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Exercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a
condition characterized by paucity of white adipose tissue, with eventual diabetes, and
steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for
lipid droplet formation. Male twelve-week-old B6 knockouts (KO) andwild type (WT) littermates
were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8). KO
weighed 14% less than WT (p=0.01) and exhibited an absence of epididymal adipose tissue;
KO liver Plin1 via qPCR was 9-fold that of WT (p=0.04), consistent with steatosis. Bone
marrow adipose tissue (BMAT), unlike white adipose, was measurable, although 40.5% lower
in KO vs WT (p=0.0003) via 9.4T MRI/advanced image analysis. SEIPIN ablation’s most
notable effect marrow adiposity was in the proximal femoral diaphysis (-56% KO vs WT,
p=0.005), with relative preservation in KO-distal-femur. Bone via mCTwas preserved in SEIPIN
KO, though some quality parameters were attenuated. Running distance, speed, and time
were comparable in KO and WT. Exercise reduced weight (-24% WT-E vs WT p<0.001) but
not in KO. Notably, exercise increased trabecular BV/TV in both (+31%, KO-E vs KO, p=0.004;
+14%, WT-E vs WT, p=0.006). The presence and distribution of BMAT in SEIPIN KO, though
lower than WT, is unexpected and points to a uniqueness of this depot. That trabecular bone
increases were achievable in both KO and WT, despite a difference in BMAT quantity/
distribution, points to potential metabolic flexibility during exercise-induced skeletal anabolism.

Keywords: exercise, endocrinology and metabolism, congenital lipodystrophy, bone, SEIPIN, BSCL2, anabolism,
bone marrow adipose tissue (BMAT)
INTRODUCTION

Exercise -induced skeletal anabolism is a vital physiologic process, which in addition to calcium,
vitamin D, and hormonal stimuli, necessitates substrate energy, fueling osteoblasts as they lay new
bone (1). An array of cells orchestrate this bone-building response to mechanical loading (2–11),
including osteocytes, osteoclasts, endothelial cells, and their progenitors. Osteoblasts, while able to
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use various substrates (12) prefer energy-rich fatty acids (13).
Bone marrow adipose tissue (BMAT) likely serves as the energy
depot in exercising, non-calorically restricted mice (14–16) but it
is unknown if metabolic flexibility permits use of other substrates
to reproducibly build bone. Here we asked whether exercise-
induced bone is achievable in the setting of a mouse model of
congenital generalized lipodystrophy (CGL), characterized by a
near absence of peripheral white adipose tissue stores.

Human studies show a varied effect of partial and generalized
congenital lipodystrophies on bone, which might be due to disease-
specific mutations. An increase in bone quantity has been noted,
alongwith advanced skeletal age; yet, there is also evidence of skeletal
‘harm’, in the form of cystic or osteolytic bone lesions (17–19). Lima
et al. shows a higher bone mass in trabecular sites, contrasted with a
reduction in the distal radius, a cortical site (20). A comprehensive
radiologic analysis of the skeleton in 3 CGL patients (21) reports
cystic bone lesions, multiple long bone defects, reduced BMAT,
periarticular hyperemia, as well as increased activity via triple phase
scintigraphy in some skeletal sites. In some (mutations Bscl2,
Agpat2) there is a reduction in marrow fat via MRS (22–24); while
in others (mutations CAV1, LMNA) a preservation of BMAT is
noted (25, 26).Mousemodels like A-ZIP fat-less (27), Cav1 (-/-) (28),
transgenics applying diphtheria toxin to ablate adipocytes (29) or
PPARg(+/-) (30), reveal increasedbonequantityorosteosclerosis.The
precise effect of CGL generally, and specifically that of Bscl2/SEIPIN
deficiency on bone, remains essentially unknown. Defined by an
inability to store triglycerides in adipocytes, lipodystrophy results in
diabetes, hypertriglyceridemia, heart disease, and intellectual
disability (31–33). In humans, the most clinically severe CGL
arises due to loss of function of Bscl2 (34), encoding SEIPIN,
which packages lipid and protein cargo into maturing droplets
necessary for adipogenesis (34–37). We thus hypothesized that in
a mouse model of SEIPIN deficiency, attenuated BMAT storage or
function might alter exercise -induced bone formation.

