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Abstract
Hepatitis B virus-associated acute liver failure (HBV-ALF) is a rare but life-threatening syndrome that carried a high morbidity and
mortality. Our study aimed to explore the possible molecular mechanisms of HBV-ALF by means of bioinformatics analysis. In this
study, genes expression microarray datasets of HBV-ALF from Gene Expression Omnibus were collected, and then we identified
differentially expressed genes (DEGs) by the limma package in R. After functional enrichment analysis, we constructed the protein–
protein interaction (PPI) network by the Search Tool for the Retrieval of Interacting Genes online database and weighted genes
coexpression network by the WGCNA package in R. Subsequently, we picked out the hub genes among the DEGs. A total of 423
DEGs with 198 upregulated genes and 225 downregulated genes were identified between HBV-ALF and normal samples. The
upregulated genes were mainly enriched in immune response, and the downregulated genes were mainly enriched in complement
and coagulation cascades. Orosomucoid 1 (ORM1), orosomucoid 2 (ORM2), plasminogen (PLG), and aldehyde oxidase 1 (AOX1)
were picked out as the hub genes that with a high degree in both PPI network and weighted genes coexpression network. The
weighted genes coexpression network analysis found out 3 of the 5 modules that upregulated genes enriched in were closely related
to immune system. The downregulated genes enriched in only one module, and the genes in this module majorly enriched in the
complement and coagulation cascades pathway. In conclusion, 4 genes (ORM1, ORM2, PLG, and AOX1) with immune response
and the complement and coagulation cascades pathway may take part in the pathogenesis of HBV-ALF, and these candidate genes
and pathways could be therapeutic targets for HBV-ALF.

Abbreviations: AOX1 = aldehyde oxidase 1, C5 = complement C5, CFD = complement factor D, DAVID = Database for
Annotation, Visualization and Integrated Discovery, DEGs = differentially expressed genes, DEmiRNAs = differentially expressed
microRNAs, F5 = coagulation factor V, FDR = false discovery rate, GEO = Gene Expression Omnibus, GO = Gene Ontology, HAO1
= hydroxyacid oxidase 1, HBV-ALF = hepatitis B virus-associated acute liver failure, HLA-DRA = major histocompatibility complex,
class II, DR alpha, HLA-DRB1 = major histocompatibility complex, class II, DR beta 1, HSD17B6 = hydroxysteroid 17-beta
dehydrogenase 6, IGF1 = insulin-like growth factor 1, KEGG = Kyoto Encyclopedia of Genes and Genomes, KNG1 = kininogen 1,
ORM1= orosomucoid 1, ORM2= orosomucoid 2, PLG= plasminogen, PPI= protein–protein interaction, SERPIND1= serpin family
D member 1, SERPINF2 = serpin family F member 2, SLCO1B1 = solute carrier organic anion transporter family member 1B1,
STRING = Search Tool for the Retrieval of Interacting Genes, Th17 = T-helper 17 cells.
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1. Introduction

Hepatitis B virus infection is a global health problem. There are
approximately 2 billion people infected with hepatitis B virus
(HBV) worldwide, of which 350 million were chronic infected.[1–
3] The Chinese national HBV epidemiological survey in 2006
showed that 7.18% of the population were HBV carriers. It is
estimated that the HBV-infected patients in China have reached a
staggering number of 93 million. And 15% to 40% of HBV
chronic-infected patients would develop cirrhosis, or even liver
failure and cancer.[4,5] Therefore, the HBV infection-associated
liver failure, which is a lethal disease with a high morbidity,
should be studied intensively.[6,7]

Acute liver failure is a rare but life-threatening syndromewith a
rapid deterioration of liver function and failure of multiorgan.[8–
10] A variety of diseases, including ischemia, metabolic disorders,
Wilson’s disease, autoimmune hepatitis, and intoxications, could
lead to the associated acute liver failure (ALF).[11,12] In the
developing world including China, HBV infection is the main
cause of ALF.[12,13] Patients with ALFwould develop a number of
complications, including pulmonary or cardiac failures, renal
failures, hepatic encephalopathy, and so on.[14] There is still an
absence of effective therapies for ALF, in addition to liver
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transplantation. However, shortage of donor organs, difficulty of
the transplant operation, and substantial postoperative compli-
cations limit the application of liver transplantation. Therefore,
the present knowledge of hepatitis B virus-associated acute liver
failure (HBV-ALF) is still insufficient.
The gene array technologies have been a powerful and

widespread tool to study the pathogenesis of complex human
diseases for years. Nevertheless, there are rare studies of HBV-
ALF with gene expression profiling. The present study was
performed to explore the molecular mechanism of HBV-ALF
by bioinformatical analysis. The genes expression microarray
datasets of ALF from Gene Expression Omnibus (GEO) were
collected, and then we identified differentially expressed genes
between ALF samples and normal samples. Subsequently, we
performed the functional enrichment analysis and constructed
the protein-protein interaction (PPI) and coexpression networks
to explore the underlying genes and pathways associated with
HBV-ALF.
2. Materials and methods

