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Abstract: Fused deposition modeling (FDM) has the advantage of being able to process complex
workpieces with relatively simple operations. However, when processing complex components in a
suspended state, it is necessary to add support parts to be processed and formed, which indicates
an excessive dependence on support. The stress intensity of the supported positions of the printing
components can be modified by changing the supporting model of the parts, their density, and
their distance in relation to the Z direction in the FDM printing settings. The focus of the present
work was to study the influences of these three modified factors on the stress intensity of the
supporting position of the printing components. In this study, 99 sets of compression tests were
carried out using a position of an FDM-supported part, and the experimental results were observed
and analyzed with a 3D topographic imager. A reference experiment on the anti-pressure abilities
of the printing components without support was also conducted. The experimental results clarify
how the above factors can affect the anti-pressure abilities of the supporting positions of the printing
components. According to the results, when the supporting density is 30% and the supporting
distance in the Z direction is Z = 0.14, the compressive strength of the printing component is lowest.
When the supporting density of the printing component is ≤30% and the supporting distance in the
Z direction is Z ≥ 0.10, the compressive strength of printing without support is greater than that of
the linear support model. Under the same conditions, the grid-support method offers the highest
compressive strength.

Keywords: 3D printing; supporting method; compression; compressive strength comparison; fail-
ure form

1. Introduction

3D printing technology was inspired by the concept of photoengraving developed by
William Francois, an artist from the 19th century, and then Blanther laid the foundation for
it by studying geographical terrain maps [1]. Subsequently, the STL (Stereo lithography)
file format became one of the standards in CAD/CAM (computer-aided design/computer-
aided manufacturing) [2]. Presently, various industries and companies extensively use 3D
printing technology to manufacture complex products [3]. Additive manufacturing (AM)
is one of the most promising techniques in component manufacturing [4–9]. In this field,
fused deposition modeling (FDM) [10] composite filament technology [11,12] has gained
extensive attention and is widely used in modern medical and intelligent manufacturing
and in the aerospace industry, due to its advantages in manufacturing complex components
alongside its simplicity and convenient operation [13–16].

The process of FDM itself is relatively complicated. FDM requires different target
components with different strengths and surface qualities, entailing fine adjustments of
the various printing parameters and interactions between the parameters to print the
expected target components [17–22]. Sood et al. studied the influences of the air gap,
grid width, and grating angle on the anti-pressure abilities of printing components [23].

Materials 2021, 14, 4008. https://doi.org/10.3390/ma14144008 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma14144008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14144008
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14144008?type=check_update&version=2


Materials 2021, 14, 4008 2 of 21

Chacón et al. studied the influences of construction direction, layer thickness, and feed rate
on the mechanical properties of polylactic acid (PLA) samples [24]. In addition, fluctua-
tions of the printing temperature can cause separation between the layers, which, in turn,
can affect the surface quality and mechanical properties of the printout [25–27]. Recently,
Marchment, Zheng, and Krystek et al. studied the influence of extending the time and
changing the printing path and position on the mechanical properties of other materials,
including 3D printed concrete, polyether-ether-ketone/hydroxyapatite composites, and
metal prints [28–30]. These analyses provided ideas for further research on the mechanical
properties of PLA printing components. Suteja, Khawaja, and Mustakangas et al. explored
the influence of the internal factors of printed components on compressive strength by
studying filling patterns and filling density [31–33]. The construction direction can also
affect the mechanical strength of FDM components [34]. The fiber directions of the compo-
nents printed in different construction directions also vary, as do the different supported
parts of the printing components, resulting in different stress intensity directions for the
printing components, which may cause excessive dependence on the construction direction,
similar to that of composite laminated boards [35–37]. When printing components, dust
on the cardboard can also increase the compressive strength [38]. In the most basic Cura
slice software [39], the placement of complex printing components in different directions
can also produce variations in the local intensity of the printing components due to the
different supporting positions used. However, few published studies have addressed these
issues. Analyzing the structural strength of the supported positions of basic reinforced
fiber 3D printing components is of special importance in manufacturing [11,40–42].

