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Abstract

Binary classification has numerous applications. For one, lie detection methods typically

aim to classify each tested person either as “liar” or as “truthteller” based on the given test

results. To infer practical implications, as well as to compare different methods, it is essential

to assess the diagnostic efficiency, such as demonstrating the number of correctly classified

persons. However, this is not always straightforward. In Concealed Information Tests

(CITs), the key predictor value (probe-irrelevant difference) for “truthtellers” is always similar

(zero on average), and “liars” are always distinguished by a larger value (i.e., a larger num-

ber resulting from the CIT test, as compared to the zero baseline). Thereby, in general, the

larger predictor values a given CIT method obtains for “liars” on average, the better this

method is assumed to be. This has indeed been assumed in countless studies, and there-

fore, when comparing the classification efficiencies of two different designs, the mean differ-

ence of “liar” predictor values in the two designs were simply compared to each other

(hence not collecting “truthteller” data to spare resources). We show, based on the meta-

data of 12 different experimental designs collected in response time-based CIT studies, that

differences in dispersion (i.e., variance in the data, e.g. the extent of random deviations from

the zero average in case of “truthtellers”) can substantially influence classification effi-

ciency–to the point that, in extreme cases, one design may even be superior in classification

despite having a larger mean “liar” predictor value. However, we also introduce a computer

simulation procedure to estimate classification efficiency in the absence of “truthteller” data,

and validate this procedure via a meta-analysis comparing outcomes based on empirical

data versus simulated data.

Introduction

Simplistic polygraph lie detector tests are widely known from reality shows and similar popu-

lar media. Though this specific type of testing has been widely documented as flawed [1, 2],

there are indeed various scientifically established paradigms to assess truth telling in people

[3–5]. All these paradigms use binary classification, where each tested person is typically
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classified as a liar or a truthteller based on the given test results. To infer practical implications,

as well as to compare different methods, it is essential to assess the diagnostic efficiency–as typ-

ically measured by area under the receiver operating characteristic curve (AUC) [6, 7]. Prop-

erly assessing diagnostic efficiency is a challenge in itself [8–10].

For illustration, let us say that we have a hypothetic deception detector device A, which,

whenever a statement is uttered, displays a “lie indicator value” as a number from zero to a hun-

dred, with larger number indicating larger likelihood of the person having lied (i.e., deception).

To empirically assess the diagnostic efficiency of this binary classifier, we recruit 200 people,

half telling a lie, and half giving a truthful statement. We find that the liar group indeed receives

larger values as compared to the truthful group (average 60 vs. 30, with standard deviations of

10 each, in close to perfect normal distribution). This is illustrated in Fig 1, upper panel A (see

S1 Script). Thereby, most liars can be distinguished from truthtellers if we set a particular cutoff

value for classification (based on empirical observations, using e.g. Youden’s index [11]): Those

who get a value above this number will be classified as liars, and the rest as truthtellers. For

example, an optimal cutoff is at value 45, in which case 94 people from each of the two groups

are classified correctly, and six from each of the two groups are classified incorrectly.

We could then introduce an improved device B, which functions similarly as device A, but

may provide improved diagnostic ability, that is, higher accuracy in distinguishing liars from

truthtellers. We repeat the experiment and find that device B is indeed an improvement, provid-

ing larger lie indicator values for liars, with an average 70. This is illustrated in Fig 1, panel B–

note the decreased overlap between liar and truthteller data. Thereby, the diagnostic efficiency

increased even further: At an optimal threshold around 50, altogether only three persons out of

the total 200 are misclassified (two truthtellers and one liar in the case of our simulated data).

The diagnostic efficiencies of these two devices (A and B) can then be statistically compared, for

example, using DeLong’s test to compare the two AUCs [12, 13]. Similar to simple overall classi-

fication accuracy rate–number of correct classifications divided by the number of all classifica-

tions–the AUC can range from 0 to 1, where .5 means chance level classification, and 1 means

flawless classification–i.e., all guilty and informed innocent classifications can be correctly made

based on the given predictor variable, at a given cutoff point. The advantage of the AUC is that

it takes into account the distribution of all predictor values, thereby relying less on chance cutoff

points and providing more generalizable indication for future samples.

Importantly, the truthteller data is completely identical in these two cases (i.e., identical

results are obtained from truthtellers with either device). Now, let us assume that all future

experiments using any devices will also result in the same identical truthteller data. In that

case, the truthtellers may be omitted to spare resources. To assess potential differences in diag-

nostic efficiency, the arithmetic means of the two different liar results (using device A vs. B)

can be directly compared using a simple t-test (or other, e.g., Bayesian equivalent). If the mean

lie indicator value of the liars is larger for device B, as compared to device A, we may conclude

that device B has better diagnostic efficiency.

However, we now come to the key point in our paper: Distributional properties must also

be taken into account. When the dispersion of the resulting values of either the liar or truthtel-

ler group is more narrow (i.e., has smaller data variance; typically reported as standard devia-

tion [SD] to quantify the extent of dispersion [14]), there is less overlap between the two

groups, and hence truthtellers and liars can be more efficiently distinguished from each other

[9]. For example, we could introduce a device C, whose data is identical to that obtained with

device B, except that the new data for one of the groups is more narrowly distributed, thus the

variance of the truthteller data is substantially decreased (SD = 5 instead of 10; Fig 1, panel C).

