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With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent
disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor
function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are
reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm,
and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection
technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb

rehabilitation robots.

1. Introduction

Stroke is an illness that has a high potential of causing
disability in the aged [1]. With the increase in the elderly,
stroke has become a common disease, which often leads to
motor dysfunction or even permanent disability [2]. There
are about 795,000 people in the United States each year,
and about 191,000 people in Japan who have had a new
stroke or recurrent stroke [3]. The number of new stroke
patients in China is about 200 million each year [4].
According to the national stroke statistics, stroke morbid-
ity, mortality, and recurrence rate increase with age [5].
At the same time, stroke incidence showed a younger
trend in recent years. As a result, the rehabilitation training
of stroke survivors has become a major social problem
urgently. However, traditional manual therapies such as
physical therapy (PT) and occupation therapy (OT) mainly
depend on the experience of the therapist, and it is difficult
to meet the requirements of high-intensity and repetitive
training [6]. Due to the serious shortage of physiotherapists,
the treatment cannot be guaranteed [7]. As a result, the
demand for advanced rehabilitation equipment is signifi-
cantly increasing, which will help patients to perform
accurate, quantitative, and effective training [8]. Rehabili-
tation robotics is an emerging field expected to be a
solution for automated training. Over the past decade,

rehabilitation robots received increasing attention from
researchers as well as rehabilitation physicians. The
application of rehabilitation robot can release the doctors
from heavy training tasks, analyze the data of the robot
during the training process, and evaluate the patient’s
rehabilitation status. Due to the advantages of their
accuracy and reliability, rehabilitation robots can provide
an effective way to improve the outcome of stroke or
postsurgical rehabilitation.

Nowadays, there have been several published review
papers on lower-limb rehabilitation robot. However, very
few details of control strategies, driving modes, training
modes, and gait perception were given to the lower-limb
rehabilitation robot.

In this paper, we systematically reviewed the current
development of lower-limb rehabilitation robot, providing a
classification, a comparison and a design overview of the
driving modes, training paradigm, control strategy, and gait
perception. The rest of the paper is organized as follows.
Section 2 described the development of robots. Section 3
introduced the driving modes of the lower-limb rehabilita-
tion robot. Section 4 presented control strategies, including
position control, force signal control, and biological medical
signal control. In Section 5, the training pattern of the robot
was recommended. In Section 6, different techniques of the
gait perception were analyzed. In Section 7, limitations of
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the study and future direction of development were discussed
and summarized.

2. Development of Lower-Limb Rehabilitation
Robots

In recent years, various types of lower-limb rehabilitation
robots have been developed to enhance the motor function
of paralyzed limbs in stroke patients. In general, lower-limb
rehabilitation robots can be divided into two categories, that
is, exoskeleton robots and end-effector robots [9]. For
example, Lokomat [10], BLEEX [11], and LOPES [12, 13]
are typical exoskeleton robots, while Rutgers Ankle [14]
and Haptic Walker [15] are end-effector robots. According
to their rehabilitation principles, exoskeleton robots can
be divided into treadmill-based and leg orthoses, while the
end-effector robots have footplate-based and platform-
based types. An overview of recent representative robots
and their characteristics are demonstrated in Table 1.

2.1. Treadmill-Based Exoskeleton Robots. The Lokomat,
LokoHelp, Lopes, and Active Leg Exoskeleton (ALEX) belong
to the typical treadmill-based exoskeleton robots. Treadmill-
based exoskeleton robots are usually composed of a weight
support system and runs on a treadmill through the
lower-limb exoskeleton frame.

In 2001, the Swiss Federal Institute of technology in
Zurich [33] developed the four freedom exoskeleton type gait
rehabilitation robot Lokomat, with the use of treadmills. The
exoskeleton can drive the leg of the patient to realize the gait
motion in the sagittal plane, and the four rotary joints are
driven by four DC motors to drive the precision ball
screw transmission.