In light of the above analysis, in the present study we investigated the influence of
support positions on the compressive strength of printing components. The influence of
various FDM support modes, including the influence of support density and the distance
from the support to the model in the Z direction, on the compressive properties of the
supporting parts of the printing components was analyzed for PLA materials. The exper-
imental components were printed with PLA materials, and the compressive strength of
the printed components with different support models, different support densities, and
different support distances in the Z direction was studied by compression testing. A total
of two series of tests were performed in the test programs. The first test series was used
to compare the grid and linear support models of the support part under four support
densities (30%, 50%, 70%, and 90%). The second test series was used to compare the grid
and linear support models of the support part under four support distances (0.08, 0.10,
0.12, and 0.14 mm). The experimental results were then measured with a 3D topographic
imager (Zeta-20). Clearly, the compressive strength of the printing component relates to the
undersurface roughness and the adjacent grids. The failure forms of printing components
were also analyzed in this study.

2. Experimental Methods
2.1. Preparation of the 3D Printer, Materials, and Samples

This study mainly investigated the influences of different support models, including
the influence of support density and the distance from the support to the model in the Z
direction, on the compressive strength of the supporting parts of the printing components.
The materials used in this experiment were composed of 1.75 mm PLA (JG MARKER,
Shenzhen, China), which uses fermented crops as raw materials with fine cohesiveness,
fluidity, degradability, tensile strength, and biocompatibility. The products printed by PLA
are environmentally friendly, have high hardness, are of low cost, and offer energy savings.
The printing temperature for the material is generally between 190 and 210 ◦C. Therefore,
PLA is one of the best raw materials for 3D printing.

To prepare the sample printing, we used a DF-G450 printer (DUFEN, Zhuhai, China),
the operating principles of which are shown in Figure 1. The printer had overall dimensions
of 1400 mm × 950 mm × 1840 mm and was capable of printing products with dimensions
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of 400 mm × 500 mm × 600 mm. The experimental sample printing used a jet nozzle with a
diameter of 0.8 mm to match the disk-like PLA material, which had a diameter of 1.75 mm.
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Figure 1. DF-G450 working principle diagram.

The specific 3D model and the dimensions of the sample are shown in Figure 2a.
The pedestal was a column of 20 mm × 2 mm, the support length was 7 mm, and the
supporting component was a cylinder of 20 mm × 30 mm. The actual printed model is
illustrated in Figure 2b. In keeping with the design parameters of the printing component,
the experimental components with the two supporting models included four supporting
distances (0.08, 0.10, 0.12, and 0.14 mm) and four supporting densities (30%, 50%, 70%,
and 90%). When the supporting density of the supporting part is lower, the surface of
the printing component becomes uneven, and the wire-drawing phenomenon becomes
more serious. Under the same supporting density, the supporting distance of the printing
component increases, the drawing phenomenon gradually decreases, and the surface of
the filling pattern becomes flat and smooth. When the component is printed under grid-
support conditions, the result is smoother than the linear support surface under the same
printing conditions, and the filling pattern is clearer.
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2.2. Technological Parameter Setting

This experiment studied the influences of different support models, support densities,
and distances from the support to the model in the Z direction on the compressive strength
of the supporting parts of the components. The support densities and distances are shown
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in Table 1. However, the mechanical properties of the components manufactured by FDM
are also affected by other technological parameters, such as layer thickness, as shown in
Table 1. Therefore, it was necessary to set these other parameters before printing to ensure
that the components prepared using 1.75 mm PLA materials with the DF-G450 printer
could achieve optimal mechanical properties. However, an increase in support density
also increases the cross-sectional area, which can affect stress measurements. To meet
the experimental requirements, the porosity of the material printed with a 0.2 mm layer
thickness was 0.14%, as smaller porosity can reduce the influence of the cross-sectional area
on the experiment [43]. In small cross-sectional parts, the nominal infill has less of an effect
on the resulting specimens [44]. Moreover, the support density should not be too large
(100%) or too small (10% to 20%). A comparison between the four support densities of 30%,
50%, 70%, and 90% was performed to further reduce the influence of the cross-sectional
area on the experiment [44]. The other technological parameters were set according to the
optimal values recommended by the equipment manufacturer, combining past service
experience and practical industrial applications.