This leads to improved diagnostic ability: At an optimal threshold around 45, all 200 persons

are correctly classified; even without any changes in the means of either group.
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Fig 1. Density plots illustrating dispersions for the obtained lie indicator values. In truthteller and liar conditions,

using three different hypothetic lie detection devices: A, B, and C. Note that the decreasing overlap (largest for A,

smallest for C) means an increase in efficiency for classification (i.e., the smaller the overlap, the better the

classification). Grey solid vertical lines indicate optimal cutoff points for classification. (In panel A, there are multiple

equally optimal cutoff points due to the evenly distributed values in the simulation. This is unlikely with empirical

data).

https://doi.org/10.1371/journal.pone.0240259.g001
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The aims of the present paper are to: (a) demonstrate that analogous scenarios actually

occur in real studies concerning a specific deception detection method, the response time-

based Concealed Information Test (RT-CIT [15]), and (b) introduce a simulation approach to

create control cases that provides a very close approximation of empirical results and hence

can be used to estimate AUCs.

To note, here we focus on RT-CIT, but the same reasoning applies to all CIT paradigms

(e.g., polygraph, EEG, etc. [5, 16]). Given the enormous number of studies applying of binary

classification (e.g. in medicine [17–19], forecasting [20], or other topics in social sciences

[21]), it would be very difficult to spot analogous examples (with constant but variable control

data) in different lines of research, but we think it is likely that similar cases do occur. In such

cases, the solution presented here may be applied analogously.

The response time-based Concealed Information Test

The RT-CIT aims to reveal whether a person is concealing knowledge regarding a certain

detail [16]. To illustrate the CIT, let us consider a murder case scenario in which the murder

weapon is known only to the perpetrator and the investigators. In this case, the CIT could

include the actual murder weapon (the probe; e.g., "rifle") and several other weapons (irrele-

vants; e.g., "knife" and "rope") as the items that would be sequentially presented to a suspect

one by one in a random order. When each item has to be responded to with a keypress, the

recognition of the probe (in this case, "rifle") by a person who is aware of the relevance of that

item will typically result in a slower response to that item than to the irrelevant items [22].

Thereby, based on the probe-irrelevant RT differences, liars who deny recognizing the probe

(as a relevant item among the rest) can be distinguished from truthtellers who are truly not

familiar with the relevant probe. This difference is conventionally calculated, per each individ-

ual test, as the mean of all response times to probes minus the mean of all response times for

irrelevants [15, 23].

To note, in deception detection literature, the key conditions in RT-CIT studies are typi-

cally labelled “knowledgeable” (here “liar”) and “naive” (here “truthteller”), because in general

this method does not assess lying per se, but merely the knowledge of a certain detail. In the lit-

erature of diagnostic efficiency assessment or signal detection, a baseline condition (which

lacks the material–here: lies–to be detected), such as “truthtellers,” would be called the “nega-

tive condition,” or, more often, the control condition, or simply controls, while the opposite

(here: “liar”) would be called the “positive condition”, or cases. Throughout the present paper,

for consistency and clarity, in context of deception we keep to the illustrative designations

“liars” and “truthtellers” that are easy to understand for any reader, and in context of data we

write “liar” and “control” data.

While the methodological details of the RT-CIT are not relevant to the present paper, it is

crucial that truthtellers (i.e., those not aware of the relevance of the probe) are assumed to see

no difference between probe and irrelevant items. Therefore, there should be no probe-irrele-

vant RT differences, except by accidental variation (i.e., measurement error). Consequently, it

has also been found in all studies involving such a condition that each truthteller group has an

approximately zero probe-irrelevant RT difference on average. All in all, it is clear both theo-

retically and empirically that the truthteller group probe-irrelevant RT difference mean will

always be approximately the same (namely, zero). Because of this, the majority of published

RT-CIT studies do not collect control data, but merely use probe-irrelevant difference means

of different liar groups in order to compare them to each other and determine which ones are

superior (only 11 out of 24 RT-CIT studies that we found contained at least one experiment

that collected original control data; see the next section, Collection of Meta-Data).
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Another set of studies also did not collect control data, but instead used computer simula-

tions to produce control data by randomly drawing values from normally distributed values

with a mean of zero [24–26]. One approach was based on the simulation of individual

responses [26]. This particular simulation procedure involved standardizing individual probe

and irrelevant responses (i.e., calculating standard scores, also called z-scores, normal scores,

etc.), in cases of both truthtellers and liars (details below). This evaluation approach, in turn,

was based on a similar procedure widely used in evaluating electrodermal responses, which

yields superior results due to the specific nature of electrodermal activity [27]. It was this pro-

cedure based on which another paper [28] introduced, for their electrodermal response-based

CIT, the control data simulation approach that has subsequently often been cited in relation to

RT-CIT studies too [26].

The main point here is that the standardization procedure leads to a different predictor

than the conventional probe-irrelevant difference, and there is no known evidence that the

standardization has any sort of advantage in case of the RT-CIT. It is a wholly different ques-

tion whether the related simulation approach for the standardized predictors is valid or not.

Therefore, before addressing the matter of data simulation, we first evaluate whether or not

the probe value standardized based on mean responses to probe and irrelevant items may be a

more efficient predictor than the mean probe-irrelevant difference.