LokoHelp is a gait-training robot, which was developed
and produced by a German company, consisting of three
parts, a leg brace device, treadmill system, and suspension
weight system. It can achieve the basic gait rehabilitation
training and help patients complete the downhill exercise.
In addition, the equipment adopts a modular design method,
which is easy to assemble, disassemble, and adjust, in order to
realize the training of different slope. Clinical experimental
studies on LokoHelp have proved that [34, 35] the rehabilita-
tion effect of the robot system is almost the same as that of
the traditional gait training method, but it significantly
reduces the required human resources and the physical
exertion of the participants.

The Biomedical Engineering Laboratory at the University
of Twente [36], Holland, has developed a lower extremity-
powered exoskeleton gait rehabilitation robot (LOPES)
[37, 38]. A LOPES single leg has 2 degrees of freedom
in the hip joint and 1 degree of freedom in the knee joint.
LOPES divided the patient’s recovery into two stages:
patient dominant and robot driven, and different control
algorithms are used to make the walking training of the
patients closer to the actual situation.

The School of Mechanical Engineering, Delaware Uni-
versity, has developed an active walking training robot called
ALEX. It consists of a moving bracket, lower extremity
exoskeleton orthosis, and a control system. Each leg has four
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degrees of freedom, two degrees of freedom of the hip joint,
and one degree of freedom of knee and ankle joints. The back
of ALEX, using mechanical mechanisms to balance the
gravity of the human body, can help patients achieve gravity
balance and altitude adjustment [39, 40].

2.2. Leg Orthoses and Exoskeletons. The Active Ankle-
Foot Orthosis (AAFO) [41], Knee-Ankle-Foot Orthosis
(KAFO), Berkley Lower Extremity Exoskeleton (BLEEX),
and Hybrid Assistive Limb (HAL) belong to the leg orthoses
and exoskeletons.

Yonsei University, Seoul, Korea, developed a single
degree of freedom hinge ankle-foot orthoses AAFO. The
orthosis uses a polypropylene material, which is lightweight
and has a certain degree of flexibility. Moreover, the joint
uses a hinge structure; the driving part adopts the series
elastic actuator. The contact between the foot and the ground
is determined by installing a contact switch on the foot [42]
and using the plantar state machine on the ankle foot
orthosis control. The gait is divided into 6 phases to prevent
foot drop in foot slap orthosis and toe drag stage [43].

In 2004, Dr. H. Kazerooni of the University of California-
Berkeley [44] designed the lower-limb exoskeleton robot
BLEEX (Berkeley Lower Extremity Exoskeleton), and designers
called it “weight-bearing and energy independent exoskele-
ton.” According to the force of the exoskeleton, the inverse
dynamic model of the exoskeleton is used as the feedforward
controller and the joint angle sensor is used to judge the
movement period of each leg and control the coordinated
movement of the exoskeleton. Through the experimental
study of four patients with paraplegia, the exoskeleton robot
can help patients achieve natural walking [45].

In 2005, the Department of Mechanical Engineering of
the Ottawa University [46] in Canada developed the Knee-
Ankle-Foot Orthosis (KAFOs), to help users of weak
extensor improve the gait. This orthosis does not use drive
and provides the power with the ingenious mechanical
structure and the position of the spring, and it controls the
flexion and extension of the knee joint through opening
and shutting off the solenoid. The robot control system
is simple, and it mainly uses the plantar force to control
on-off solenoid and complete assist standing control.

Hybrid Assistive Limb (HAL) is a wearable lower-limb
rehabilitation robot developed by the University of Tsukuba,
Japan. The original purpose of the device was to assist
patients with lower-limb motor dysfunction to complete the
routine activities such as walking, standing, sitting, and going
up- and downstairs [47]. At present, a fifth generation of the
products has been developed, a whole body wearable robot,
which can assist the upper and lower limb movement [48].
Notably, some clinical and experimental studies showed that
HAL can provide weight support for the subjects and can
help them complete their daily walking activities.

2.3. Foot Plate-Based End-Effector Devices. The foot plate-
based end-effector devices [49] consist of the Gait Trainer
GTI, Haptic Walker, and the G-EO Systems.