Table 1. 3D printing—list of other fixed parameters.

Fixed Factors Control Factors

Factor Value Unit Factor Value Unit

Layer thickness 0.2 mm Linear support density 30%, 50%,
70%, 90%

Wall thickness 1.6 mm Linear support distance
in the Z direction

0.08, 0.10,
0.12, 0.14 mm

Fill density 30% Grid support density 30%, 50%,
70%, 90%

Nozzle
temperature 205 ◦C Grid support distance in

the Z direction
0.08, 0.10,
0.12, 0.14 mm

Printing speed 50 mm/s

2.3. Experimental Facility

To reduce the influence of fluctuations in the support parameters on the experimental
results, three samples in each group were printed using the same supporting conditions for
each supporting model. As a reference, a group of three samples was also printed without
support. In total, our experiment included 37 groups and 99 experimental samples. Since
PLA is a moisture-absorbing material under normal conditions, in order to reduce the
influence of errors on the experimental results caused by the properties of the material,
the experimental samples were printed with vacuum-packed PLA printing materials in a
moisture-absorbing feed box. All the tests were conducted at a temperature of 23 ± 2 ◦C
and relative humidity of 50 ± 5%. The average compressive strength values of the ex-
perimental samples in each group were collected as the test results. For the strength test,
we used a microcomputer-controlled electronic universal testing machine (WDW-200E)
(ZONGCHI, Jinan, China), as shown in Figure 3. The flat-head compression rate was set
to 2 mm/min, and the full-scale load scope was set at 200 KN. The process of extruding
experimental samples is shown in Figure 4. To reduce the influence of the end effects on
the experimental results, a small amount of lubricant oil was applied to the end surface
of the printing component. During the compression process, the sample with the largest
support distance in the Z direction expanded laterally more than the other samples. Under
the same support distance, with an increase in support density, the change in the support
position decreased. When the supporting density of the printing component = 30% and
the supporting distance in the Z direction was Z = 0.10, the changes in the components
printed without support and those printed using the linear support model were largely the
same. The results show that the components printed with grid support are stronger than
those printed with linear support when using the same parameters. Figure 5 shows the
compression deformation simulation diagram of the print component without support.
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3. Results and Discussion
3.1. Experimental Analysis of Linear Support

Table 2 shows the average compressive strength of the experimental samples with
different support densities and distances from the support to the model in the Z direction
under conditions of linear support. The average compressive strength of the printing
component test without support was 20.2 MPa.

Table 2. Average compressive strength (MPa) of experimental parts with different influencing factors
under linear support conditions.

Linear Support
Density (%)

Z Direction Support-to-Model Distance (mm)

0.08 0.10 0.12 0.14 0

30% 22.40 20.10 19.00 17.90
50% 26.30 24.50 22.50 20.60
70% 27.10 26.50 25.80 23.50
90% 27.90 27.50 25.90 23.70
0% 20.20

Table 2 compares the average compressive strength of the supporting parts of the
printing components with linear support and that of the printing components without
support. Clearly, when the printing condition of the supporting part of the printing compo-
nent satisfies Z ≥ 0.10, and the linear packing density is ≤30%, the compressive strength of
the printing component without support will be larger than that of the supporting part
of the printing component with linear support. Figure 6 shows the relationship between
density, Z direction support-to-model distance, and average compressive strength under
the linear support model.
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pressive strength under linear support.

Figure 6 shows that, under the condition of linear support, with the same distance
from the support to the model in the Z direction, the compressive strength of the supported
part of the printing components increased with an increase in the linear support density,
but the rate of increase decreased with an increase in the support density. Figure 7 shows
the surfaces of the Z = 0.08 components for the supported part of the printing components
after the support was removed (where the support densities were a = 30%; b = 50%; c = 70%;
and d = 90%). After the support was removed, the undersurface became smoother, and the
support density increased.

