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1  | INTRODUC TION

African swine fever (ASF) is a highly contagious disease occurring 
in domestic pigs and wild suids, and leads to serious haemorrhage 
and nearly 100% mortality. ASF is caused by infection with African 
swine fever virus (ASFV; family: Asfarviridae, genus: Asfivirus) (Dixon 
et  al.,  2020). Since its original description in the 1920s in Kenya, 
this viral disease has been highly prevalent in African and European 
countries. In Asia, ASF was first reported in a farm near Shenyang 
City in Liaoning Province in China, in August 2018 (Zhou at al., 2018). 
Thereafter, it quickly spread to other countries in South-East Asia, 
including Myanmar, Laos, Vietnam and the Philippines, as well as 
nearly all provinces in mainland China, in 2019 (Lu et al., 2020). ASF 
outbreaks have also been described in North Korea and South Korea 
in the same year (Kim, et al., 2020; Kim, et al., 2020).

Despite the high mortality rates and socio-economic impacts of 
ASF, no vaccines or therapeutic agents are available for controlling 
its outbreak or its effective treatment (Dixon et al., 2020). Therefore, 
studies on the routes and patterns of ASF transmission and its early 
detection are urgently needed. Molecular epidemiology approaches 
using polymorphic DNA sequences can provide insight into the spa-
tiotemporal patterns of disease transmission throughout the areas 
in which ASF is prevalent. The genomic DNA of ASFV shows a low 
evolution rate. Nevertheless, multiple sites show inter-genomic 
polymorphisms, particularly those containing short tandem repeats 
(STRs), which can be selected as informative markers in epidemiolog-
ical investigations (Goller et al., 2015; Nix et al., 2006).

After ASFV was first isolated from a wild boar in 2 October 2019 
in South Korea (Kim, et al., 2020), we conducted a surveillance pro-
gramme for wild boars in the relevant areas by the National Institute 
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of Environmental Research (NIER). Genotypes of ASFV DNAs ob-
tained during these surveys were investigated via polymerase chain 
reaction (PCR) and nucleotide sequencing to trace viral transmission 
in the wild boar population and monitor the probable emergence of 
viral variants.

2  | MATERIAL AND METHODS

During the nationwide comprehensive monitoring of wild boars from 
2 October to 30 December 2019, 56 viral isolates were collected 
from whole blood or tissue of wild boar carcasses in the border area 
covering Paju and Yeoncheon Counties of Gyeonggi Province and 
Cheorwon County of Gangwon Province by NIER (Figure 1). The posi-
tive rate was highest in Paju (Table 1). Partial segments of B646L (p72) 
and EP402R (CD2v), as well as an intergenic region (IGR) between I73R 
and I329L, were amplified from each of the viral DNAs by PCR using 
specific primer sets, as described previously (Kim, et al., 2020). The 
PCR products were subject to automated paired-end sequencing re-
actions and the resulting contig sequences were used in phylogenetic 
analyses together with their homologues retrieved from the GenBank 
database (neighbour-joining algorithm with the MEGA 6.0 software).

3  | RESULTS AND DISCUSSION

All partial B646L and EP402R sequences of the ASFV isolates were 
identical to those of the original Korean isolate, Korea/19S804/

wb/2019 (GenBank Accession Nos. MN817977 and MN817978). 
These sequences were categorized into the genotype II (Figure 2a) 
and serogroup 8 (Figure  2b) groups, respectively. Most IGR frag-
ments also showed 100% sequence identity to the corresponding 
region of the Korea/19S804/wb/2019 isolate (GenBank Accession 
No. MN817979), except for those of two isolates collected in Paju 
(Korea/19S3965/wb/2019 on 3 December and Korea/19S5464/
wb/2019 on 30 December). The IGR fragment contained an STR 
(5′-GGAATATATA-3′), with a repeat time varying in or among ASFV 
populations (Goller et  al.,  2015; Nix et  al.,  2006). The 10-bp STR 
was inserted three times in the corresponding regions of the major 
Korean ASFV isolates from the wild boar (IGR variant II), similar 
to those in the Russia/Volgograd/wb/2014 (GenBank Accession 
No. KP137637), Belgium/Etalle/wb/2018 (GenBank Accession No. 
MH998359.1) and China/2018/Domestic pig (GenBank Accession 
No. MH735144) strains. The genome of another Korean isolate from 
a domestic pig (Korea/2019/Domestic pig, GenBank Accession No. 
MN603969 [Kim, et al., 2020]) also belonged to the variant II group. 
On the other hand, the nucleotide stretch was repeated two and 
four times in the genomes of the Korea/19S3965/wb/2019 (IGR 
variant I) and Korea/19S5464/wb/2019 (IGR variant III) isolates, re-
spectively (Table 2).