Gait Trainer (GTI) is a suspension weight loss gait
rehabilitation robot, developed by the Free University Berlin,
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Germany. It was based on the movement of the lower limb to
stimulate the muscles of the lower limb orderly and assist the
patient to complete gait training. However, because of the
interaction between the foot pedal and the patient’s foot,
the force feedback of the lower limbs was weak, and the
feeling of walking was larger than that of natural walking.
In addition, the robot’s gait training strategy emphasized
repetitive passive motion, while ignoring the importance of
active participation. GTT was an early device for lower-limb
rehabilitation, and there were many clinical trials in the
world [50-54]; the system reduces the physical strength con-
sumption significantly and also saved the medical resources
for rehabilitation.

In 2003, Hesse et al. proposed the concept of Haptic
Walker based on virtual reality technology. They developed
as a foot motion simulator 6 degrees of freedom, with the
use of hanging weight loss to realize the arbitrary trajectory
and the attitude motion in the sagittal plane, such as walking
on the rough surface or the lawn, tripping, and so forth.
In the virtual reality control mode, the patient wore a
helmet display and a six-degree-of-freedom force sensor
was installed on the foot pedal; the patient felt the virtual
reality scene and interacted with the virtual scene. The
virtual scene and music can also improve the monotonous
training atmosphere and enhance the training interest of
patients, to achieve the purpose of psychotherapy. The virtual
walking rehabilitation training robot was the first device to
realize the foot walking along the programmable free trajec-
tory, and redundant hardware and software emergency stop
circuits were set up on security as measures.

Compared to other sports platform, a robot actuated
by foot in Italy is driven by the pedal with lower-limb
movement. The robot added a new way of walking, such
as obstacle, step, and slope road. The training rich mode
and the active and passive control mode can be a more
effective targeted training [55]. The computer comes with
a huge data integration system, which can monitor the
patient’s rehabilitation index in real time. This robot uses
pedal structure, which is very comfortable and is easy to
use for the patient. However, due to the lack of auxiliary
devices in the legs, the patient’s muscle strength is too
strong or too weak to get the appropriate adjustment, so
a doctor is also needed from the side to help [56].

2.4. Platform-Based End-Effector Robots. The Ruegst ankle,
ARBOT, and parallel ankle robots belong to the platform
based on end-effector robots.

The first truly fully used for ankle rehabilitation robot
system was the “Rutgers ankle” proposed by Girone et al. of
Rutgers University [57]. It was a robot system based on the
Stewart platform [58] with virtual reality, force feedback,
and remote control [59]. The mechanism was composed of
a fixed platform, a movable platform, and six telescopic
branched chains that were connected with the movable plat-
form. It could carry out six independent movements with 6
degrees of freedom. The Stewart platform used six double
acting cylinders to drive six degrees of freedom motion, and
the virtual reality based human-computer interactive game
provided by the host makes the training process no longer
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boring. Through the received data, doctors could understand
the movement of the ankle joint, and then use the network to
control, evaluate, and guide the patients to carry out the
appropriate rehabilitation training.

In comparison, exoskeleton robots are usually fixed in
various parts of the human limb, while producing different
forces/torques. However, for different patients, these exoskel-
eton robots may not be able to restore the patient’s limb
function due to its disadvantages and poor adaptability.
The end-effector robot is usually at a certain point in contact
with the patient’s body. Because there is no restriction on the
movement of human, the end effector is easier to adapt to
different patients [60].

3. Driving Mode of Lower-Limb Rehabilitation
Robots

The choice of driving mode directly effects the system
scheme of the exoskeleton robot, such as structure design
and control system, and it is the basis of exoskeleton robot
design. At the moment, the common drive modes of an exo-
skeleton robot are hydraulic drive, motor drive, pneumatic
drive, and SEA (series elastic actuator) [61, 62]. There are
other drive modes, such as pneumatic muscle and electronic
rod. We summarize different driving modes in Table 2.