As the grid is laminated by liquid PLA, which is melted from solid filiform PLA
via a heating nozzle, when printing the underneath surface of the supporting part of the
component, the liquid silk ejected from the nozzle quickly adheres to the solidified support
at the top. This newly ejected high-temperature liquid silk can melt quickly on the upper
surface of the support and cause local secondary melting. This melting can cause the fine
silk to cool on the upper layer and form an asymmetrical temperature gradient along the
direction of sedimentation. The thermal stress caused in this way can then deform the
component. This secondary melting can distribute liquid silk onto the lower surface of
the supporting part of the printing component drawbench because the support gap is not
sufficient. During this process, clashes between neighboring grids can result in overlaps
and form a zero-air gap grid, which can make the printed surface uneven, with fractures
and pits. These fractures and pits can seriously affect the compressive strength of the
supporting parts of the printing components. The smaller the support density is, the larger
the support gap and the more serious the drawbench will become, as shown in Figure 7a.

Based on the above analysis of the experimental results, the compressive strength of
the supporting parts of the printing components relates to the undersurface roughness
and the adjacent grids. To analyze the surface roughness, two neighboring grids at the
same arbitrary locations as the supporting parts of the four printing components with
linear support densities of 70% and 90% and Z direction distances of Z = 0.08 and Z = 0.14
were measured with a 3D topographic imager (Zeta-20) (ZETA, Ca, USA), as shown in
Figure 8. The overall widths of the two neighboring grids and the gap generated between
the adjacent grids are shown in Figure 9.
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Figure 9. Zeta-20 test display interface.

Three-dimensional images of two neighboring grids of the supported part of each of
the four printing components with linear support and of the adjacent grid without support
were observed using the Zeta-20 imager, as shown in Figure 10 (linear support density and
distance in the Z direction from the support to the surface of the supported part: a = 70%,
z = 0.08; b = 90%, z = 0.08; c = 70%, z = 0.14; d = 90%, z = 0.14; e = 0%, z = 0). Here, G is
the gap formed between two adjacent grids; L1 and L2 are two neighboring grids whose
grid roughness, Ra1 and Ra2, was measured to obtain the average grid roughness Ra; and
X1, X2, and X3 represent the total width formed after printing the measured adjacent
grids, the combination of which makes it possible to obtain the average width X of the
neighboring grids.
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Figure 10 shows that, with a fixed distance from the linear support to the undersurface
of the supporting part in the Z direction, the gap between two neighboring grids increased
with an increase in linear support density, but the overall relative size and gaps between the
neighboring grids were unevenly distributed. In Figure 10a, there is almost no gap visible
between the two neighboring grids, indicating a zero-air gap grid, which is beneficial to
the formation of intense bonding. Though intense bonding can lead to slight unevenness
in the local surface due to overlapping of the grid when the component is compressed, the
formation of intense bonding can enhance the compressive performance of the supported
components. Furthermore, Figure 10b shows that with an increase in the support density,
the surface of the supported neighboring grid became more even, and small air gaps began
to form between the neighboring grids, thereby facilitating firm bonding between the
two grids and improving the compressive strength. However, small air gaps can inhibit
heat dissipation, which can increase the possibility of stress accumulation. Due to the
slight enlargement of the air gap between the grids and the surface roughness, and with
the distance from the linear support to the undersurface of the supporting part in the
Z direction unchanged, the increased rate of the compressive strength of the printing
components slowed with an increase in the linear support density. In Figure 10e, the
size and distribution of the gaps between the two neighboring grids on the undersurface
without support are even, and the air gap between the neighboring grids is large.

Table 3 shows that, when the distance from the linear support to the undersurface of
the supported part remained unchanged, with an increase in the linear support density, the
average surface roughness Ra of the two adjacent grids decreased. It can thus be inferred
that the undersurface of the supported part of the printing component was smoother. On
the other hand, with an increase in the support density, the contact points between the
undersurface grating of the supporting part and the upper surface grating of the linear
support increased, as did the PLA on the upper surface of the secondary melting support,
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thereby increasing the average total printing width of the adjacent grating X. Moreover, the
average surface roughness Ra of the supporting component was low, and the undersurface
was smooth. As the direct contact between the undersurface of the printing component
without the support and the printing platform did not undergo secondary fusion, the
undersurface of the printing component was smooth, and the average total printing width
X of the adjacent grids was larger than that of the adjacent grids on the undersurface of the
supported part of the supporting component.