Due to numerically limited human studies of CGL, animal
studies are vital in the interrogation of BMAT and bone-response
to exercise. Methods to quantify and visualize BMAT distribution
in rodents are also unparalleled in human trials (15). We asked if
adiposity in the marrow is measurable in lipodystrophic mice, and
whether exercise regulates bone, when adipose stores are scant.
We were surprised to find a quantifiable marrow adipose tissue
(BMAT) depot in the SEIPIN KOmice by histomorphometry and
MRI. While SEIPIN KO BMAT was present, it was lower than
WT, particularly in the proximal femur, with relative preservation
of BMAT in the distal femur. The presence of BMAT in SEIPIN
KO contrasted with an absence of white adipose tissue. We also
discovered that exercise-induced trabecular bone was robust in
SEIPIN KO, even without exercise-induced attenuation of BMAT,
highlighting a possibility that SEIPIN KO rely on an alternative
substrate to fuel skeletal anabolism.
MATERIALS AND METHODS

Animals, Diet, and Exercise Intervention
Procedures and ethical guidelines of the University of North
Carolina’s Institutional Animal Care and Use Committee
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(IACUC) were adhered throughout the study. Male, twelve-
week-old, wild-type (WT) and global SEIPIN knock-out (KO)
mice (laboratory of Weiqin Chen) were randomized to running
or sedentary groups as available due to breeding. Global SEIPIN
KO mice were generated as previously described (38, 39). Briefly,
Bscl2 exon 3 germ-line deletion was accomplished by crossing
mice with loxP Bscl2 allele to mice expressing Cre recombinase
driven by germ (oocyte) specific promoter (Zp3-cre, Jax
#003394). Screening of progeny via PCR for loss of the Bscl2
exon 3 was performed. After the Bscl2-null allele was generated,
the strain was crossed with C57BL/6 for 3 generations and
inbreed with heterozygotes to obtain homozygotes. The Bscl2-
nulls were backcrossed at least 6 times prior to initiation of these
experiments. C57BL/6 mice of this age were selected as BMAT
and exercise response has not previously been quantified in this
sample. Males were selected due to an abundance of prior
metabolic data in male 12-week-old SEIPIN KO (39). Mice
were housed in controlled light (12-hour light/12-hour dark),
temperature (21-22 degrees Celsius), and humidity (range 30-
70%) conditions, with ad libitum access to food and water, and
acclimated for 5 days prior to initiation of experiments. Mice
were randomly assigned to the following experimental groups for
6 weeks: non-exercising WT (WT, n=5) (2), exercisingWT (WT-
E, n=6), (3) non-exercising KO (KO, n=8), and (4) exercising KO
(KO-E, n=6). For MRI analyses, WT-E group was excluded due
to an insufficient number of specimens. Running intervention
length did not differ between groups. Mice were 18 weeks of age
at harvest; age at harvest did not differ between groups. Mice
were individually housed for the duration of the experiment to
track daily wheel running. Exercise groups were provided access
to running wheels as previously described (5, 40, 41). Wheel use
was monitored using a Mity 8 Cyclometer (CC-MT400, Cat Eye,
Osaka, Japan). All mice were fed a standard 10% fat diet
(#D12450H, Research Diets, New Jersey, USA) for the duration
of the experiment. Body weights were measured weekly.

3D Quantification and Imaging of Bone
Marrow Adipose Tissue
Quantification of BMAT was performed via high-resolution 9.4T
MRI with advanced image analysis for 3D volumetric BMAT
analysis, a method previously validated against both osmium-
stained-mCT with advanced image analysis, as well as
histomorphometry (see Expanded Supplemental Methods,
Supplementary Figure 1) (14, 15). Mechanical loading or
weight-bearing exercise in rodents has been shown to affect hind
limbs, e.g., tibia and femur, but also other sites (42–44). Progenitor
populations in the femur (10) aremore exercise-responsive, though
both have strong response and are therefore preferred for exercise
experiments, as comparedwith forelimbs (10). Briefly, femurs were
analyzedwith a 9.4Thorizontal small-boreMRI scanner toquantify
BMAT volumetrically (14, 15). Water and fat maps were obtained
with a 2-dimensional RARE imaging sequence with the following
parameters: RARE factor= 4,TE= 28ms, TR=4000ms, number of
averages = 4, number of slices = 24, slice thickness = 0.5 mm, in-
plane resolution = 100×100 mm2, matrix size = 130×130. Utilizing
the fact that the fat and water protons have an NMR frequency
separation of 3.5 ppm, a Gaussian-shaped 90-degree saturation
January 2022 | Volume 12 | Article 782194
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pulse with a width of 2 ms was applied preceding the RARE
sequence to suppress the fat or water signal while the other signal
remained unaffected. Fat andwater imageswere acquired by setting
the saturation pulse frequency to be the same as the water and fat
frequencies, respectively.