2.1. Data source

The microarray datasets (GSE38941, GSE62029, GSE62030,
andGSE14668), whichwere related toHBV-ALF, were extracted
from GEO for analysis. Search terms included “hepatitis B virus”
and “acute liver failure.” Platforms of all 4 sets of gene expression
profiles were the same (GPL570 Affymetrix Human Genome
U133 plus 2.0 Array) that could make the analysis process
convenient and credible. Three microarray datasets (GSE38941,
GSE62029, and GSE14668) were utilized for the analysis of
differentially expressed genes (DEGs) between HBV-associated
acute liver failure tissue and normal tissue. Another set of gene
expression profile (GSE62030) was added for the construction of
the microRNA-gene network. All the microarray data were
summarized into gene-level information, and the probe names
were transformed into gene symbols. If one gene was detected by
>1 probe, we would take the mean value as its expression level.
Then all expression data were log2-transformed in the
normalization process.
The limma package in R was utilized to screen out the DEGs in

the 3 microarray datasets (GSE38941, GSE62029, and
GSE14668), respectively. It is the most popular method for the
DEGs analysis. Only the genes met the criteria of jfold changej≥2
and false discovery rate (FDR) <0.01 could be defined as the
DEGs. Then we picked out the overlapped DEGs from 3 different
datasets for the subsequent analysis by the means of Venn
analysis.
2.2. Gene Ontology annotation and pathway analysis

Gene Ontology (GO) analysis, which comprises 3 independent
ontologies (cellular component,molecular function, andbiological
process), is increasingly applied for functional studies of tran-
scriptomic data. The Database for Annotation, Visualization and
Integrated Discovery (DAVID) v6.8 was utilized for the GO
analysis. DAVID was an easy-to-use software with multifunction
tools that integrated specific functions of the genes. The Kyoto
Encyclopedia ofGenes andGenomes (KEGG)knowledgedatabase
is an online databases of biochemistry pathways. The clusterPro-
filer package in Rwas utilized to annotate and visualize the KEGG
pathways of DEGs. We selected GO terms and pathways that the
DEGs mainly enriched in with a cutoff criteria of FDR <0.05.
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2.3. Construction of PPI network

The Search Tool for the Retrieval of Interacting Genes (STRING)
database is a global resource of PPI information (http://string-db.
org). The PPI network was constructed with the DEGs mapped
into STRING database. The species for PPI analysis was set as
human with the interaction score ≥0.4. The nodes in the PPI
network represented the genes, and the edges between the nodes
represented the interactions between the genes. The number of
edges linked to a given gene was defined as the degree of that
gene, and only those experimentally validated interactions
(edges) were utilized in this analysis. The gene with a
high degree was deemed as the hub gene with an essential
biological function.
2.4. Meta-analysis of expression level of the hub DEGs

To confirm the reliability of the identified hub genes, the relative
expression level of the hub genes between the disease and normal
group was compared by the means of meta-analysis. This meta-
analysis was conducted by RevMan software version 5.3 (the
Nordic Cochrane Centre, Cochrane Collaboration, Copenhagen,
Denmark). Microarray data were converted into a log2-trans-
formed scale, subsequently the mean and standard deviation of
the data were pooled for analysis. Heterogeneity among the
included data was qualitatively evaluated using x2-based Q test.
P <.05 showed that there was statistically significant heteroge-
neity across the studies. Random effects model was applied for all
analysis process.
2.5. Weighted genes coexpression network analysis

To further investigate the biological functions of the DEGs, we
performed the genes coexpression network analysis through the
WGCNApackage in R.WGCNA, as a typical systemic biological
arithmetic in the construction of genes coexpression network, has
been widely used in bioinformatical analysis. The theory of how
the coexpression network constructed was similar to that of
previous studies.[15] First, we calculated the Pearson’s correlation
coefficient value of the gene–gene pairs of all samples. Second, we
got an unsigned similarity matrix of gene coexpression with the
threshold of the correlation coefficient set as 0.8. Third, the
similarity matrix was transformed into a weighted adjacency
matrix before that was transformed into a topology matrix.
Then, the gene modules of highly correlated genes were detected
based on the topology matrix. The coexpression modules were
named as the color assigned byWGCNA. The degree of the genes
was defined by the way that similar to the PPI analysis and the
genes with a high degree of each module were defined as the hub
genes. To better understand the biological function of each
module, we performed GO or pathway analysis in the genes that
belong to the same module.
2.6. The construction of microRNAs-genes network

The construction of microRNAs-genes network was completed
by 4 steps. First, we used the gene expression profile (GSE62030)
to screen out the differentially expressed microRNAs (DEmi-
RNAs) between the disease and normal group. The inclusion
criteria were set as that jfold changej≥1 and FDR<0.01. Second,
we explored the target genes of DEmiRNAs from 3 different
database (starBase, Targetscan, and miRDB), and only the
overlapped target genes of 3 database were picked out. Third, we
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Table 1

Four datasets included in the present study.