Table 3. Measurement results for two adjacent gratings of unsupported printing members and
printing members with linear support under different conditions.

Linear Support
Density (%)

Z Direction Support-to-Model Distance (mm)

0.08 0.14 0.00

70% Ra = 168µm
X = 773µm

Ra = 167µm
X = 729µm

90% Ra = 164.5µm
X = 866µm

Ra = 145µm
X = 848µm

0% Ra = 22.7µm
X = 1332µm

Further, as the distance from the support to the undersurface of the supported part of
the printing component increased in the Z direction, the contact area of the solid silk PLA
ejected by the hot melting nozzle with linear support decreased and the secondary melting
of the linear support grids weakened. Thus, with the linear support density unchanged,
the average surface roughness Ra of two adjacent grids would decrease with an increase in
the distance from the linear support to the undersurface of the supporting part in the Z
direction, while the undersurface of the supported part would remain relatively smooth
after the linear support is removed. Moreover, the average total printing width X of the
adjacent grids decreases.

3.2. Experimental Analysis of Grid Support

Table 4 shows the average compressive strength of the experimental samples with
different support densities and distances from the support to the model in the Z direction
under conditions of grid support.

Table 4. Average compressive strength (MPa) of experimental components with different influencing
factors under grid-support conditions.

Grid Support Density (%)
Z Direction Support-to-Model Distance (mm)

0.08 0.10 0.12 0.14 0

30% 26.20 24.20 23.70 23.65
50% 26.80 26.50 25.40 25.40
70% 28.10 27.70 26.90 25.90
90% 29.20 28.30 28.20 25.90
0% 20.20

Table 4 compares the average compressive strength values of the supporting parts of
the printing components with grid support with those of the printing components without
support. Likewise, when the supported part of the printing component under the condition
of grid support satisfies Z ≥ 0.08 and the linear packing density is ≤30%, the compressive
strength of the printing component without support is smaller than that of the supporting
part of the printing component with grid support. Figure 11 shows the relationship between
density, Z direction support-to-model distance, and average compressive strength under
the grid-support model.
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Figure 11. Relationship between density and Z direction support-to-model distance—average
compressive strength under grid support.

Figure 11 shows that, under conditions of grid support, when the distance from the
support to the model in the Z direction was the same, the compressive strength of the
supporting parts of the printing components increased with an increase in the support
density, but the increase rate slowed with an increase in the support density. Figure 12
shows the surfaces of the Z = 0.08 components for which the supported parts had their
supports removed (where the support densities were a = 30%; b = 50%; c = 70%; d = 90%).
After the grid support was removed, with an increase in the support density, the drawbench
on the undersurface of the supported part of the printing component decreased, and the
support surface became smoother, with no large-scale pits resulting from the drawbench.
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Figure 12. Images of the bottoms of the experimental grid-support parts removed under different grid
support densities: (a) 30% grid support density (bottom view); (b) 50% grid support density (bottom
view); (c) 70% grid support density (bottom view); (d) 90% grid support density (bottom view).

As shown in Figures 7 and 12, with the same distance from the support to the model
in the Z direction and the same support density, when comparing the surfaces of the
supporting parts of the printing components with the grid supports and the surfaces of
the supporting parts of the printing components with linear support, the grid shape of the
supporting surfaces of the printing components with grid support were more regular and
evenly distributed.