Furthermore, for completeness, we also consider another method using standardization,

namely, probe-irrelevant difference standardized based on trial-level responses [29, 30]. This

was introduced (following an algorithm used for Implicit Association Test evaluations [31]) as

an attempt to find a reasonable cutoff point in the absence of control data which would allow

the calculation of an optimal cutoff [30]. By calculating the probe-irrelevant difference as uncor-

rected Cohen’s d, the authors reasoned that such an individual effect size may follow the con-

ventional interpretation of small, moderate, and large for d = 0.2, 0.5, or 0.8 [30]. Based on their

empirical finding that a cutoff at 0.2 results in an optimal balance between specificity and sensi-

tivity in their experiment, it was subsequently used in several experiments to set cutoff point for

providing participants with immediate „caught or not” feedback following the test [24, 32, 33].

Some studies have also used this individual effect size, instead of the conventional mean differ-

ences, to calculate AUCs [29, 33–35]. There has been, however, no attempt to show whether or

not this measure indeed provides a more generalizable cutoff than simple mean differences.

In sum, we have three different possible procedures for calculating a predictor variable, none

of which had yet been statistically compared to each other under any consideration in the

RT-CIT: (a) the mean of all response times to probes minus the mean of all response times for

irrelevants [23], (b) probe value standardized based on mean responses to probe and irrelevant

items [26–28], and (c) probe-irrelevant difference standardized based on trial-level responses [30].

For the evaluation of these procedures in classification efficiency per study as well as in the

generalizability of cutoff points, we collected all available empirical control and liar data from

studies where both of these conditions were included. We subsequently used the same empiri-

cal data to devise and test a new approach for the simulation of control data. Therefore, in the

following, we first describe our meta data collection, then the evaluation of classification effi-

ciency and the generalizability of cutoff points, and finally, we outline and validate our new

simulation approach.

Collection of meta-data

The literature search and inclusion criteria largely followed a recent meta-analysis [15], except

for two important additional restrictions: we included only CIT paradigms with primary focus

on RT measurement, and only studies that collected truthteller data along with liar data.
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We searched the electronic data-bases PsycINFO, Web of Science, and PubMed, using the

following search string: ("Guilty knowledge" OR "Concealed information" OR GKT OR CIT

OR "guilty action" OR "memory detection" OR "Concealed knowledge" OR "decept�" OR "lie

detection" OR "lie-detection" OR "decei�") AND ("Reaction time�" OR "Response time�" OR

"Response latenc�"). Within the found articles, references of relevant articles as well as subse-

quent citations (via Google Scholar) were searched for potential further articles to be included.

The following criteria were used to select studies for inclusion:

• The study was an experimental study reporting original data.

• The study sample consisted of adults or the mean age of the sample was at least 18 years.

• The study reported results of a computer-based study using a CIT paradigm, where RT was

the primary measure. We did not include studies that focused on other primary measures

(e.g., ERPs, fMRI).

• The study emphasized deception or information concealment through instructions.

• Raw data for all trials in each individual test had to be available. If no such data was available,

the authors were contacted to provide the data. If this data could not be provided, the study

was excluded.

The databases were searched on September 28, 2019. The search resulted in 1,832 findings,

and, after removing all duplicates, 1,561 unique references (S1 File). Screening based on titles and

abstracts, 1,534 references were excluded primarily because they were not deception detection

related, or otherwise because they did not report original data, did not use the CIT paradigm, or

were not primarily RT-based. Out of the remaining 24 studies, 11 contained at least one experi-

ment in which original truthteller data was collected. Four studies had publicly available data (or

were made available upon request [24, 29, 33, 35]. For studies with no publicly available data, the

authors of the papers were contacted, and thereby we obtained the data from three further studies

[30, 34, 36]. The authors of the remaining five studies told us that the data is no longer available

(despite efforts to retrieve it and also partial aggregated data from one case [23, 37–40].

Thus, our final sample drew data from seven different studies, including 12 experimental

CIT designs (i.e., separate methods tested), each with both liar and control data, between

which the key between-condition effect sizes were calculated. Note that each of the main meta-

analytic comparisons in the present paper compare two different measures within each of

these 12 group pairs. Hence, for each of these main comparisons there were 12 against 12 effect

sizes to compare within-study.

For completeness we also report the overall average effect sizes as well as other potential

moderators unrelated to our paper. These latter results could be affected by publication bias as

well as selection bias (due to unavailable data), and therefore certainly not intended to provide

any reliable insight into the RT-CIT in general, and neither do we draw any related conclu-

sions in our paper.

Method

For all calculations we followed the exclusion criteria of the latest related papers: an accuracy

rate for the main items (probes and irrelevants merged) lower than 75%, and accuracy rate for

target items lower than 50%. (In case of filler items: accuracy rate for either familiar- or unfa-

miliar-referring items lower than 50%.) For all further analysis, responses below 150 ms and

were excluded, along with all trials with incorrect key response and too slow response (above

800 ms; uniform response deadline in all studies).
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The standardized probe value based on mean responses to probe and irrelevant items [26–

28] was calculated as follows: First, the mean RT was calculated for each individual item

included in the test (e.g., in case of birthdays, one mean RT for all responses for trials with the

text “AUG 25,” similarly one mean RT for “JAN 12,” etc., regardless of whether they are probes

or irrelevants). Second, the obtained mean value for the probe item was standardized relative

to all the probe and irrelevant mean values (i.e., the mean of all values was subtracted from the

probe value, and the resulting value was divided by the standard deviation of all values). In

mathematical notation (with P for probe RT mean, Mall for the mean of all probe and irrele-

vant RT means, SDall for the standard deviation of all probe and irrelevant RT means):
P� Mall
SDall

.