Datasets Reference
(year)

No. of control
samples

No. of ALF
samples Platform

GSE14668 Farci et al (2010) 8 8 Affymetrix
GSE38941 Nissim et al (2012) 10 17 HG-U133
GSE62029 Diaz (2015) 10 13 Plus 2.0
GSE62030 Diaz (2015) 10 13

ALF=acute liver failure.
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found out the overlapped genes between the target genes of
DEmiRNAs and the DEGs that selected above as the target
DEGs. Finally, the DEmiRNAs and the target DEGs were utilized
to construct the microRNAs-genes network through the Cyto-
scape software.
2.7. Connectivity Map analysis

To date, studies for the treatment of acute liver failure were still
insufficient. DEGs could be utilized to identify new therapeutic
effect of drugs by the software of Connectivity Map. The
Connectivity Map could pick out the drugs which induced the
same or opposite gene expression patterns with DEGs by
therapeutic scores. Drugs with negative scores had opposite gene
expression patterns comparing with our microarray data,
therefore might have a therapeutic effect. The inclusion criteria
for the drugs selection were set as P< .05.

2.7.1. Ethics. All analyses were based on the data from public
database, so ethics approval and patient consent were not
required.
3. Results

3.1. Datasets characteristics and screening of differentially
expressed genes

Four sets of microarray data (GSE38941, GSE62029, GSE62030,
and GSE14668) were obtained from the GEO database with the
detail in Table 1. The GSE62029, GSE62030, and GSE14668
contained liver samples from the patients with HBV-ALF, liver
donors, and subjects that underwent resection for liver angioma.
But the GSE38941 only contained samples from the patients with
HBV-ALF and liver donors. Therefore, the data of samples from
Figure 1. Volcano plots representation of differential expression analyses. The cr
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subjects that underwent resection for liver angiomawere excluded.
After the data preprocessing and normalization, data from 3
datasets (GSE38941, GSE62029, and GSE14668) were used for
the screening of DEGs. Eventually, 624 DEGs, 585 DEGs, and
1395 DEGs were selected from GSE38941, GSE62029, and
GSE14668, respectively (Fig. 1). A total of 423 DEGs with 198
upregulated genes and 225 downregulated genes were commonly
changed in the 3microarray datasets (Fig. 2). TheDEGswere listed
in Table 2. In addition, we presented a list of validated genes from
previous studies in the Supplementary Table 1, http://links.lww.
com/MD/C99.

3.2. GO annotation and pathway analysis

As shown in Table 3 and Figure 3, the top 10 GO terms which
upregulated genes majorly enriched in were immune response,
defense response, extracellular region, antigen processing, and
presentation of peptide or polysaccharide antigen via MHC class
II, cellular defense response, immune effector process, extracel-
lular region part, inflammatory response, positive regulation of
immune system process, and antigen processing and presenta-
tion. GO analysis illustrated that immune response which
contained humoral and cellular immunity played an important
role in mediating or inducing the damage to the liver due to
hepatitis B in ALF. The same way with DAVID, the top 10 GO
terms which downregulated genes majorly enriched in were
response to wounding, acute inflammatory response, extracellu-
lar region, extracellular space, inflammatory response, oxidation
reduction, electron carrier activity, complement activation,
extracellular region part, and activation of plasma proteins
involved in acute inflammatory response.
As shown in Table 4 and Figure 4, the pathways that the

upregulated genesmajorly enriched inwere antigen processing and
presentation, cell adhesion molecules, cytokine–cytokine receptor
interaction, hematopoietic cell lineage, and chemokine signaling
pathway. And the pathways that the downregulated genesmajorly
enriched in were complement and coagulation cascades, metabo-
lism of xenobiotic by cytochrome P450, drug metabolism,
arachidonic acid metabolism, and tryptophan metabolism.

3.3. The PPI network analysis and meta-analysis of
expression level of the hub DEGs

All the 423 DEGs were utilized to construct the PPI network.
After excluded the disconnected genes in the network, a total of
iteria for selection of DEGs was set as jfold changej ≥2 and adjusted P <.01.
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Figure 2. The Venn plot of DEGs. There were a total of 423 overlapped genes
from 3 different datasets.
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195 genes with 454 pairs of interactions were mapped in the PPI
network by the used of the STRING database (Fig. 5). The
number of upregulated genes were similar to that of down-
regulated genes. The most significant 10 node-degree genes were
kininogen 1 (KNG1), coagulation factor V (F5), insulin-like
growth factor 1 (IGF1), plasminogen (PLG), major histocompat-
Table 2