In our processing workflow, we manually subdivided the full
images containing all 10 samples into individual images for each
bone. Then, we employed water images to manually outline
femoral bone masks using Insight ITK-SNAP (open-access www.
itksnap.org) (45). Using these bone masks, interior bone regions
were masked from other image parts in both water and fat maps.
Next, we established a common, study-specific reference space
by computing an unbiased average image (46) from masked
water maps using the ANTs registration software (47). All
individual water and fat maps were then propagated into
the common space, where voxel-wise correspondence allows
direct comparison of intensities. Average fat maps for each
experimental group were computed in the common space and
superimposed on the common, average water image for
visualization of group fat maps as in Figure 2A. Fat map
intensities were represented with a colored heat map in
3DSlicer for visualization (open-access www.slicer.org) (45,
48). 3D Slicer is a platform distributed under a BSD-style
open-source license that is broadly compatible with the Open-
Source Definition by The Open-Source Initiative and contains no
restrictions on legal uses of the software. For BMAT
quantification, we created a regional label map of the femur,
excluding cortical bone regions, with regions for the epiphysis,
metaphysis, and diaphysis. Intensity weighted volume of BMAT
was then quantified via regional fat histograms.

Bone Marrow Adipocyte Quantification
via Histomorphometry
Fixed and decalcified femurs were embedded in paraffin,
sectioned at 5 µm, stained with hematoxylin (MHS16, Sigma-
Aldrich, St. Louis, MO, USA) (14, 49). Imaging on an Olympus
X81 at 4x and 40x.The 40x images were obtained at the distal
femoral metaphysis, where lipid content is maximal. ImageJ was
used to isolate adipocytes within 40x images and to quantify
adipocyte size as previously described (50). Globular maxima
were removed manually to isolate defined adipocytes. The
“Analyze Particles” function was used to outline cells and
calculate area in pixels. A lower limit of 1000 pixels was
applied to N=2-3 mice/group, with a minimum of 5 distinct
histologic regions per section, as well as a minimum of 3 sections
per animal. A minimum of 20 adipocytes were analyzed for
adipocyte area measurement per mouse in the 3 sections. To
assess adipocyte number via ImageJ, the marrow cavity at the
distal metaphysis was imaged at a magnification of 4x and
adipocytes were manually counted. Adipocyte number was
then normalized to the total metaphyseal area assessed to
obtain adipocyte number per square (#/mm2). Presence of
adipocytes in the femur of B6 mice of similar age, via H&E as
well as perilipin 1 immunohistochemistry are shown in
Supplementary Figure 1 (Supplementary 1A–C distal femoral
metaphysis, Supplementary 1D proximal femoral diaphysis).
Frontiers in Endocrinology | www.frontiersin.org 3
Bone Microarchitecture and
Biomechanical Testing
Bone microarchitecture parameters of the proximal tibia
metaphysis and mid diaphysis were quantified ex-vivo via high
resolution mCT (Scanco mCT40, UNC- Chapel Hill Biomedical
Imaging Research Center, resolution 12 mm; E 55 kVa; I 145 mA)
(51, 52). Briefly, the interface of trabecular and cortical surfaces
was manually contoured. To resolve the compartments, natural
contour was preserved at the endosteum, where the cortical
surface was delineated from trabecular struts based on variations
in discrete density values (mgHA/ccm). Subsequently, an
automated algorithm was applied to quantify bone in each
compartment. Parameters analyzed in trabecular bone include:
Ratio of the segmented bone volume to the total volume of region
of interest (Bone Volume Fraction; BV/TV); Measure of average
number of trabeculae per unit length (Trabecular number;
Tb.N); Mean thickness of trabeculae, assessed using direct 3D
methods (trabecular thickness; Tb.Th); Mean distance between
trabeculae, assessed using direct 3D methods (Trabecular
separation; Tb.Sp). Parameters in cortical bone include: Total
cross sectional area inside the periosteal envelope (Tt.Ar);
Cortical bone area (Ct.Ar) calculated from cortical volume
divided by number of slices x slice thickness; Cortical area
fraction (Ct.Ar/Tt.Ar); Average cortical thickness (Ct.Th).