The standardized probe item value was then used as the final predictor variable. (In case of

multiple probe items in an individual test, the standardized probe item values were averaged

to obtain a single predictor value.) This predictor will be referred to as standardized probe RT.

The probe-irrelevant difference standardized based on trial-level responses was calculated

as the uncorrected Cohen’s d between all probe and all irrelevant RTs [30]. Namely, the differ-

ence between the probe RT mean and the irrelevant RT mean (which is the conventional mean
probe-irrelevant [RT] difference) was divided by the pooled standard deviation of probe RTs

and irrelevant RTs, using all trials. In mathematical notation (with M for arithmetic mean, n
for sample number, pr for all probe RTs, and ir for all irrelevant RTs):

Mpr � Mirffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpr � 1ÞðSDpr2Þþðnir � 1ÞðSDir2Þ

nprþnir � 2

q .

This predictor will be referred to as standardized probe-irrelevant (RT) difference.

All data processing, statistical tests, and plots were written in R [41–45] (S2 File). Wherever

possible, we report Bayes factor (BFs) as a complementary statistic that may be of interest to

some readers. Our interpretation however always relies on the well-established frequentist

interference, using the conventional alpha level of .05.

Different predictors: Descriptives and diagnostic efficiency

Statistics from the meta-data most relevant to the present paper are all presented in Tables 1, 2,

and 3.

Most clearly, Table 1 shows that the overall average empirical control mean probe-irrele-

vant difference hardly differs from zero (1.9 ms, SD = 23.5). In contrast, the overall average

empirical liar probe-irrelevant difference is 36.8 ms, SD = 33.6. These numbers may prove use-

ful for future studies to estimate how the outcomes compare to previous outcomes (although

keeping in mind potential moderating differences, e.g., most clearly, the given CIT protocol).

The alternative predictors (standardized probe RT, standardized probe-irrelevant difference)

differ nominally but are analogous (i.e., close to zero in case of controls, magnitudes larger in

case of liars).

Tables 2 and 3 show diagnostic values. Correct detection rates (true positive and true nega-

tive), depicted in Table 2, most straightforwardly reflect diagnostic accuracy. Crucially, opti-

mal detection rates, based on the Youden’s index of each given study (for which the detection

rates are calculated), are somewhat higher than the inferred detection rates, based on the mean

Youden’s index of all studies except for the given study (for which the detection rates are calcu-

lated; S1 Appendix). However, this difference is moderate (ca. 3–4% overall for any of the pre-

dictors), and in particular remarkably small in case of true negative rates (in fact identical up

to two digits for mean probe-irrelevant difference). Both optimal and inferred detection rates

are similar in case of any of the predictor types, indicating no advantage in either accuracy or

generalizability of one predictor over any other (see S1 Appendix).

Finally, Table 3 depicts AUCs and effect sizes. Again, different predictors lead to very simi-

lar outcomes (e.g., AUCs identical up to the two digits shown in the table), hence once again
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Table 1. Means and standard deviations of predictors.

Study reference # NL NC MPID SPRT SPID

Liar Control Liar Control Liar Control

M SD M SD M SD M SD M SD M SD

Geven, Ben–Shakhar, et al. (2018) MP a 1 242 38 32.6 35.2 4.9 25.5 0.68 0.63 0.13 0.59 0.29 0.30 0.05 0.22

Kleinberg & Verschuere (2015) Exp1 MP 2 88 118 34.9 36.5 5.2 24.6 0.53 0.48 0.08 0.41 0.28 0.28 0.04 0.20

Kleinberg & Verschuere (2015) Exp2 MP 3 103 113 32.8 36.5 0.0 26.6 0.52 0.52 0.01 0.47 0.29 0.35 0.00 0.23

Kleinberg & Verschuere (2016) Exp1 MP 4 159 97 34.6 32.4 –5.2 24.1 0.65 0.52 –0.08 0.50 0.30 0.28 –0.03 0.20

Kleinberg & Verschuere (2016) Exp2 MP 5 193 53 27.7 38.5 2.3 27.5 0.48 0.62 0.00 0.48 0.21 0.28 0.01 0.23

Lukács, Kleinberg, et al. (2017) Exp1 MP 6 81 75 27.4 26.3 4.0 19.8 0.55 0.48 0.08 0.37 0.26 0.26 0.03 0.17

Lukács, Kleinberg, et al. (2017) Exp1 SP 7 98 80 8.8 19.9 –0.8 18.6 0.19 0.44 –0.02 0.39 0.07 0.17 –0.01 0.15

Lukács, Kleinberg, et al. (2017) Exp1 SPF 8 45 49 38.6 31.4 0.6 18.1 0.72 0.53 0.03 0.41 0.38 0.32 0.00 0.17

Noordraven & Verschuere (2013) MP a 9 17 20 71.5 43.6 9.2 23.1 0.83 0.52 0.13 0.36 0.66 0.41 0.10 0.25

Verschuere & Kleinberg (2015) MP a 10 40 31 52.7 25.4 –2.2 15.2 0.60 0.21 –0.08 0.28 0.45 0.22 –0.02 0.13

Verschuere, Kleinberg, et al. (2015) Exp2 MP 11 44 49 56.8 43.4 8.0 29.5 0.76 0.54 0.13 0.46 0.46 0.36 0.07 0.25

Verschuere, Kleinberg, et al. (2015) Exp2 SP 12 52 64 22.9 34.4 –2.6 29.3 0.31 0.47 –0.05 0.43 0.17 0.26 –0.02 0.23