Three-dimensional images of two neighboring grids of the supported part of each
of the four printing components with linear support and the neighboring grid without
support (under the condition of grid support) are shown in Figure 13 (grid support density
and the distance in the Z direction from the support to the surface of the supported part:
a = 70%, z = 0.08; b = 90%, z = 0.08; c = 70%, z = 0.14; d = 90%, z = 0.14; e = 0%, z = 0). Here,
G is the gap formed between two neighboring grids, and L1 and L2 are the two neighboring
grids; the grid roughness, Ra1 and Ra2, was measured to obtain the average grid roughness
Ra; and X1, X2, and X3 are the total widths formed after printing the measured neighboring
grids, the combination of which makes it possible to obtain the average width X of the
neighboring grids.
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Figure 13. Two adjacent raster images of printed components under different conditions: (a) 70% grid support density and
grating of z = 0.08; (b) 90% grid support density and grating of z = 0.08; (c) 70% grid support density and grating of z = 0.14;
(d) 90% grid support density and grating of z = 0.14.

Figure 13 shows that when the distance from the grid support to the undersurface of
the supported part remained unchanged in the Z direction, with an increase in grid-support
density, the gap between two neighboring grids increased. However, the relative sizes and
distributions of the gaps were uneven. Figure 13a shows that there were almost no gaps
between the two neighboring grids, and zero-air gap grids were formed in most locations.

Figure 13a shows that, with an increase in the support density, the gap between the
two grids at the undersurface of the grid support component was nearly smooth, with a
zero-air gap grid. Moreover, Figure 13b shows that, with an increase in support density,
the grids on the supporting surface were more uniform, and small air gaps began to
form between adjacent grids on the undersurface of the supported part of the printing
components with grid support. Due to the slight enlargement of the air gap between the
grids and the material’s surface roughness, when the distance from the grid support to the
undersurface of the supporting part in the Z direction remained unchanged, the increased
rate of the compressive strength of the printing components slowed with an increase in
grid support density.

Based on Table 5, when Z = 0.08, with an increase in grid support density, the average
surface roughness Ra of two adjacent grids decreased from 178 to 139.5 µm. Therefore, with
an increase in grid support density, the undersurface of the supported part of the printing
component became smoother. At the same time, with an increase in support density, the
PLA on the upper surface of the secondary melting support increased, thereby increasing
the average total printing width of the adjacent grids X. Moreover, the average surface
roughness Ra of the component without support was low, and the undersurface was
smooth. As the direct contact between the undersurface of the printing component without
the support and the printing platform cannot undergo secondary fusion, the average total
printing width X of the adjacent grids was larger than that of the adjacent grids on the
undersurface of the supported part of the supporting component.
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Table 5. Measurement results for two adjacent gratings of unsupported printing members and
printing members with grid support under different conditions.

Grid Support
Density (%)

Z Direction Support-to-Model Distance (mm)

0.08 0.14 0.00

70% Ra = 178µm
X = 882µm

Ra = 177µm
X = 848µm

90% Ra = 139.5µm
X = 1079µm

Ra = 86.5µm
X = 899.6µm

0% Ra = 22.7µm
X = 1332µm

Moreover, because the distance from the support to the undersurface of the supported
part of the printing component increased in the Z direction, the contact area of the solid
silk PLA produced by the hot melting nozzle with linear support decreased, and secondary
melting of the grating support grids weakened. Thus, with the grid support density
unchanged, the average surface roughness Ra of two adjacent gratings decreased with an
increase in the distance from the grid support to the undersurface of the supporting part in
the Z direction, while the undersurface of the supported part remained relatively smooth
after the linear support was removed. Moreover, the average total printing width X of the
adjacent grids decreased.

3.3. Analysis of the Different Support Densities

Using the data in Tables 2 and 4 for comparative analysis, Figure 14 plots the average
compressive strength values of the components with different support densities and sup-
port models, but with the same distance from the support to the model in the Z direction.
Here, a is z = 0.08, b is z = 0.10, c is z = 0.12, and d is z = 0.14.
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Figure 14. Compressive strength of the two support models with the same Z directional support distance model and
different support densities: (a) support and model surface and distance Z = 0.08; (b) support and model surface and distance
Z = 0.10; (c) support and model surface and distance Z = 0.12; (d) support and model surface and distance Z = 0.14.

Figure 14 shows that when the distance from the support to the model in the Z
direction was the same, with an increase in the support density, the compressive strength of
the supported part of the printing component was enhanced under the conditions of both
linear support and grid support. However, under the same Z directional support distance
model and the same support model, the growth rate of the compressive strength decreased
with an increase in the support density. With the same support density, the compressive
strength of the supported part of the printing component with grid support was larger
than that with linear support.