TRAP Stain
Femurs were fixed in 10% formalin, decalcified in formic acid
(UN3412 Immunocal, StatLab, Texas, USA), paraffin-embedded,
and sectioned longitudinally at 5 µm, and mounted on glass
slides. Xylene- deparaffinized sections were rehydrated with
graded ethanol, rinsed with deionized water, and stained for
TRAP by a buffer containing Naphthol-AS-BI-phosphate
(70485, Sigma-Aldrich, St. Louis, MO, USA) followed by a
buffer containing Sodium Nitrite (237213, Sigma-Aldrich, St.
Louis, MO, USA) and Pararosaniline dye (215600, Sigma-
Aldrich, St. Louis, MO, USA). Fast Green stain was applied
(F7252, Sigma-Aldrich, St. Louis, MO, USA), dehydrated, then
exposed to Xylene before mounting with Cytoseal (8312-4,
Thermo Fisher Scientific, MA, USA). Images were obtained via
an Olympus IX81 and TRAP was quantified using open-source
software (50).

Real-Time qPCR
Whole tibia mRNA was reverse transcribed and analyzed via
real-time qPCR as previously described (53–55). Briefly,Ten µL
of cDNA from each experimental condition were pooled and
diluted 1:10 to 1:10,000 to generate a 5-point standard curve. A
non-template control was added to each PCR reaction. Standards
and samples were run in duplicate. PCR products were
normalized to GAPDH. PCR primer sequences are available in
Supplemental Table 1.

Statistical Analysis
Analyses were performed using GraphPad Prism Version 9.1.0
(GraphPad, San Diego, CA, USA). Data sets passed the Shapiro-
Wilk normality test. We applied the one-way or two-way analysis
January 2022 | Volume 12 | Article 782194
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of the variance or ANOVA (genotype x exercise) with correction
for multiple comparisons via Tukey’s post-hoc test. Significance
was defined as an a less than 0.05. Adipocyte area was assessed
via nested ANOVA. Running parameters (WT-E vs KO-E) were
analyzed using an unpaired, two-tailed t-test.
RESULTS

SEIPIN Deficient Mice Run Similarly
to Wild Type
To investigate the effect of exercise on bone and BMAT, we
employed a lipodystrophic mouse with global ablation of Bscl2,
encoding SEIPIN, a protein required for lipid droplet formation.
Ourpriorwork showed that theseBscl2KOmice arehyperglycemic
and hyper insulinemic by 10 weeks of age, though this was not
quantified in the present cohort (39). Lipodystrophic KO weighed
less thanWT littermates throughout the experimental period, with
a final weight 14% less than WT (p=0.01) (Figures 1A, B). Prior
studies similarly note reduced weight in KO, though at a younger
age (39).Consistentwith lossof SEIPIN(39, 56),KO-exercisers and
non- exercisers- lacked epididymal fat pads. In terms of other
adipose depots, prior work by our team (39) in the same Bscl2-/-
mice showed loss or reduction of several depots including
subcutaneous, interscapular, perirenal, gonadal WAT, as well as a
histological appearance of smaller adipocytes possessing mostly
unilocular lipid droplets. Regarding lean mass, prior work in the
same Bscl2-/-mice showed an increase in leanmass consistent with
lipodystrophy (39). The liver Plin1 via qPCR was 9-fold higher in
SEIPIN KO than WT (p=0.04), consistent with probable steatosis
(39), which was also supported by gross examination
demonstrating enlarged, pale livers (Figure 6).

Harvest weights were highest in the WT non-runners (40.3 ±
7.8 g Figure 1A). Exercise associated with significantly reduced
weight in WT-E vs. WT at each week of the experimental period
(Figure 1A), consistent with prior work (14, 15, 41) Notably, we
found that KO-E weight did not differ significantly from KO,
diverging from the exercise-effect on body weight noted in WT.
One of the early publications by Seip et al. (56) pointed to
hyperphagia in this form of lipodystrophy in humans. Based on
this and our prior work in mice (39), increased caloric intake in
SEIPIN KO is anticipated. It is possible that caloric intake in
SEIPIN KO-E was attenuated as lipodystrophy has been
associated with hyperphagia in the literature (39), however as
caloric intake was not quantified in our analysis, we cannot
firmly state the cause for this.