M 36.8 33.6 1.9 23.5 0.57 0.50 0.03 0.43 0.32 0.29 0.02 0.20

Means (M) and standard deviations (SD) for the differently calculated Predictors obtained from empirical data. MPID: mean probe-irrelevant difference (ms); SPRT:

standardized probe RT, and SPID: standardized probe-irrelevant difference. Next to the study reference, the protocol types are indicated as SP: single-probe, MP:

multiple-probe, SPF: single-probe with familiarity-related filler items. Liar and Control (i.e. truthteller) sample sizes are shown under the headers NL and NC. The values

below the number sign [#] header are numbered labels for each experimental design, for easier subsequent reference. The last row M shows the means (unweighted) of

all values from the corresponding column above.
a Offline data collection (i.e., participants not crowdsourced).

https://doi.org/10.1371/journal.pone.0240259.t001

Table 2. Detection rates and thresholds per predictor.

# MPID SPRT SPID

Optimal Inferred Thres. Optimal Inferred Thres. Optimal Inferred Thres.

TP TN TP TN TP TN TP TN TP TN TP TN

1 .60 .84 .59 .84 18.8 .72 .68 .70 .68 0.29 .62 .84 .60 .84 0.17

2 .86 .58 .65 .75 7.1 .84 .63 .65 .73 0.15 .61 .83 .64 .76 0.21

3 .74 .71 .58 .78 10.8 .71 .71 .60 .75 0.22 .70 .75 .57 .79 0.12

4 .74 .82 .67 .85 15.3 .66 .87 .72 .78 0.49 .73 .80 .65 .86 0.12

5 .57 .75 .53 .77 15.8 .56 .77 .58 .74 0.35 .61 .75 .50 .77 0.12

6 .59 .88 .59 .83 20.9 .58 .88 .65 .72 0.47 .64 .83 .58 .87 0.15

7 .59 .69 .26 .89 5.4 .56 .69 .37 .80 0.16 .47 .80 .21 .86 0.11

8 .87 .78 .71 .86 12.0 .84 .80 .80 .80 0.28 .84 .78 .69 .84 0.11

9 .82 .90 .82 .70 43.4 .82 .80 .82 .80 0.38 .82 .85 .82 .70 0.35

10 .82 .00 .88 .90 29.6 .85 .97 .82 .97 0.31 .82 .00 .88 .87 0.27

11 .64 .92 .80 .57 45.3 .59 .92 .80 .65 0.70 .66 .84 .77 .67 0.30

12 .63 .72 .44 .81 11.7 .63 .72 .44 .88 0.16 .62 .72 .40 .88 0.09

M .71 .80 .63 .80 19.70 .70 .79 .66 .77 0.33 .68 .82 .61 .81 0.18

True positive (TP) and true negative (TN) rates, using Optimal or Inferred thresholds, for the differently calculated Predictors, from empirical data. MPID: mean probe-

irrelevant difference; SPRT: standardized probe RT, and SPID: standardized probe-irrelevant difference. The thresholds (Thres.) shown are the optimal ones used for

each study. (To note, the inferred thresholds are not depicted, since they are very similar for each study due to their calculation as the average optimal threshold of all

other studies: see the last row M, which shows the means [unweighted] of all values from the corresponding column above.) For the experiment names and details

referenced here only by the numbers [#], see Table 1.

https://doi.org/10.1371/journal.pone.0240259.t002
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no particular advantage appears for any of the predictors. Importantly, however, simulated val-

ues are also very close to empirical values for mean probe-irrelevant differences, suggesting

that our simulation procedure (described below) is highly accurate.

Statistical comparison of predictors

We statistically evaluated the two RT-CIT predictor calculations as alternatives to the conven-

tional mean probe-irrelevant difference in a study-level comparison to assess whether the dif-

ferent predictors chosen influence the liar-truthteller effect size (which in turn reflects

classification efficiency) or the related AUCs. We subsequently evaluated whether any of these

approaches would lead to more generalizable cut-off points in comparison to the mean probe-

irrelevant difference, also with a more general aim to assess if a generalizable cutoff point for

the RT-CIT can be established. All related analysis is reported in detail in S1 Appendix. In

brief, most importantly, the alternative predictors did not show any significant benefit in any

respect (and in fact result in very similar outcomes in all cases), as reflected in Tables 2 and 3.

Therefore, for the main analyses and demonstrations in the rest of the manuscript we use only

the conventional mean probe-irrelevant differences, for simplicity. Nonetheless, all findings

below hold equally true for either of the two alternative predictors as well.

Classification efficiency as opposed to mean differences

The main argument of the present paper is that mean differences of the mean probe-irrelevant

differences between two methods are not strictly indicative of classification efficiency. Namely,

when a given lie detection method has larger mean probe-irrelevant differences than another

method, but it also has larger SD (in either liar or control data or both), it may not be more

efficient in classification.

Here we illustrate this in simulations (S2 Script) based on the collected empirical meta-

data. In each of these simulations, we used a normally distributed sample of a 1,000 hypothetic

Table 3. Effect sizes and areas under the curves.