Nowadays, the rehabilitation exoskeleton robot mostly
used motor drive mode; the robot just needs to bear the body
weight and assist hemiplegic patients in common activities,
such as walking and going up and down the stairs. Compared
with other drive modes, motor drive mode has many advan-
tages, like easy control, no pollution, low noise, and so forth.
Hydraulic drive mode is much simpler, smaller, and lighter
than other modes. Under the same load, the hydraulic drive
is much better than the other driving methods.

In summary, the drivers, such as hydraulic, motor,
pneumatic, and SEA (series elastic actuator) are limited
by the power, mass, and volume, and the consequence of
noise on people in the work is serious. Although the
development of artificial muscles plays an important role
in the problems, there are some technical challenges to
overcome. Another important aspect is the drivers’ energy
problem. The usable energy, such as nonrechargeable bat-
tery, rechargeable battery, and small internal combustion
engine, has both merits and limitations, so the potential
and perpetual method to solve these problems is to develop
new technologies, like electrochemical fuel cell and wireless
energy transmission.

4. Control Strategies for Lower-Limb
Rehabilitation Robots

According to the different signals that are obtained from the
initiative intention, the control strategy between robot and
patients is divided into three parts:

(1) Position control
(2) Force signal control

(3) Biological medical signal control.
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4.1. Position Control. The position control method is
trajectory-tracking control, which is to drive the lower limbs
to walk on the fixed mode. The gait is formed by a propor-
tional position feedback controller and joint angles and
suitable for lower limb muscle strength. Hornby confirmed
the efficacy of trajectory tracking control, which can increase
the speed and durability of patients with incomplete spinal
cord injury. Zhang et al. established the trajectory tracking
control of the 5 connection model, which can enhance the
participation of the patients and make the training more
personalized [73].

4.2. Force Signal Control. In this control strategy, force signal
is produced by limb contraction and interactions with
mechanical structure. The interaction force can be directly
measured by force and moment sensor in the elegant
mechanical structure design, which can be evaluated by the
kinetics models of the human-computer interactive system.
Compared with biological medical signal, force signal has a
better determinacy, which can better reflect the motion
intention of the patient, so the control based on force signal
is feasible and relatively steady. However, the acquisition of
interaction force usually requires mechanical structure,
which is less available than biological medical signal detec-
tion, so the applicable range of interactive controlling are
limited. In the interaction control strategy, between rehabili-
tation robot and patient, there are two most widely used
methods: hybrid force/position control and impedance
control [74].

4.2.1. Force/Position Hybrid Control. To resolve the control
problems of robot in a constrained environment [75], Raibert
proposed the force/position hybrid control strategy. Some-
times, we should control the position of the robot on some
specific directions, but on the other directions, we should
control the interaction force between the mechanical struc-
ture and the outside world. Therefore, when the robot
contacts the outside world, the task space of robot would be
split into two subspaces in the force/position hybrid control
strategy. The subspaces are position subspace and force
subspace, and it will complete the tracking control over
position and force in the corresponding subspace [76]. The
interaction control of lower-limb rehabilitative robot is
aiming to provide a safe, comfortable, and flexible place for
treatment and healing, and it does not need accurate force
trace control, so force/position hybrid control strategy is
uncommonly used in interactive controls.

Lokomat achieved a new cooperative gait training strat-
egy by using force/position hybrid control method [77].
The control of lower limb gait orthosis is a two-stage process.
In the step stage, according to the dynamic model to control
the power of the orthosis to provide reasonable support for
patients, it is difficult to accurately assess the relevant kinetics
model. Therefore, we just control the position of orthosis in
the standing stage. Besides that, gait stages of the limbs are
monitored in real time, as the converting signals of hybrid
control in the two stages. This strategy can help patients to
walk freely, and it requires active and full engagement of
the limbs of patients. Therefore, it is an active rehabilitation
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training, which is highly intention-oriented and stimu-
lates the patients to participate positively and with initia-
tive in the rehabilitative training; it will accelerate the
recovery process.