Daily running parameters were similar in KO-E (7.8 ± 2.7
km/day Figure 1C) and WT-E (10.7 ± 2.2 km/day, p=0.07
though trended less). Average running speed (1.81 ± 0.21 km/
hr. in KO-E; 2.0 ± 0.2 km/hr. in WT-E, p=0.20) and daily
running time were similar between groups (262 min ± 46 min in
KO-E; 292 ± 31 min in WT-E vs, p=0.2)

Distal Femur BMAT Is Present in SEIPIN KO,
and Reduced in the Proximal Femur Diaphysis
Next we turned to investigate BMAT via 3-dimentional MRI in
the 9.4T scanner, quantifying and localizing femoral BMAT with
Frontiers in Endocrinology | www.frontiersin.org 4
advanced image analysis (Figures 2A–D and 3A–D) (5, 45–47)
(BMAT quantification: Extended Supplementary Methods,
Supplementary Figure 1) BMAT was visualized via superimposed
average group images (Figure 2A). It is notable that BMAT was
extant and quantifiable in SEIPIN KO, though measuring 40.5%
less than WT (p=0.003) SEIPIN ablation resulted in a significant
reduction of BMAT in the hip, specifically the proximal
diaphysis (-56% KO vs WT, p=0.005, Figure 3A), with relative
preservation of BMAT in the KO-distal-femur (Figure 2B). Prior
work demonstrated that exercise associates with reduced BMAT
in WT animals fed ad-libitum (14, 15, 40, 41). Due to insufficient
number of specimens (absent running data in one animal
and poor MR image quality in another). WT-E group was
excluded from this analysis, but the group was not required to
test our hypotheses (14, 41). The WT-E group was included in
other analyses such as bone microarchitecture, qPCR and
histomorphometry. Histomorphometric quantification of
marrow adipocytes via hematoxylin staining showed similar
average adipocyte number and size across the groups
(Figure 2E). The high-resolution MRI sequence for volumetric
BMAT quantification correlates well with osmium stained-mCT
analyses, as well as histomorphometry (15).While it is valuable to
show histological support for 3-dimensional, volumetric BMAT
via high resolution MRI, it is the MRI data that is most
conclusive representing higher volume throughout the entire
bone; thus, our conclusions were largely based on MRI
quantification of BMAT. Whole bone adiponectin mRNA was
53% lower in KO vs. WT (Figure 2F, p=0.039) and 64% lower in
WT-E vs WT (p=0.018). Whole tibia mRNA of white and brown
adipose tissue markers, as well as bone markers, did not
significantly vary between groups (Figure 6). In sum, the
presence of BMAT in SEIPIN KO was notable, and the fact
that BMAT was more proximally distributed in the femur, than
in WT based on MRI quantification (Figures 3A–D).

Increased Bone in Exercisers, Both WT
and Lipodystrophic SEIPIN KO
While in humans there is much to be discovered about the type
of exercise that optimally stimulates (57–60) bone, wheel
running in rodents reproducibly associates with skeletal
anabolism (15, 40, 41). Moreover, as wheel running increases
bone alongside a diminution of BMAT (15, 40, 41, 61), we asked
whether BMAT, as well as bone quantity/quality, are regulated
by exercise SEIPIN deficiency. At the outset, we hypothesized
that loss of SEIPIN would lower BMAT, thus lessening exercise-
induced skeletal anabolism. To our surprise, despite the lower
quantity of BMAT in SEIPIN KO, exercise increased trabecular
BV/TV in both groups (+31%, KO-E vs KO, p=0.004; +14%,
WT-E vs WT, p=0.006, Figure 4A), despite a difference in
BMAT quantity/distribution (Figures 2A, B and 3A–D). The
between-group comparisons for BV/TV revealed p= 0.9797 for
WT-E vs KO-E. Exercise accounted for 43% of the total variance,
while genotype alone accounted for only 1.48% of the variance.
When combined, genotype plus exercise account for 4.5% of the
total variance. Other trabecular parameters such as trabecular
thickness and separation were similarly responsive to exercise in
both KO and WT groups (Figure 4A).
January 2022 | Volume 12 | Article 782194
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With the cortical parameters, a genotype effect was stronger
than that of exercise. Specifically, Tt.Ar was 35% lower in KO vs
WT (Figure 4B, p<0.0001) accounting for 78% of the variance, a
finding that is possibly related to lower body weight in SEIPIN
KO. The Ct.Ar was ~ 10% higher in KO (Figure 4B) however
this did not reach significance (p=0.09).The cortical bone volume
fraction (Ct.Ar/Tt.Ar) failed to show an effect of genotype or
exercise in our analysis (Figure 4B).