The list of 423 DEGs (198 upregulated genes and 225 downregulated

DEGs

Upregulated ADGRE5, ADORA3, AEBP1, AKR1B1, AKR1B10, ANKRD36B, AN
C1QA, C1QB, C1QC, CAPG, CCL18, CCL5, CCNB1, CCR1, C
CD8A, CDC20, CECR1, CETP, CFD, CFP, COL1A2, COL4A1,
CXCL14, CXCL6, CXCR4, CYTIP, DEFB1, DLGAP5, DPEP2, EM
FNDC1, FXYD6-FXYD2, GABRP, GGTA1P, GMFG, GNLY, GPN
HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HL
118, IGLJ3, IGLL3P, IGLL5, IGLV1-44, IGSF6, IL10RA, IL18,
LGALS1, LGALS3BP, LILRB2, LILRB5, LUM, LXN, LY86, LY96
MS4A4A, MS4A6A, MS4A7, MZB1, NCEH1, NCF1, NCF1C, N
PMEPA1, POU2AF1, PPT1, PRC1, PROM1, PTTG1, PYCARD,
S100A11, S100A4, SELM, SFN, SH3BGRL3, SIGLEC1, SLA,
TIMD4, TIMP1, TMSB10, TMSB4X, TNFRSF17, TRBC1, TYRO

Downregulated A1CF, AASS, ABAT, ABCA6, ABCC6P1, ACADL, ACADSB, ACMS
AGXT, AGXT2, AKR1C4, AKR1D1, ALDH6A1, ALDH8A1, AMB
AZGP1P1, BCHE, BHMT2, C3P1, C4B_2, C4BPA, C4BPB, C5
CNDP1, CP, CPB2, CPN1, CRP, CUX2, CYP1A1, CYP1A2, CY
CYP7A1, CYP8B1, DEPDC7, DHODH, DIO1, DNAJC12, DPYS,
FOXA1, FOXA3, GADD45G, GBA3, GC, GFRA1, GGH, GHR, G
HAL, HAMP, HAO1, HAO2, HFE2, HGFAC, HOOK1, HPGD, HP
ITIH1, ITIH2, ITIH3, ITIH4, KCNN2, KHK, KLB, KLKB1, KNG1,
MIR6778, MLXIPL, MST1, MT1M, N51516, NADK2, NAT2, N
PCSK9, PGLYRP2, PLG, PLGLB1, PLGLB2, PNPLA3, PON1, P
RUNDC3B, SAA2, SAA2-SAA4, SALL1, SDC2, SEL1L2, SELE
SLC17A2, SLC22A1, SLC22A7, SLC25A18, SLC2A10, SLC2
SPINK1, SPP2, SRD5A2, ST6GAL1, STEAP1, STEAP3, SYT17
UPB1

DEGs=differentially expressed genes.
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ibility complex, class II, DR alpha (HLA-DRA), major
histocompatibility complex, class II, DR beta 1 (HLA-DRB1),
serpin family F member 2 (SERPINF2), aldehyde oxidase 1
(AOX1), complement C5 (C5), and complement factor D (CFD).
As shown in Figure 6, we used the means of meta-analysis to test
the expression level of the 10 genes between the disease and
normal group. The expression levels of all the 10 genes in HBV-
associated ALF group were significantly higher than that in the
control group.

3.4. Construction of the weighted genes coexpression
network

The WGCNA analysis for the DEGs was performed in all HBV-
ALF samples. As shown in Figure 7, the upregulated genes were
majorly enriched in 5 modules. The hub genes were put in the
center of each module. However, the hub genes in the
coexpression network were not similar to those in the PPI
network analysis. The reason might be that the hub genes in the
PPI analysis were majorly downregulated ones; therefore, the hub
upregulated genes were not better represented in the PPI analysis.
To understand the biological meaning of the modules, we
performed functional enrichment analyses in each module. The
upregulated genes were majorly enriched in the antigen
processing and presentation pathway or GO terms that were
immune response related. The downregulated genes were
enriched in only 1 module, the blue module. As shown in
Figure 8, the hub genes of this module were serpin family D
member 1 (SERPIND1), hydroxysteroid 17-beta dehydrogenase
6 (HSD17B6), orosomucoid 1 (ORM1), PLG, orosomucoid 2
(ORM2), solute carrier organic anion transporter family member
1B1 (SLCO1B1), AOX1, and hydroxyacid oxidase 1 (HAO1).
genes).