4.2.2. Impedance Control. Impedance control is different
from force/position hybrid control. It focuses on realizing
the flexibility of the rehabilitation robot, which avoids exces-
sive force between the mechanical structure and limbs. This
method could provide a natural, comfortable, and safe
touch interface and avoid secondary damage effectively.
An additional advantage of impedance control is that the
achievement of impedance control is independent of the
prior knowledge [78]. In the control of interaction force
between robot and patients, impedance control has a more
extensive application.

In the robot control field, the theory of impedance
control was first proposed by Hogan [79], and it was the
spread of damping control and rigidity control. Seen from
the approach of realization, impedance control can be
divided into two categories: one is based on torque and the
other is based on position. The first one is based on
forward-facing impedance equations, but the explicit expres-
sions of impedance equations do not exist in the control
structures generally. The second one is based on reverse
impedance equations, which is also called admittance con-
trol. It usually adopts a typical double closed-loop control
structure; the outside loop controls the force and the inner
loop controls the position. The impedance control based on
position is easier to realize [80, 81] position servo control,
more mature, and stable. Aiming at Gait Trainer (GTI) of
lower-limb rehabilitative robot, Hussein proposed an adap-
tive impedance control algorithm for gait training [82].

4.3. Biological Medical Signal Control. Surface electromyo-
gram (sEMG) and electroencephalogram (EEG) are mostly
used in interactive controlling of lower-limb rehabilitative
robot. Since these signals are both using nonintrusive ways
to get, the ways of obtaining the sSEMG and EEG are operable
and do not need a medical expert and its performance can
get guarantees.

4.3.1. The Control Based on sSEMG. EMG signal is the elec-
trical activity produced by the skeletal muscle [83, 84].
According to different measurement methods, it is mainly
composed of sEMG and iEMG (intramuscular EMG).
sEMG is a signal obtained by attaching electrodes to the
surface of the skin, while iEMG is a signal obtained by
inserting a needle electrode into the muscle tissue beneath
the skin. Compared with the active signal, SEMG has the
following advantages:

(1) The acquisition of sEMG is simple and does not
require a complex mechanical structure design.

(2) The force signal is just the embodiment of all
muscle groups, and sEMG can reflect the degree
of activity of specific muscle groups, which can
be more detailed monitoring and control of the
movement of the limbs.
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(3) The interactive control based on sEMG has more
flexibility, which can realize the control of the
healthy limb to the diseased limb according to
the coordination of the body movement.

(4) sEMG has higher sensitivity and resolution than the
active force signal, and it is more suitable to use
sEMG to detect active motion intention for the
patients with lower limb autonomy.

The challenges of interactive control method based on
SEMG are as follows. First, through the human skin, to collect
SsEMG signal has great randomness, and in order to obtain
the signals, which have high signal-to-noise ratio and can
truly reflect the muscle activity, we need to find an effective
way to filter out the interference of sSEMG. Secondly, the
single channel sEMG only reflects the activity of specific
muscles, in order to obtain the active motion intention of
the patients, which is usually necessary to combine multiple
muscle activities. In contrast, the response of the force signal
to the active intention is more direct.

The interactive control strategy based on sSEMG can be
divided into two categories:

(1) Using the remaining EMG of diseased limbs. This
method can not only stimulate the patients’ aware-
ness of active participation but also encourage
patients to control the contraction of limb muscles
during exercise. But for severely paralyzed patients,
their diseased limbs have almost completely lost their
motor function and cannot complete muscle contrac-
tion independently; the sSEMG signal is so weak that it
is difficult to be detected. The first scheme is not
applicable in this case.

(2) Using the motion coordination of the left and right
limbs or upper and lower limbs and EMG signals
of the healthy limbs control the movement of the
paralyzed limb. This method in active participa-
tion of patients is less than the first strategy, but
it provides an active training program for severely
paralyzed patients.