Consistent with cortical geometry, polar moment of inertia
(pMOI) in SEIPIN KO was reduced by -21% (p=0.049
Figure 4B) and the rotational moment of inertia (MOI), an
index of resistance to bending, was – 38% in the YY (Iyy) plane
vs WT (p=0.025 Figure 4B) pointing to possible cortical bone
loss. Histomorphometric analysis of TRAP-stained sections
(Figure 5) showed a similar quantity in the experimental groups.
DISCUSSION

The skeleton demonstrates an anabolic response to exercise in
animal (6, 15, 62–64) and human (60, 65, 66) studies. Despite
clinical guidelines recommending lifestyle and exercise
intervention (67) as a first-line therapy the effect of mechanical
loading or exercise on bone and BMAT, has not been investigated
Frontiers in Endocrinology | www.frontiersin.org 5
in lipodystrophy. Our preclinical data point to a robust increase in
trabecular bone quantity with exercise in lipodystrophic SEIPIN
KO mice, despite a scarcity of peripheral adiposity, as well as less
BMAT in the proximal femoral diaphysis. These findings,
pertinent not only for an improved understanding of a
musculoskeletal response to exercise, should prompt additional
study of the therapeutic potential of non-pharmacologic, exercise-
based therapies for lipodystrophy.

We previously suggested that marrow adipose stores provide
metabolic substrates for exercise-induced bone formation (15,
40, 41). It remains unclear if bone cells and their precursors
harbor metabolic flexibility, as related tissues like skeletal muscle
and cardiomyocytes preferentially rely on fatty acid b-oxidation
for ATP during exercise (68, 69). Metabolic flexibility is
discussed in reference to skeletal cells known to require fatty
acid oxidation (70) though many cells in the niche participate in
bone turnover and could be impacted by substrate availability.
The reduced peripheral white adipose stores in SEIPIN KO
means that they have a reduced capacity to buffer fatty acids
from exogenous and endogenous sources and serve as a storage
depot, thought to result in metabolic inflexibility that requires a
constant supply of metabolic substrates (71). Few studies
compare CGL patients with healthy, age-matched controls, and
thus it is unknown what are the expected differences in body
A B

C

FIGURE 1 | Lipodystrohic SEIPIN KO run similar to WT despite lower body weight. Male SEIPIN KO and WT littermates allocated to voluntary running exercise (E) or
non-exercise groups (KO, WT) at twelve weeks for a six-week experimental period (N=5-8). (A) Individual body weights throughout and (B) at harvest. (C) Voluntary
wheel running metrics via cyclometer- average daily running distance (km/day), average running speed (km/h), and average daily running duration (min/day) in WT-E
and KO-E. Data as individual values on box and whisker plots (min to max). Horizontal lines represent means. Significance via 2-way ANOVA with Tukey's post hoc
(A, B) or unpaired t-test (C) Between-group * or #p < 0.05; **or ##p < 0.01; ***or ###p < 0.001.
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weight with and without exercise. Percent change in body
weights were as expected in WT exercisers compared to
control (72). Remarkably, exercise in SEIPIN KO did not result
in weight loss, which might be due to known hyperphagia in
CGL, thus mitigating the metabolic inflexibility, though this
cannot be stated with certainty since caloric intake was not
Frontiers in Endocrinology | www.frontiersin.org 6
quantified in our study. Thus, our current study with a robust
exercise-induced bone in SEIPIN KO means that BMAT might
have no role or potentially a different role in skeletal anabolism of
SEIPIN KO. Abundant in vitro data suggests mechanical signals,
mediated by Wnt/b-catenin, cytoskeletal elements, as well as
epigenetics -e.g., EZH2- (73) serve to bias mesenchymal stem
A

B C

E F

D

FIGURE 2 | Bone Marrow adipose tissue (BMAT) is extant, but reduced in SEIPIN KO Lipodystrophy. 12-week old male Bscl2 -/- KO allocated to exercise (E) vs
non-exercise for 6 wk. compared to WT (A) Visualization of BMAT via 9.4 T MRI with advanced image analysis; each image is an average from superimposed
individual images in the sagittal plane. Volumetric quantification of BMAT form N=5-7 MRI images is shown in (A). In (B–D), BMAT values are shown as %
relative to WT mean. (B): Bone Marrow Adipose Tissue /Bone Volume (BMAT/BV). (C): Total Femoral Bone Marrow Adipose Tissue (BMAT). (D): Bone Volume
(BV). Group differences in (B–D) were analyzed via one-way ANOVA with Tukey's post-hoc test, **p < 0.01. Due to insufficient number of specimens, WTE
group was excluded. (E) plot of histomorphometric analysis: adipocyte area (1mm2) and number (1/mm2), via lmageJ, with X-axis representative of 2-3
experimental animals. For data in (E) there were no significant differences between groups by nested one-way ANOVA. (F): Whole tibia adiponectin (APN) mRNA
via qPCR (n=5-8 I group) via 2-way ANOVA, Tukey's post hoc, between-group *p < 0.05. Data as individual values on box and whisker plots (min to max).
Horizontal lines represent means.
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cells away from the adipocyte lineage, thereby promoting bone;
yet these questions remain to be definitively answered in vivo.
Many of these mechanisms are likely operating in concert with
metabolism to achieve exercise-induced bone formation. Future
work is needed to improve our understanding of how exercise
impacts bone health and metabolic health in lipodystrophy.
Frontiers in Endocrinology | www.frontiersin.org 7
Our finding of quantifiable but lower quantity of BMAT in
SEIPIN KO is new and provides a systematic quantification of
this depot in a mouse model of severe generalized congenital
lipodystrophy. In humans, CGL via SEIPIN deficiency is
characterized by an absence of white adipose tissue stores
(31, 32, 74, 75). Marrow Adipose Tissue in lipodystrophy has
A