# MPIDreal MPIDsim SPRT SPID

ES AUC ES AUC ES AUC ES AUC

1 0.81 .75 0.96 .78 0.88 .74 0.83 .74

2 0.98 .77 1.15 .80 1.04 .77 1.03 .78

3 1.04 .77 1.06 .77 1.03 .77 1.01 .77

4 1.35 .85 1.19 .81 1.42 .84 1.32 .84

5 0.70 .70 0.77 .72 0.81 .72 0.73 .70

6 1.00 .77 1.17 .80 1.09 .78 1.04 .79

7 0.50 .64 0.48 .63 0.50 .63 0.49 .63

8 1.50 .86 1.44 .84 1.47 .85 1.52 .87

9 1.83 .88 2.04 .91 1.59 .85 1.69 .86

10 2.54 .97 2.33 .96 2.79 .98 2.51 .97

11 1.33 .83 1.59 .87 1.26 .81 1.26 .81

12 0.81 .71 0.80 .69 0.80 .71 0.77 .70

M 1.20 .79 1.25 .80 1.22 .79 1.18 .79

Effect sizes (ES) and areas under the curves (AUC), for the differently calculated Predictors. MPID: mean probe-irrelevant difference; SPRT: standardized probe RT, and

SPID: standardized probe-irrelevant difference. Both SPRT and SPID are obtained from empirical data. In case of MPID, the ES and AUC obtained using simulated data

is also depicted: MPIDreal refers to the original statistics from empirical data, while MPIDsim refers to the simulated statistics. The last row M shows the means

(unweighted) of all values from the corresponding column above. For the experiment names and details referenced here only by the numbers [#], see Table 1.

https://doi.org/10.1371/journal.pone.0240259.t003
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mean probe-irrelevant difference values, for two group pairs of liar and control data. (That the

empirical control data is generally normally distributed is supported by the density graphs and

Q-Q plots per each of the 12 empirical datasets, see S3 File. The S2 Script also includes demon-

stration that the slight positive skewness, as seen in some empirical data, has very little impact.)

The simulated control data always had a mean of zero. The average of the two simulated liar

data means was always 36.79 ms: This number is the mean of all empirical probe-irrelevant

means in our study (Table 1). The outcomes vary somewhat when modifying this average:

When the liar data means are larger, the liar data values are generally further from the control

group data values, and hence the overlap is less affected by the SD of either group. Nonetheless,

the principle remains the same.

In the first simulation, we use the extremes of SDs found in our empirical meta-data, and a

mean difference (between mean probe-irrelevant differences) of 20 ms. Thereby, method A

with lower probe-irrelevant differences had a simulated liar dataset with a mean of 26.79 and an

SD of 19.87 (smallest SD among all empirical liar datasets), and a simulated control dataset with

a mean of zero and an SD of 15.24 (smallest SD among all empirical control datasets); while

method B with higher probe-irrelevant differences had a simulated liar dataset with a mean of

46.79 and an SD of 43.64 (largest SD among all empirical liar datasets), and a simulated control

dataset with a mean of zero and an SD of 29.48 (largest SD among all empirical control data-

sets); see Fig 2. Due to the smaller SDs in method A, despite the larger probe-irrelevant means

in method B, the AUC in method A (.858) is larger than the AUC in method B (.813).

In this specific scenario, the effect size between the mean probe-irrelevant differences of the

two methods is d = 0.59, which is a large effect size that is not uncommon to be found in

RT-CIT studies when comparing two different methods to demonstrate a significant differ-

ence. This means that in this specific case, the statistic may be wrongly taken as proof for that

method B is more efficient than method A, while in fact the very opposite is true. All other

parameters remaining equal in this scenario, a minimum difference of around 26.5 ms

(d = 0.79) between the two liar means is required for method B to have a nominally higher

AUC then method A; namely, .830 over .827 –which is still of hardly any practical relevance.

Nonetheless, taking the most extreme possible SDs found in our meta-data is a far-fetched

example. A more realistic worst-case scenario may be constructed by using the upper and

lower 95% CI limits of the empirical SDs from the respective conditions. We again took a

mean difference of 20 ms, hence only the SDs changed: Method A had a simulated liar dataset

with a mean of 26.79 and an SD of 29.60, and a simulated control dataset with a mean of zero

and an SD of 20.89; while method B with higher probe-irrelevant differences had a simulated

liar dataset with a mean of 46.79 and an SD of 37.63, and a simulated control dataset with a

mean of zero and an SD of 26.12; see Fig 3.

In this case, method B indeed shows a larger AUC (.847) than method A (.771). With these

settings, the effect size difference between the liar groups is d = .59, similar to the first example.

Method A will have larger AUC only when the mean difference is at least as low as 8 ms, with

d = 0.24 (in which case the AUC is .818 for method A, and .814 for method B). Such a small

effect size has never been found to be significant in RT-CIT studies, since no study has ever

had a large enough sample size to detect it: For example, for a paired t-test (to minimize

required sample), for a power of .90, alpha of .05, the required sample would be 184 partici-

pants. An analogous independent t-test would require 730 participants– 366 per group. Even

using crowdsourcing, it is unlikely that future studies would invest in gathering so many par-

ticipants for a single comparison of two methods.

All in all, we may conclude that, in general practice, when significant mean differences in

mean probe-irrelevant differences are found (between two liar groups), the classification effi-

ciency is also at least to some extent improved for the method with larger mean probe-
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irrelevant differences. However, (a) it cannot be ruled out that extreme cases may occur where

this is entirely untrue, and (b) even if it is true, the difference can be substantially over- or

underestimated, resulting in misleading implications about practical relevance.