Because the genomes of DNA viruses, including ASFV, show 
relatively low evolutionary divergence, few informative molecu-
lar markers have been detected within the genic regions of the 
viral genomes, as observed by analysis of the B646L and EP402R 
sequences in this study. However, the lengths of genomic STR are 
readily expanded or contracted during DNA replication largely 

F I G U R E  1   Global (a) and locality (b) maps showing the collection sites of African swine fever virus from wild boars in South Korea from 2 
October to 30 December 2019. Local area in Paju County where the IGR variants and pre-existing strain were isolated (dotted box in panel 
A) are magnified in panel B. Dot marked with an arrow in the inset map of panel A indicates the place where the first African swine fever 
case was detected in a wild boar in South Korea. The collection sites of IGR variants I, II and III in Paju County are indicated by a triangle, dot 
and square, respectively, in panel B [Colour figure can be viewed at wileyonlinelibrary.com]
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by slipped strand mispairing (slippage mechanism) (Levinson & 
Gutman, 1987). If the affected STR is in an intergenic non-coding 
region, the allelic variant can be fixed in the population because of 
the low levels of purifying selection (Gemayel et al., 2010). ASFV 
strains with different IGR genotypes (I and II) have been allopat-
rically discovered in Russia (Goller et  al.,  2015) and China (Ge 
et al., 2019; Li et al., 2019). In China, the major IGR genotype prev-
alent in domestic pigs was variant II, whereas an ASFV strain with 
variant III genotype was isolated in a domestic pig farm in Guangxi 
Province on 7 March 2019. The variant I genotype was detected in 
an ASFV isolate from a wild boar in Jilin Province on 16 November 
2018 (Ge et al., 2019 and references therein). However, unlike the 
IGR variants in these countries, those identified in this study were 
sympatrically distributed with the pre-existing type (variant II) in 
a small county (Figure 1b). The time intervals for their emergence 
were also very short (approximately 2 and 3 months after the first 

outbreak in wild boars). Civilian access to the concerned region 
is strictly controlled because the area is near or inside the mili-
tary operation area. Furthermore, after the first ASF outbreak in 
domestic pigs on 16 September 2019, quarantine measures have 
been strictly enforced, and fences have been installed to prevent 
any possible transmission of the virus. Taken together, these facts 
may suggest that the Korean IGR variants I and III were sporadi-
cally generated rather than being independently transported from 
other countries through replication error in the pre-existing IGR 
variant II population.

The probable transmission routes of ASF can be predicted by 
analysing the spatiotemporal distributions of ASFV with distinct 
IGR genotypes (Goller et  al.,  2015). Therefore, the polymorphic 
STR was suggested as an informative marker to discriminate closely 
related ASFV strains (Ge et al., 2019). Currently, we have no evi-
dence supporting clonal expansion of these variants in the relevant 

County
No. of wild boars 
tested

No. of infected wild 
boars (%)

No. of positive whole 
blood/tissue samples

Yeoncheon 302 19 (6.3) 4/15

Cheorwon 473 17 (3.4) 6/14

Paju 117 20 (17.1) 8/9

Other areas 3,782 0 (0) -

Total 4,674 56 (1.0) 18/38

TA B L E  1   Summary of results for wild 
boars examined for ASFV infection in 
2019 in South Korea

F I G U R E  2   Phylogenetic analyses of partial B646L (a) and EP402R (b) sequences of African swine fever virus isolates obtained in this 
study. The neighbour-joining trees were constructed with MEGA 6 based on the Kimura 2-parameter model. Numerals on branching nodes 
indicate the bootstrap values obtained with 1,000 replicates (>50%). The sequences obtained in this study are distinguished by bold letters, 
while the phylogenetic positions of 54 sequences other than those of 19S3965 and 19S5464 isolates are represented by that of the pre-
existing Korea/19S804/wb/2019 isolate (marked with asterisk)
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region, which may be because of their recent emergence. The 
short lifespan of infected wild boars and the slow spatial spread 
of ASFV within wild boar subpopulations (European Food Safety 
Authority et al., 2017) may also be involved in the protected/de-
layed expansion of the variant ASFVs. Surveillance of wild boars 
will be continued until the viral disease is eliminated. If simulta-
neous propagation of these IGR variants is observed in the near 
future, our data will provide a highly informative genetic marker 
for molecular epidemiological approaches to trace both local and 
global transmission of ASFV.

In conclusion, we identified ASFV variants with different IGR 
genotypes during the comprehensive survey of wild boars in small 
counties of South Korea surrounding the original ASF outbreak 
point. Considering the short emergence periods of <3  months 
and sympatric distributions within a narrow geographical region, 
these variant strains are likely to have spontaneously emerged in 
the local viral population through a molecular mechanism(s) such 
as replication slippage. Nevertheless, we cannot exclude the hy-
pothesis that the IGR I and IGR III variants were simultaneously 
transmitted into the local area from the respective foreign coun-
tries. Future investigations adapting additional epidemiologically 
informative markers are needed, to get more conclusive pieces 
of evidence and to better understand the origin(s) of the ASFV 
variants.
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