B

C

D

FIGURE 3 | Seipin KO exhibit reduced BMAT in the proximal femoral diaphysis. Twelve-wk.-old male SEIPIN KO allocated to exercise (E) vs non-exercise for 6
weeks, compared to wild type (WT) (n=5-8). BMAT quantified by 9.4T MRI with advanced image analysis to analyze regional distribution of BMAT relative to bone
volume (BV). Data expressed as relative% BMAT to WT mean. (A) BMAT/BV assessed at the hip and the proximal diaphysis (p.dia). (B) BMAT/BV assessed at the
distal diaphysis (d.dia), metaphysis (meta), and epiphysis (epi). Analyzed via one-way ANOVA with Tukey's post hoc, *p < 0.05. Data as individual values on box and
whisker plots (min to max). Horizontal lines represent means. (C) Visualization planes for 9.4T MRI inboth Figures 2 and 3. (D) Extended group mean slices obtained
at indicated planes.
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not been sufficiently quantified due to the rarity of this disorder
(17, 18, 20, 21, 76); though it has been investigated in rodents in
other less severe forms of lipodystrophy (PPARg +/- or Cav1-/-)
(77). A study of adipocyte-specific deletion of Bscl2, rather than
global deletion, showed preservation of vertebral BMAT with a
relative loss of tibial (proximal and distal) BMAT, though these
animals do not exhibit metabolic dysfunction as noted in global
SEIPIN deletion (71). Prior case reports measured BMAT via
biopsy or MRI however the small subject number in these
precludes a definitive answer (23–25). Interestingly, the prior
Frontiers in Endocrinology | www.frontiersin.org 8
human studies had mixed reports on preservation of bone
marrow adipose across CGL causal mutations (23–25). This
study demonstrated that global ablation of SEIPIN in mice
associated with reduced marrow adiposity in the proximal
femur- and relative preservation in the distal femur. This
finding of preservation at the distal end of a mechanically
sensitive long bone and the reduction of BMAT proximally,
might be viewed as consistent with the prior literature in both
human and animal studies which was mixed and reinforces the
need for quantitative volumetric investigations of BMAT that
A

B

FIGURE 4 | Higher bone quantity in exercising WT and lipodystrophic SEIPIN KO mice. Twelve-week-old male SEIPIN KO and WT allocated to exercise (E) vs non-
exercise for 6 weeks (n=S-8). (A) Trabecular bone microarchitecture (BV/TV, Tb.N, Tb.Th, Tb.Sp) assessed at the proximal tibial metaphysis via 1JCT. (B) Cortical
geometry (Ct.Ar, Tt.Ar, Ct.Ar/Tt.Ar) and biomechanical measures (lxx, lyy, pMOI) assessed at the mid-tibial diaphysis. Data plotted as individual values with means
represented by horizontal lines. Significance assessed via 2- way ANOVA, Tukey's post hoc. Significance for between-group comparisons: *p < O.OS; **p < 0.01.
Data as individual values on box and whisker plots (min to max). Horizontal lines represent means.
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might clarify the physiologic role of the distal vs the proximal
femoral BMAT depot.

Prior studies suggested an increase in bone mass in CGL
along with cystic bony lesions. Here, SEIPIN KO mice had
similar trabecular bone metrics compared to WT, while
cortical parameters demonstrated a negative effect of genotype
on cortical bone geometry. Our data fits with clinical reports of
bone parameters in CGL patients, assessed via DXA, showing
increased density primarily at trabecular sites, whereas cortical
sites, like the radial diaphysis, is decreased (20).