4.3.2. The Control Based on EEG. The EEG signal is the
electrical activity of the brain [85], which is collected by
electrodes attached to the scalp, and it represents the voltage
fluctuations caused by the flow of ions between the neurons
in the brain.

The most important advantage of interactive control
based on EEG is that it is limited to the extent of physical
disability; even if the patient has completely lost the motor
function of the lower limb, as long as the brain can produce
motion control signals, the method is equally applicable. This
method is particularly suitable for patients with complete
spinal cord injury, and their brain function is normal, but
the control signal transduction pathway is cut off, so the
muscles of the limbs completely lost control. The interactive
control based on EEG is equivalent to the reconstruction of
the brain control signal transmission path outside the body,

and the motor and functional electrical stimulation device
are used as the actuator to regain the control of the limb
motor function.

This method is limited to the paralyzed patients whose
brain motor control function is normal, but it is not suitable
for patients with brain damage caused by stroke and other
reasons, because the brain motor function area of the patients
has been damaged and it has not been able to produce the
EEG signal of normal limb movement control. Secondly,
compared with the SEMG signal, the resolution of EEG on
limb movement intention is low and the EEG signal has a
greater randomness, in which changes in expression, mood,
and attention will easily effect the EEG signal generated by
the brain.

At present, the research in this area is mainly focused on
offline classification knowledge and regression analysis; the
knowledge pointed out the potential of the interactive control
of lower-limb rehabilitation robot based on the EEG, but the
actual application and the experimental results are almost
none. Compared with offline research, real-time interactive
control is facing more challenges. First, the real-time acquisi-
tion of the EEG signal is not possible to have the integrity of
the data used in offline research; the accuracy of the identifi-
cation may be affected. Secondly, it is necessary to ensure the
real-time performance of interactive control, which requires
the use of EEG signal for motion recognition, more impor-
tantly, to predict. Finally, in real-time interactive control,
the patient will not be able to complete the actual physical
movement independently, the acquisition of the EEG signal
corresponds to the movement of the brain, and this has
not been considered in the study of the existing lower-
limb rehabilitation robot.

5. Training Modes of Lower-Limb
Rehabilitation Robot

The effectiveness of lower-limb rehabilitation robots and
treatment depends largely on its training mode [86], which
will assist the patient in different patterns of movement
according to the patient’s recovery [87]. Figure 1 shows two
typical control modes for rehabilitation robots: passive mode
and active mode [89]. Recently, more subdivided training
modes for lower-limb rehabilitation have been proposed.
An overview of modes for rehabilitation robot is illustrated
in Table 3.

The rehabilitation-training mode is divided into four
kinds, which includes the passive mode, the active assist
mode, active mode, and active resist mode.

In the passive mode, the patient lost muscle strength
and could not complete the active movement. We can
only rely on the help of external forces to achieve the
patient’s passive training. The robot’s legs drive people’s
legs for rehabilitation training, and the lower-limb reha-
bilitation robot should provide sufficient strength for pas-
sive training. The advantage of this model is through the
repeated exercise to promote the recovery of limb motor
function and reduce muscle atrophy, but the patient
lacks motivation.
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F1GURE 1: Passive and active control modes [88].

TaBLE 3: Overview of training modes for rehabilitation robot.

Training modes

Characteristics

Representative works

Passive mode

The robot helps the patient track the predetermined trajectory through
repeated tracking control for passive training.

Ankle robot and gait orthosis [90-92]

Gait Trainer (GTI) [30]

LOPES [93]

. When the patient has a certain initiative, the rehabilitation robot will AAFO [20]
Active mode change its trajectory or assistance force LOPES [93]
8 jectory : ALEX [17]

A kind of “active” mode. The patient does not need any help to move HAL [22]

Active assist mode the limb. When the threshold value reaches a certain standard, it will KAFO [21]

trigger the robot.

G-EO Systems [32]

Active resist mode

A kind of “active” mode. When the patient moves the limb, the robot
provides resistance to make the exercise more challenging.