Genes name

KRD36BP2, ANXA13, ANXA2P2, APOBEC3B, ARHGAP9, ARL4C, ARPC1B, BUB1B,
CR5, CD163, CD2, CD24, CD27, CD300LF, CD3D, CD52, CD5L, CD72, CD86,
COL4A2, COL5A1, COL6A3, CORO1A, CPVL, CSF1R, CTGF, CTHRC1, CTSE, CTSS,
P3, EPB41L3, EPCAM, EVI2A, EVI2B, FABP5, FAM49A, FAM72A, FCER1G, FCRL5,

MB, GPR137B, GPR171, GRN, GSTP1, GZMA, GZMB, GZMH, GZMK, HCK, HCLS1,
A-DRA, HLA-DRB1, IFI16, IFI30, IGHA2, IGHV3-23, IGK, IGKV1OR2-108, IGKV1OR2-
IL7R, ISG20, JAML, JCHAIN, KIF11, KLRC2, KRT19, KRT23, LAPTM5, LAX1, LDHB,
, LYZ, M85256, MARCO, MELK, MICAL1, MIR8071-2, MMP7, MPEG1, MS4A14,
CF2, NDC80, NKG7, NPC2, NQO1, OSBPL3, P2RX5, P2RY8, PDK4, PLA2G7, PLTP,
RAB31, RACGAP1, RASGRP1, RHOBTB1, RNASE2, RNASE6, RNF135, RRM2,
SLAMF7, SLAMF8, SLC12A2, SLC7A7, TCHH, TCN2, TGFB1I1, THBS2, THEMIS2,
BP, UBD, UCP2, VMO1, VSIG4, VTCN1, WFDC1, ZC3H12D, ZWINT
D, ACSM2A, ACSM2B, ACSM3, ACSM5, ACTR3C, ADGRG7, ADH1A, ADH1C, ADH6,
P, AMDHD1, ANGPTL3, ANXA10, AOX1, APCS, APOF, AQP9, AR, AVPR1A, AZGP1,
, C6, C8A, C8B, C9, CCL16, CDO1, CFB, CFHR2, CFHR3, CFHR4, CFHR5, CFI,
P26A1, CYP2C18, CYP2C19, CYP2C9, CYP2J2, CYP39A1, CYP4F2, CYP4F3,
EFNA1, EPHX2, EVA1A, F13B, F2, F5, F9, FAM198A, FGGY, FGL1, FMO5, FOLH1B,
JB2, GLUD1, GLYAT, GNE, GNMT, GPAM, GPR37, GRB14, GREM2, GYS2, H15261,
N, HPR, HPX, HSD11B1, HSD17B6, IGF1, IGFBP2, IGSF9, IL1RAP, INHBE, INSIG1,
LBP, LEAP2, LIPC, LIPG, LPA, LRG1, LY75-CD302, MASP2, MAT1A, MBL2,
ECTIN3, NNMT, OGDHL, ORM1, ORM2, PALM2, PANK1, PBLD, PC, PCOLCE2,
ON3, PPP1R1A, PPP1R3C, PRG4, PROC, PTPN3, PZP, RDH16, RGN, RIDA, RNASE4,
, SERPINA10, SERPINA7, SERPINC1, SERPIND1, SERPINF2, SLC10A1, SLC13A5,
A2, SLC30A10, SLC38A4, SLC41A2, SLC47A1, SLC6A1, SLCO1B1, SLCO1B3,
, TDO2, TENM1, TFR2, THRSP, TMED6, TMEM220, TMEM45A, TPST1, TTC36,



Table 3

The top 10 most enriched GO terms in this study.

Term Description Count FDR

Upregulated
GO:0006955 Immune response 48 1.31 � 10–9

GO:0006952 Defense response 35 5.73 � 10–5

GO:0005576 Extracellular region 59 0.001
GO:0002504 Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 10 0.001
GO:0006968 Cellular defense response 11 0.005
GO:0002252 Immune effector process 14 0.013
GO:0044421 Extracellular region part 36 0.014
GO:0006954 Inflammatory response 20 0.016
GO:0002684 Positive regulation of immune system process 17 0.011
GO:0019882 Antigen processing and presentation 11 0.031

Downregulated
GO:0009611 Response to wounding 43 5.09 � 10–8

GO:0002526 Acute inflammatory response 23 6.51 � 10–8

GO:0005576 Extracellular region 83 8.44 � 10–8

GO:0005615 Extracellular space 47 7.93 � 10–7

GO:0006954 Inflammatory response 30 1.23 � 10–5

GO:0055114 Oxidation reduction 40 6.75 � 10–6

GO:0009055 Electron carrier activity 25 2.91 � 10–5

GO:0006956 Complement activation 13 1.24 � 10–4

GO:0044421 Extracellular region part 47 1.41 � 10–4

GO:0002541 Activation of plasma proteins involved in acute inflammatory response 13 1.71 � 10–4

FDR= false discovery rate, GO=Gene Ontology.
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And ORM1, ORM2, PLG, and AOX1 were the hub genes of the
PPI network at the same time. Therefore, we defined this 4 genes
as the hub genes of this study. The functional enrichment analyses
revealed that the genes of the blue module were majorly enriched
in the complement and coagulation cascades pathway.

