model was used. This method measures the
reduction in impurity that occurs when splitting a feature in the
decision trees. The higher the impurity reduction is, the more
important the feature is. Figure 15 presents the relative
importance of the input parameters for the different ML models
to predict R600 and R300. Mud density has higher importance
than funnel viscosity to predict the output parameters, especially
in the case of the R300 model. These results agreed with the
correlation coefficient of the input data as presented in Figure 2.

To examine the sensitivity analysis, the model was used to
predict R300 and R600 with varying input parameters while fixing
others. Figure 16 shows the cumulative distribution of the
predicted R300 with assuming constant MFV and randomly
varying MD in Figure 16a and then predicting R300 with
assuming constant MD and randomly varying MFV as shown in
Figure 16b. At constant MFV, with variable values of MD, R300
varied from 37 to 71 (range = 34) at an MFV value of 70. With
increasing MFV, the whole curve shifted to higher R300 values
with a minimum of 66 and a maximum of 105 (range = 39) at an
MFV value of 120. Similarly, at constant MD with variable values
of MFV, R300 varied from 32 to 66 (range = 34) at an MD value
of 70. With increasing MD, the whole curve shifted to higher
R300 values with a minimum of 43 and a maximum of 105 (range
= 62) at an MD value of 120. The variability of MD has more
influence than MFV, which is in agreement with the results from
Figure 15.

7. CONCLUSIONS
This study introduced a machine learning (ML) framework for
predicting rheological properties of drilling fluids while drilling,
using frequent mud measurements such as MD and MFV as
inputs to predict viscometer readings, and then estimating other
mud properties using existing equations in the literature. The
results demonstrated the potential for promoting mud system
automation and enabling proactive decisions to avoid drilling
problems and enhance the safety and integrity of drilling
operations. The main outcomes of this study include the
following:

(1) The proposed models accurately predicted viscometer
readings with a low average absolute percentage error
(AAPE) of less than 4.5% for both models.

(2) The models predicted rheological properties with
reasonable accuracy, with an AAPE less than 7% for
most parameters.

(3) The models were validated using a blind holdout data set
from the same mud type, achieving high correlation
coefficients (R-values) of 0.98.

(4) The ML models outperformed empirical correlations for
apparent viscosity prediction, demonstrating their
potential for improving drilling operations.

The proposed framework could also save time and costs
associated with time-consuming lab work and nonproductive
time. However, it is important to note that the proposed models
and hyperparameters were specifically designed for flat rheology
SOBM, and different mud types may have varying responses in

viscometer readings and Marsh funnel viscosity. Input
parameters should also be within the same training ranges and
units for reasonable prediction.
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