ARBOT [94, 95]
Rutgers ankle [25]

In the active mode, the muscles of the patient have
certain strength and the active motion of the smaller torque
can be performed on the rehabilitation equipment. When
the patient wants to move his joint or limb, the robot device
will use an external assist force as needed. It requires the
robot to perceive the state of the patient and the force/tor-
que when following the patient’s movement. This model
can be modified according to the patient’s intention,
thereby greatly enhancing the initiative of patients.

In the active assist model, the muscles have certain
strength, but without the help of the robot legs, patients
cannot be fully trained. This allows the patient to move
without the help of a robot, which can improve the patient’s
ability to exercise independently.

In the active resistance model, the mechanical leg
provides a certain force, which is opposite to the direction
of the leg to achieve the purpose of strengthening muscle
training. This model is suitable for patients with high recov-
ery, and resistance makes the movement more challenging
and can enhance muscle strength in patients.

At present, there are a number of other training
methods, such as mirror motion and isotonic and isokinetic
exercise patterns. Although these new training patterns are
similar from the therapist’s view, they are also trying to
provide assistance or resistance to the patient in the course
of robotic therapy.

6. Gait Detection Technology

Accurate signal is the foundation of control; the quantitative
feedback information is helpful for developing reasonable
rehabilitation strategy according to the state of patients.
Therefore, the choosing of sensor, which can detect the
information of human computer interaction, is crucial. Gait
detection technology consists of three primary parts: plantar
sensing technology, limb sensing technology, and mixed
sensing technology.

Plantar sensing technology: it can judge the different gaits
by detecting the man-machine forces or the ground reaction
forces of foot using sensor.

Limbs sensing technology: it uses sensors to detect
motion intention of the lower limbs or the torso:

(1) The sensing technology based on angle sensor

(2) The sensing technology based on EMG [96] sensor
(3) The sensing technology based on BCI [97].

Mixed sensing technology can be applied to iden-
tify and judge the human gaits using two or more
sensors together.

Combining of the detection information of all kinds of
sensors, the control system can obtain accurate movement
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information to make sure that the exoskeleton robot will
work effectively and reliably.

At present, there are two main ways for detecting
motion intention, as shown in Table 4. One is human
robot interaction based on physical models (pHRI) [100].
It is mainly used for detecting interaction information
between patient and exoskeleton, such as position informa-
tion, force information, and so forth. Although there are
some kinds of lag in time, and the sensors’ installations effect
the comfort ability, this method is of high reliability. The
other is human robot interaction based on cognition (cHRI)
[100]. Using this method, motion intention of patients, as
input signals for controller, is gained through the identifica-
tion of EMG [96] signals. Patching the sensors on the skin
directly is very comfortable, but the sweat on the skin can
seriously effect measurement precision, and it also cannot
ensure the one-to-one mapping relationship between the
EMG signals and the joint torque. At the same time,
the misjudgments of the controller can cause secondary
damage. Obviously, we can accurately judge for motion
intention by fusing the two kinds of signals. The detection
method of human robot interaction information is presented
in Table 4.

The exoskeleton rehabilitation robot uses many kinds
of sensors to detect gait, but the detection methods still
have many problems, such as vulnerability to interference,
inaccurate judgment, and poor adaptability. Therefore, the
development of BCI technology and sensor technology are
crucial to solve the current problems.

7. Discussion

In this paper, the development of lower-limb rehabilitation
robot, training mode, driving mode, control strategy, and
gait detection technology are reviewed. The lower-limb
rehabilitation robot has many advantages, and it has
shown encouraging clinical outcomes and rehabilitation
efficiency. Although most of the lower-limb rehabilitation
robots can provide systematic and long-term treatment,
there are still some disadvantages and deficiencies summa-
rized as follows:

(1) The mechanical structure and control system of
rehabilitative robot need to be improved. During
rehabilitation training, it lacks exact control in real
time for patients’ joints angles, torque, speed, etc.

(2) The recently developed robots in domestic and
abroad are mainly on motor rigid drive. The system
is lacking in flexibility, and the actuator structure of
rehabilitation robot is overly complex and large with
low portability. At the same time, the security and
comfort also need further improvement.