3.5. The microRNAs-genes network and Connectivity Map
analysis

With the use of the GSE62030, we selected out 114 DEmiRNAs.
There were 70 upregulated miRNAs and 44 downregulated
miRNAs among the DEmiRNAs (Table 5). The target genes of
DEmiRNAs were identified by the simultaneous use of 3
databases. However, only 20 genes among the target genes were
belong to the DEGs. Therefore, those 20 DEGs and 23
DEmiRNAs were utilized to construct this microRNAs-genes
network (the DEmiRNAs that did not have regulatory relation-
ships with the DEGs were excluded). Figure 9 revealed how the
DEmiRNAs regulate their target genes.
For the Connectivity Map analysis, a total of 29 drugs met the

inclusion criteria, Figure 10 showed the top 20 drugs that the
DEGs enriched in. The drugs with positive scores had a better
rank than drugs with negative scores. The drugs such as
ciprofibrate and thiamine could induce the same gene expression
patterns as HBV-ALF; therefore, those drugs should be avoid in
the treatment of HBV-ALF. And the drugs such as chlorphenesin
that with the opposite gene expression patterns might have a
therapeutic effect to the HBV-ALF.

4. Discussion

In this study, the genetic profiles of the HBV-ALF samples and
normal samples were comparedwith select the DEGs. Eventually,
423 DEGs with 198 upregulated genes and 225 downregulated
genes were selected out. The enrichment analysis revealed that the
upregulated DEGs majorly enriched in immune response.
5

Meanwhile, 2 of the hub genes of the PPI network (HLA-
DRA, HLA-DRB1) have been evaluated to play central roles in
the immune system. And the weighted genes coexpression
network analysis found out 3 of the 5 modules that upregulated
genes enriched in were closely related to immune system. Several
previous studies have evaluated the primary role of immune
response in the pathogenesis of HBV-ALF.[10,16] Farcia et al
demonstrated ALF resulted from HBV was mediated by
intrahepatic B-cell response against the core antigen of HBV.
And in their study, massive IgG and IgM secreted by plasma cells
accumulated in liver showed unsubstitutive role of humoral
immunity in HBV-ALF.[16]

The enrichment analysis of downregulated DEGs revealed that
the downregulated genes majorly enriched in the complement
and coagulation cascades pathway. And most of the hub genes in
the PPI network were downregulated and coagulation related.
The downregulated genes enriched in only one module in the

weighted genes coexpression network analysis, and the genes in
this module also majorly enriched in the complement and
coagulation cascades pathway. Meanwhile, PLG, which were
hub genes in both PPI network and weighted genes coexpression
network, was closely related to the coagulation. Therefore, the
complement and coagulation cascades pathway might be
necessary in the pathogenesis of HBV-ALF. The focus of the
early studies regarding HBV-ALF was the viral factors and virus–
host interactions. The relationship between the genomic variant
of HBV DNA (Pre-C and BCP mutants) and pathogenesis of the
HBV-ALF has been widely studied.[17–21] Subsequently, the vital
role of hosts’ immune response (host factors that containing
HBV-specific cytokine, chemokine profiles, and plasma cells) in
the occurrence of HBV-ALF was discovered and studied.[10,22,23]

The present study revealed the complement and coagulation
cascades might have a future filed in the study of HBV-ALF.
The important role of inflammatory cytokines in liver injury

has been revealed in several studies,[24–26] and quite a few of
cytokines-related genes were contained in DEGs such as CCL5,

http://www.md-journal.com


Table 4

The top 5 most enriched pathway in this study.
Term Description Count FDR Genes

Upregulated
Hsa04612 Antigen processing and presentation 11 0.002 KLRC2, CD8A, HLA-DRB1, IFI30, HLA-DPA1, HLA-DPB1, CTSS, HLA-DMB, HLA-DMA, HLA-DQA1, HLA-DRA
Hsa04514 Cell adhesion molecules 11 0.013 SIGLEC1, CD86, CD8A, HLA-DRB1, CD2, HLA-DPA1, HLA-DPB1, HLA-DMB, HLA-DMA, HLA-DQA1, HLA-

DRA
Hsa04060 Cytokine–cytokine receptor interaction 13 0.028 IL18, CCR1, TNFRSF17, CXCL6, CCL5, IL7R, CCL18, CCR5, CXCL14, CXCR4, IL10RA, CD27, CSF1R
Hsa04640 Hematopoietic cell lineage 7 0.032 CD8A, CD3D, HLA-DRB1, CD2, IL7R, HLA-DRA, CSF1R
Hsa04062 Chemokine signaling pathway 9 0.033 CCR5, CXCL14, CXCR4, NCF1, CCR1, HCK, NCF1C, CXCL6, CCL5, CCL18