3.4. Analysis of the Different Support Distance

Using the data in Tables 2 and 4 for comparative analysis, Figure 15 illustrates the
average compressive strength of the printing components under both support models
with the same support density but different distances from the support to the model in
the Z direction. The support density of the printing base of the supported component in
Figure 15a was 30%, the support density of the supported component in Figure 15b was
50%, the support density of the supported component in Figure 15c was 70%, and the
support density of the supported component in Figure 15d was 90%.

Figure 15 indicates that when the distance from the support to the model in the Z
direction was the same, with the same support density, the compressive strength of the
supported part of the printing component with grid support was larger than that with linear
support. Figure 15a shows that when the support density was 30% under both support
conditions, the compressive strength of the supported part of the printing component
was notably larger than that when the support density was 50%, 70%, or 90%. When the
distance for the support distance model of the supported part of the printing component
increased, the compressive intensity of the supported part of the printing components in
both support models decreased gradually.
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Figure 15. Comparative analysis of the experimental results for the compressive strengths of the two support models with
the same support density and different support distance models in the Z direction: (a) the supported member printing 30%
of the support density of the foundation; (b) the supported member printing 50% of the support density of the foundation;
(c) the supported member printing 70% of the support density of the foundation; (d) the supported member printing 90% of
the support density of the foundation.

3.5. Component Failure Analysis

Based on an analysis of the stress diagram of the printing component in the compres-
sive test, the component showed obvious plastic deformation. The compressed samples
under the condition of linear support are shown in Figure 16 (where a is Z = 0.08, the shape
after the compressive test of the four different linear support density printing components).
Here, the cylinder-shaped sample was compressed into a drum shape or pie shape. The
adjacent grid layer was observed using a three-dimensional topographic imager (Zeta-20),
with cracks appearing between the local adjacent grids, as shown in Figure 17 (location T is
a crack in the adjacent grid layer). Moreover, the local fiber was distorted under the press,
as shown in Figure 18. Heavily distorted deformation caused cracks between the layers
and even local ruptures. However, due to the intense bonding formed by the grid overlap
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and the even smoothness of the surface grids (with the same filling density and the same
distance as the support distance model in the Z direction), the outer cracks on the under-
surface of the supporting part and the fiber distortion of the grid support were slightly
less severe than those of the supported part of the linear support; the supported part of
the linear support also featured slightly less significant deformation than the component
without support.
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4. Conclusions

In this work, 99 groups of compression tests were carried out on FDM-supported
positions, and the experimental results were observed and analyzed with a 3D topographic
imager. When using models with the same supports, and when the supporting sections
were supporting the same distances in the Z direction, with an increase in supporting
density, the surface grids of the supported part of the printing component became even and
smooth, intense bonding was formed between the adjacent gratings, and the compressive
strength increased. However, as the support density increased, the compressive strength
of the printing component also slowly increased. When using models with the same
supporting densities, the more the supporting distance of the supporting part increased in
the Z direction, the lower the compressive strength of the printing component became. The
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undersurface of the printing component without support did not experience secondary
fusion during the printing process. Moreover, the average surface roughness was low, so the
undersurface was smooth. When the linear support density was constant, with an increase
in the support distance of the supported component in the Z direction, the secondary
fusion phenomenon weakened, and the compressive strength gradually increased, with
the support density of the printing component being ≥30% and the support distance
in the Z direction being ≤0.10, ultimately exceeding the compressive strength of the
unsupported member. In contrast, the compressive strength of the grid support model
was greater than that of the linear support model and also greater than that of the model
without printing support. The present study will help operators select appropriate printing
parameters when printing complex components. It is advisable to select an appropriate
support model, support density, and distance for the supporting part in the Z direction
based on the permissible stress of the component in order to enhance the compressive
strength and service life of the printing component. Future studies will include bending
tests, fatigue tests, and tensile tests, which will help us further explore these different
mechanical characteristics.
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