This could imply that it is best to always collect control data in RT-CIT studies and compare

the obtained AUCs. However, there are two problems with this. First, calculating power for

the comparison of two AUCs is complicated: There is no widely accepted method and different

approaches can yield very different results [46–49]. Second, the required sample would be gen-

erally multiple times larger than for the comparison of means. For example, take an ideal case

where methods A and B have the same SD for both liars (33 ms; average SD from the meta-

data) and controls (23 ms; average SD from the meta-data), and again the 20 ms difference. In

this case, the effect size between liar groups is a large d = 0.61. For a paired t-test comparison,

for a power of .9, alpha of .05, the required sample would be only 32 participants. For a paired

Fig 2. Density plots of probe-irrelevant differences. In truthteller and liar conditions, for two simulated scenarios,

method A and B, using, for SDs, the minimum and maximum SDs taken from the meta-data. Solid vertical lines

indicate optimal cutoff points for classification, while dashed vertical lines indicate the mean values of the given liar

and truthteller groups.

https://doi.org/10.1371/journal.pone.0240259.g002
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AUC comparison of the same data, for the same power and alpha, the required sample size

would already be slightly more than the double: 33 liar and 33 control participants (calculated

for DeLong’s test [50]; some alternative methods can result in much larger required samples

[51, 52]). However, when the SDs differ even a little bit in the direction that decreases the

AUC differences (i.e., larger SD for the method with larger probe-irrelevant differences), the

AUC requires increasingly larger samples. For example, if we modify the previous example to

subtract just 3 ms from the SD of the results of one method (with smaller probe-irrelevant dif-

ferences) and add just 3 ms to the other’s, the required sample size will be 90 (45 liars and 45

controls). Now, a mean difference of 10 ms with all other settings unchanged would require

119 participants for a paired t-test (d = 0.30), but 420 for AUC comparison (210 liars and 210

controls; and, again, alternative methods for power calculation can result in even much larger

numbers).

Fig 3. Density plots of probe-irrelevant differences. In truthteller and liar conditions, for two simulated scenarios,

method A and B, using, for SDs, the lower and upper limits of the 95% CI of the SDs taken from the meta-data. Solid

vertical lines indicate optimal cutoff points for classification, while dashed vertical lines indicate the mean values of the

given liar and truthteller groups.

https://doi.org/10.1371/journal.pone.0240259.g003
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As described in the introduction, control data may be simulated to spare resources [24, 26,

28], but, to the best of our knowledge, such simulation procedures have never been empirically

validated.

Computer simulation of control data

Empirical dispersion

Previous simulation procedures had various implicit assumptions (i.e., unstated but necessary

for the validity of the given procedure) about the SDs: (a) equal SDs in all experiments and

designs when using standardized probe RT, reproducible by a specific randomized procedure

[26], (b) control data SD equal to liar data SD [25], or (c) equal control data SDs in similar

experimental settings [24]. It is logical that similar experiments lead to similar SDs, but the

extent of similarity required would be difficult to estimate or test empirically. In any case,

often there is no precedent of similar experimental settings. The other two assumptions–(a)

and (b)–can be easily tested.

First (a), following the procedure of [26, 28], we obtained control data per “participant” by

drawing five random values from normal distribution as mean RT per item, randomly assign-

ing one value as “probe” item mean RT, and subsequently calculating a standardized probe RT

as described previously in case of empirical data (i.e., subtracting the mean of all five items and

dividing by the SD of all five items). To present a good estimate of the resulting control data

SD, using this procedure we generated, 1000 times, a 100 control participants’ simulated data

(S3 Script).

The mean of the SDs from these 1000 simulated datasets is 0.894, 95% CI [0.891, 0.897].

This means that when control data is simulated using this procedure, the SD of the standard-

ized probe RT values will always be around 0.894. However, as can be seen in Table 1, the

empirical control group SDs (for standardized probe RTs) are notably lower than this in every

study in our meta-data (with a mean of 0.429, 95% CI [0.384, 0.473]). A one sample t-test,

comparing the empirical control group SDs to the theoretical mean of 0.894, gives very strong

evidence for the difference; t(11) = 20.37, p< .001, BF10 = 1.7 ×107 (raw mean difference: 0.43,

95% CI [0.38, 0.48]). This means, as demonstrated in the previous section, that this simulation

procedure would always substantially underestimate AUCs in RT-CIT studies. Furthermore,

once again, this procedure presupposes the use of standardized probe RTs as the predictor var-

iable in the RT-CIT, even though it does not appear to be superior to the conventional mean

probe-irrelevant difference.

Second (b), to test whether empirical control data SDs equal to empirical liar data SDs, we

compared the two datasets with a t-test, which showed, with strong evidence, that liar data SDs

are larger; t(11) = 7.25, p< .001, d = 2.09, 95% CI [1.05, 3.11], BF10 = 1399.14 (raw mean dif-

ference: 10.1, 95% CI [7.0, 13.2]). Therefore, simulated truthteller data SD based on empirical

liar data SD would be overestimated (i.e. assumed to have more widely dispersed data than in

real empirical truthteller cases), which in turn means that the AUCs would be underestimated

in this case too.

It is however true that control data SDs are significantly and strongly correlated with liar

data SDs; r(10) = .738, 95% CI [.284, .921] (R2 = .544), p = .006, BF10 = 7.06; see Fig 4. To take

the samples sizes into account, we repeated the correlation test but now weighted by the sam-

ple sizes of each experimental design (liar and control group together); the evidence and the

correlation were then even stronger; r(10) = .826, 95% CI [.476, 1] (R2 = .682), p = .002.