Downregulated
Hsa04610 Complement and coagulation cascades 23 1.07 � 10–9 KNG1, MBL2, C9, CFB, MASP2, C6, C5, F9, C4BPB, C4BPA, PLG, PROC, F13B, C8A, C8B, F5, SERPINF2,

KLKB1, F2, SERPINC1, SERPIND1
Hsa00980 Metabolism of xenobiotic by

cytochrome P450
8 0.032 AKR1C4, CYP1A1, CYP2C19, CYP2C18, CYP2C9, ADH1C, ADH6, ADH1A, CYP1A2

Hsa00982 Drug metabolism 8 0.036 FMO5, CYP2C19, CYP2C18, CYP2C9, AOX1, ADH1C, ADH6, ADH1A, CYP1A2
Hsa00590 Arachidonic acid metabolism 7 0.042 CYP2J2, CYP2C19, CYP2C18, CYP2C9, EPHX2, CYP4F3, CYP4F2
Hsa00380 Tryptophan metabolism 6 0.001 TDO2, CYP1A1, AOX1, OGDHL, ACMSD, CYP1A2

FDR= false discovery rate.

Figure 3. The top 10 most enriched GO terms of (A) upregulated genes and (B) downregulated genes.

Lin et al. Medicine (2018) 97:5 Medicine

6



Figure 4. The top 5 most enriched KEGG pathways of (A) upregulated genes and (B) downregulated genes.

Figure 5. The PPI network. The left panel showed the interactions between the upregulated (red nodes) and downregulated (blue nodes) genes. The right panel
showed the degree of the genes, only top 30 genes were listed out.
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[24,29,30]

Figure 6. Meta-analysis of expression level of top ten hub genes in PPI network (KNG1, F5, IGF1, PLG, HLA-DRA, HLA-DRB1, SERPINF2, AOX1, C5, and CFD).

Lin et al. Medicine (2018) 97:5 Medicine
CCR1, CCR5, and IL18. Previous studies demonstrated the
significant influence of cytokines on hepatocyte regeneration,
extrahepatic complications, and hepatocellular death.[27,28] FasL
has been evaluated to be associated with liver injury by induction
and triggering of destruction of liver in chronic and acute-on-
8

chronic liver diseases, whereas the expression level of that
in our HBV-ALF samples was not upregulated significantly. The
same situation was also observed in the expression of some other
genes which were related to the encoding of interleukin (IL-1, IL-
6, and IL-10). Several studies reported the CXC subfamily of



Figure 7. The weighted genes coexpression network of upregulated DEGs. There were 5 modules that the upregulated DEGs enriched in. Each module was
named as the color assigned by the WGCNA analysis.

Figure 8. The weighted genes coexpression network of downregulated DEGs (the blue module of WGCNA analysis). The left panel showed the coexpression
interactions between the genes. The right panel showed the degree of the genes, only top 30 genes were listed out.

Table 5

The list of 114 DEmiRNAs (70 upregulated miRNAs and 44 downregulated miRNAs).

DEGs miRNAs name

Upregulated hsa-mir-155-5p, hsa-let-7i-5p, hsa-mir-124-3p, hsa-mir-124-3p4, hsa-mir-124-3p6, hsa-mir-127-3p, hsa-mir-1274b, hsa-mir-1290, hsa-mir-1301,
hsa-mir-132, hsa-mir-134, hsa-mir-138, hsa-mir-143, hsa-mir-146a, hsa-mir-150, hsa-mir-154, hsa-mir-15a-5p, hsa-mir-15b-5p, hsa-mir-181a-5p,
hsa-mir-181b-5p, hsa-mir-181c-5p, hsa-mir-181d-5p, hsa-mir-182, hsa-mir-185-5p, hsa-mir-1972, hsa-mir-1979, hsa-mir-200a, hsa-mir-200b,
hsa-mir-21-5p, hsa-mir-212, hsa-mir-221, hsa-mir-223-3p, hsa-mir-24-2, hsa-mir-299-3p, hsa-mir-29b-3p, hsa-mir-3175, hsa-mir-3178, hsa-mir-
330-3p, hsa-mir-337-5p, hsa-mir-342-3p, hsa-mir-342-5p, hsa-mir-363-3p, hsa-mir-370, hsa-mir-376c, hsa-mir-381-3p, hsa-mir-382, hsa-mir-
409-3p, hsa-mir-409-5p, hsa-mir-421, hsa-mir-4269, hsa-mir-4306, hsa-mir-431, hsa-mir-432, hsa-mir-433, hsa-mir-452, hsa-mir-487a, hsa-mir-
493, hsa-mir-501-5p, hsa-mir-503-5p, hsa-mir-542-5p, hsa-mir-584, hsa-mir-625, hsa-mir-629, hsa-mir-650, hsa-mir-652, hsa-mir-654-3p, hsa-
mir-665, hsa-mir-886-3p, hsa-mir-941, hsa-mir-99b