(3) The feedback mechanism of rehabilitative effect
should be consummated. It could not give an
accurate feedback to the limbs’ position and force
during rehabilitation training, which causes low
training efficiency and directly effects the evaluation
of rehabilitation training.

TABLE 4: Detection method of human robot interaction information.

HRI Detection signal Detection method

Angle sensor,

Kinematics information acceleration sensor

HRI . .
pHR Force/torque information Pressure sensor,
torque sensor
cHRI Muscle motility information EMG, sEMG [98]

Brain motility information EEG [99]

(4) For a flexible robot, we need to develop a more
advanced high polymer as flexible material. More-
over, the driving force still needs to be improved.

(5) Patients’ motivation involved in the training plays
a very important role in stroke rehabilitation.
However, most training paradigms are rigid and
boring. Task-oriented training paradigm with inter-
esting games such as whack-a-mole can make the
training more enjoyable.

(6) The lower-limb rehabilitation robot still faces
numerous technological challenges, including the
biomechanics, neurophysiology, human-computer
interaction (HCI), and ergonomics.

The current lower-limb rehabilitation robots, to some
extent, can provide a simple training program for patients
and has a certain effect on rehabilitation. In our opinion,
future researches on lower-limb rehabilitation robot should
focus on the following aspects:

(1) System design of lower-limb rehabilitation robot:
the mechanical structural design is the foundation
of robotic system, which needs to achieve some
major objectives, such as compact, multi-DOF,
great flexibility, various kinds of training methods
and motions, better comfort, and high matching
between human and computer.

(2) The control strategies and motion pattern design
of lower-limb rehabilitation robot: due to the indi-
vidual difference of the patients, the robot should
perceive state information of patient’s force and
position, to adopt corresponding training mode
and control strategy. Future researches, such as
adaptability and stability of control system, the
applications of sensor technique, and the design
of control algorithm, are required. Therefore, the
robot should not only meet the demand of low
weight, fast response, and large output torque but
also have some characteristics similar to animal
skeleton muscles, such as pliability and reliability.
Therefore, it is important to research the optimizing
design method for energy saving based on active
and passive mode, the energy technology of high
energy density, and wireless transmission technology.

(3) The design of gait detection system: the lower-limb
rehabilitation robot should be able to detect and
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perceive the information of interaction forces and
motion position between the patient and rehabili-
tation robot. On the one hand, the robot should
provide appropriate assistance, when the patient
could not complete motion by himself. On the
other hand, the robot should decrease the assist
force or increase the resistance properly, when
the motor ability of paralyzed lower extremity
improves remarkably.

(4) Security protection mechanism: the robot must
be designed to meet the safety requirements of
clinical rehabilitation training, while preventing
damage. In order to ensure security of rehabili-
tation training, two important issues should be
considered when designing the lower-limb reha-
bilitation robots: mechanism design (hardware) and
control system (software).

(5) Rehabilitation effect assessment system: by com-
bining the detection of EMG signals and EEG
signals. We should explore the inherent relation-
ship between the rehabilitation effectiveness and
the train parameters and develop new assessment
strategies to verify the effectiveness of the lower-
limb rehabilitation robot.

(6) The VR technology has been proved to be an
effective tool in neurorehabilitation. On the one
hand, the interesting and varied virtual scene in
VR improves more motivation of patients com-
paring with the training course in traditional
training. On the other hand, the immersive VR
environment can effectively stimulate human brain
mirror neurons in the motor cortex and promote
the recovery of the nerve. However, VR cannot
provide physical feedback to the paralyzed limb;
the robot can compensate for this defect. There-
fore, the combination of rehabilitation robot and
VR technology is the future development direction.
However, before the application, the following core
issues must be addressed:

(i) The exact factors in the design of VR, which
stimulate patients’ motor cortex mirror neurons,
should be explored in the future.

(ii) The vertigo problem of VR, which limits the
application of VR system, must be solved.
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