Several adipokines are known to play a role in whole body
metabolism and possibly in the regulation of BMAT (78).
Though not assessed here, leptin plays a key role in the
regulation of bone mass (79) and its deficiency has been
proposed to be causal in driving the bone phenotype in
lipodystrophy (80). However, despite a beneficial therapeutic
effect on metabolism in CGL patients, leptin therapy fails to
attenuate bone mass (23). Adiponectin is associated with fat
mass, particularly in exercise-induced weight loss (81). CGL
lipodystrophic patients exhibit decreased serum levels of
adiponectin, consistent with global reduction of adipocytes
(82). In bone, we found significantly lower adiponectin mRNA
in SEIPIN KO which might be due to lower BMAT; serum
adiponectin levels were not assessed. Prior work suggested Bscl2
may play a role in brown adipose tissue function (83), however
BAT-specific Bscl2 deletion showed Bscl2 is not required for
brown adipogenesis, but rather plays a cell-autonomous role in
Frontiers in Endocrinology | www.frontiersin.org 9
mediating BAT development and function (84, 85). Marrow
adipocytes in our global Bscl2 KO and WT sections were
unilocular and similar between KO and WT, though locularity
and mRNA analyses (Figure 6) are insufficient to exclude brown/
beige properties and require additional investigations (UCP1
staining, or ultrastructural as well as bioenergetic analyses of
mitochondria (86, 87), are important for future studies. No
difference in bone mRNA for sclerostin and osteocalcin was
found between groups, even with exercise-induced bone
formation, in line with prior work (14). Studies that showed an
attenuation of sclerostin/osteocalcin in BSCL (88) measured
these in the serum, whereas our study investigated these solely
in bone and thus cannot be compared.

With regard to BMAT quantification, we and others
previously published on presence of BMAT in similar age
animals in long bones, femur and/or tibia (14, 15, 40, 41, 89,
90), as well as validating this method against histology and
osmium-µCT (15) (Supplementary Figure 1, Extended
Methods). High resolution Magnetic Resonance (MR)-based
methods are considered gold standard for analysis of adipose
depots and body composition across multiple organisms. MR-
based methods to look at BMAT were published as early as1990
in the radiology literature (91) and eventually in the early 2000’s
in bone and endocrine fields and beyond (92–102). In sum, high
resolution MR based methods are widely used for preclinical and
clinical applications, for quantification of white adipose stores,
body composition analyses, as well as for quantification
of BMAT.

Key limitations of this study include the absence of metabolic
and caloric intake measurements, the absence of female sex, the
number of animals analyzed via histomorphometry, as well as
the lack of additional age groups. In addition to quantification of
adipose stores noted, it will be clinically meaningful for future
studies to quantify mechanical non-marrow depots in the feet
and around the tail in SEIPIN KO, as this was shown to differ in
clinical syndromes (23, 103). Our team previously published on
the metabolic parameters in the same Bscl2 KO mice; our new
findings with regard to effects of exercise on bone formation
findings suggest that future studies should be initiated to
investigate whether running alters metabolic health in the
SEIPIN KO condition. Due to the metabolic dysfunction seen
in Bscl2, these measurements are highly relevant and may
impact bone and BMAT outcomes. SEIPIN deficient mice,
including male mice of similar age, have been extensively
documented to exhibit metabolic dysfunction consistent with
similar clinical dysfunction documented in CGL patients
(31, 104).

In sum, our data provide evidence for BMAT as a unique
adipose depot in the context of congenital generalized
lipodystrophy. Concomitant with global reduction of white
adipose stores, marrow adiposity was reduced in SEIPIN KO,
particularly in the proximal femur. Cortical bone geometry was
negatively altered in KO, while trabecular bone was unaffected.
Exercise-induced trabecular bone was possible, despite lack of
attenuation in BMAT, highlighting the likelihood that SEIPIN
deficient mice rely on alternative substrates to fuel bone anabolism.
FIGURE 5 | TRAP staining shows similar osteoclast numbers in WT and
SEIPIN KO. Twelve-week-old male SEIPIN KO and WT were allocated to
exercise (E) vs non-exercise controls for 6 weeks. Representative histologic
sections of the distal femur were stained with Fast Green and TRAP, images
via Olympus IX81.
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The lack of prior research on physical exercise in lipodystrophy,
whether clinically or mechanistically, represents a significant
knowledge gap. Our work demonstrates a beneficial impact of
exercise on bone in a mouse model of severe CGL. Future studies
are needed to understand the metabolic benefit of exercise for
lipodystrophy and how this relates to musculoskeletal health.
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