Downregulated hsa-mir-122, hsa-mir-483-5p, hsa-mir-23b, hsa-mir-194, hsa-mir-885-5p, hsa-mir-192, hsa-mir-574-3p, hsa-mir-27b-3p, hsa-mir-193b, hsa-mir-30b,
hsa-mir-148a, hsa-mir-138-1, hsa-mir-193a-5p, hsa-mir-375, hsa-mir-125b-2, hsa-mir-345, hsa-mir-4298, hsa-mir-455-3p, hsa-mir-30a, hsa-mir-
885-3p, hsa-mir-194-2, hsa-mir-30c, hsa-mir-885, hsa-mir-378, hsa-mir-574, hsa-mir-1275, hsa-mir-30c-1, hsa-mir-30e, hsa-mir-20a-5p, hsa-mir-
378c, hsa-mir-215, hsa-mir-1265, hsa-mir-320c-1, hsa-mir-422a, hsa-mir-100, hsa-mir-30c-2, hsa-mir-551b, hsa-mir-575, hsa-mir-210-3p, hsa-
mir-130b-3p, hsa-mir-1263, hsa-mir-595, hsa-mir-3188, hsa-mir-92a-1

DEGs=differentially expressed genes, DEmiRNA=differentially expressed microRNAs, miRNA=microRNA.

Lin et al. Medicine (2018) 97:5 www.md-journal.com

9

http://www.md-journal.com


Figure 9. The microRNAs-genes network. The green nodes represented the DEmiRNAs and the blue nodes were the target genes of the DEmiRNAs.

Figure 10. Connectivity Map analysis. The mean was the computed score. A positive score indicates that the drug exhibits an expression pattern that is synergistic
with the disease. A negative score indicates that the drug exhibits an expression pattern that is opposite to the disease.

Lin et al. Medicine (2018) 97:5 Medicine
chemokine involved in the inflammatory processes by triggering
of the accumulation of neutrophils and caused acute injury.[31,32]

However, whether that plays an important role in acute liver
injury remains elusive. What give us some implications in our
study is the upregulation of the CXC subfamily encoding-
associated genes (CXCL14, CXCL16, and CXCR4).
10
In recent years, new perspective on T cell-mediated liver injury
has arisen along with the emergence of T-helper 17 cells (Th17), a
new subset of CD4+ T cells. Several studies elucidated the Th17
cells increased significantly in HBV-associated acute-on-chronic
liver failure patients that could recruite immune cells to mediate
inflammation and immune injury via IL 17.[33] The differentia-



[11] Ostapowicz G, Fontana RJ, Schiodt FV, et al. Results of a prospective

Lin et al. Medicine (2018) 97:5 www.md-journal.com
tion and maturation of Th17 are majorly rely on IL6, IL21, TGF-
b, andmTOR/STAT3.[34,35] Nevertheless, we did not find out the
appropriate environment for the differentiation of Th17, owing
to neither IL6 nor IL21 was upregulated in HBV-ALF samples.
Therefore, it is not weird that IL17 did not emerge in the DEGs
and the Th17 seem to matter less in HBV-ALF.
The miRNAs can bind to specific target sites of messenger

RNAs and silence or destabilize them.[36] The present study
selected out the aberrant regulated miRNAs between the HBV-
ALF and normal samples and constructed the microRNAs-genes
network. However, our microRNAs-genes network analysis
evaluated that the hub genes were not directly regulated by the
DEmiRNAs. Therefore, the role of miRNAs in HBV-ALF should
be further studied. The Connectivity Map analysis identified
several drugs which could induce the opposite or similar gene
expression patterns as HBV-ALF. But the effect of reversing the
gene expression patterns by drugs cannot be determined, due to
the genes that might be protective in liver failure. And if the genes
were protective in liver failure need further experiments to find
out. This is a limitation of the Connectivity Map analysis for this
study. Therefore, whether those drugs will be able to assist the
treatment of liver failure in the future remains to be verified. In
addition, due to an absence of non-HBV-ALF as a control in this
study, it is difficult to evaluate which genes are HBV related and
which are ALF related. This is another limitation of the present
study. What is more, we could not figure out if the interactions in
the PPI network were direct or indirect. This was also one of the
limitations of the present study.
In summary, the present study found out 4 genes (ORM1,

ORM2, PLG, and AOX1) with immune response, and the
complement and coagulation cascades pathway may take part in
the pathogenesis of HBV-ALF, and these candidate genes and
pathways could be therapeutic targets for HBV-ALF. However, it
is not sufficient to explore the possible molecular mechanisms of
HBV-associated ALF by means of bioinformatics merely.
Functional experiments should be added to verify our results,
including western blot confirmation, luciferase report assay, and
gain or loss of genes function.[37] Thus, the follow-up experiment
of us will aim to pick up the hub genes and carry experiments to
unveil the mechanisms involved in the HBV-ALF.
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