Consequently, one may use this correlation to predict control data SDs based on empirical

liar data SDs, namely, by building a linear regression model and using the fitted values for the

simulated control data SDs. We entered the full sample size of each experimental design as

PLOS ONE Diagnostics and control data computer simulation in Concealed Information Test Studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0240259 October 2, 2020 13 / 22

https://doi.org/10.1371/journal.pone.0240259


weights for the regression. The intercept was at 6.86, while the coefficient of liar data SDs was

0.52. Thereby, for any given study, the control data SD may be calculated by multiplying the

liar data SD by 0.52 and adding 6.86 (i.e., SDliar × 0.52 + 6.86; which gives the corresponding

fitted value in the regression model; see white circles in Fig 4).

Evaluation of simulated data

To evaluate the procedure, we used a cross-validated procedure in which simulated control

data for each experimental design was generated, using near-perfect normal distribution, with

a mean of zero and the SD calculated based on a weighted regression model without the data

from the given experimental design [53–55]. That is, we fitted 12 separate models as described

above, except for that in each case we left out the data of a single experimental design. The

intercept and coefficients obtained from each of these models were then used to calculate the

Fig 4. Empirical and derived control data Standard Deviations (SDs) in function of liar data SDs. The number

labels in the figure are the datasets (individual experimental designs) in the alphabetical order of their full name, as in

Table 1, showing the empirical control data SD for each empirical liar data SD. Green crosses show presumed control

data SDs equaling liar SDs for each given study. White filled circles show the control SDs based on fitted values for

each study in the weighted linear regression model. Hence, for each dataset, there are three vertically aligned values

indicated: empirical data (study number), hypothetical control SD equaling empirical liar SD (cross), and hypothetical

fitted SD value (white circle). The red line shows the slope of the weighted regression, along with the surrounding 95%

CI in light blue.

https://doi.org/10.1371/journal.pone.0240259.g004
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SD for the data simulation for the given experimental design that was left out. The SD was

then calculated, in each case, as the given design’s liar data SD multiplied by the coefficient,

plus the intercept, from the given corresponding model. To prevent unbalanced weight in con-

tributing to the pooled variances (from liar and control data), each simulated control data con-

tained the same number of values as the corresponding design’s empirical control data. All

comparisons below concern the simulated data obtained using the described leave-one-out

procedure versus the empirical control data.

The main question here was whether the effect between liar and control groups differs

when using simulated control data as opposed to empirical control data. Therefore, this factor

was the main moderator to be tested in the following meta-analysis.

We included two moderators that were likely to influence the effect size, although they are

not theoretically relevant to the present paper (for details, see S1 Appendix). Firstly, CIT Proto-
col: single-probe (SP) protocol, multiple-probe (MP) protocol, or single-probe protocol with

familiarity-related filler items (SPF) [24, 25, 35, 56]. Secondly, Crowdsourcing: crowdsourced

(online) experiment or laboratory experiments [57, 58]. While there is no minimal number of

studies for conducting meta-analysis [59, 60], the relatively small number of included studies

is very unlikely to provide reliable and generalizable evidence for these potential moderating

influences–as noted before, we draw no related conclusions.

Thus, we ran a random-effects model with the following factors as potential moderators:

Simulation (Yes vs. No), Protocol (SP, MP, SPF), Crowdsourcing (Yes vs. No). The random

effects model indicated a meta-analytic effect of 1.58, 95% CI [1.20, 1.96]. The model showed a

significant effect of the moderators QM(4) = 15.97, p = .003. Nonetheless, the residual heteroge-

neity was still significant, QE(19) = 65.06, p< 0.001, indicating that our moderators cannot

fully explain all heterogeneity among the studies.

The key result is that the Simulation moderator was not significant; B = 0.05, 95% CI [–

0.26, 0.35], p = .759 (simulated effect sizes nominally slightly larger, but CIs indicate that an

effect size difference larger than 0.35 is very unlikely [61]).

The Protocol effect was significant, QM(2) = 7.38, p = .025. Pairwise follow-up comparisons

showed that SP had smaller effects than MP or SPF; B = 0.46, 95% CI [0.04, 0.87], p = .030,

B = 0.83, 95% CI [0.17, 1.49], p = .014; and there was no significant difference between SPF

and MP, B = 0.37, 95% CI [–0.22, 0.96], p = .217. The Crowdsourcing effect was significant,

with smaller effects in crowdsourced studies, B = 0.51, 95% CI [0.10, 0.91], p = .013.

As a supplementary test for AUCs in specific, we compared the obtained AUC values with a

t-test. That is, we generated the simulated data as described above for the meta-analysis, and

calculated AUCs for classification between liar data and empirical control data, as well as liar

data and simulated control data. The test showed no significant difference, t(11) = 1.14, p =
.278, d = 0.33, 95% CI [–0.26, 0.90], BF01 = 2.03. The simulated AUCs were on average only

nominally larger (M±SD = .799±.092 vs. .790±.091), with a raw mean difference of .008, 95%

CI [–.008, .025]; see Fig 5.

Crucially, the correlation between the empirical and simulated AUCs is extremely high: r
(10) = .961, 95% CI [.862, .989] (R2 = .923), p< .001, BF10 = 830.84. This means that it is highly

unlikely that there will be a substantial difference between the simulated AUCs of any two spe-

cific methods if there is no difference between the empirical AUCs. Consequently, AUCs sim-

ulated using this procedure may be used to verify differences demonstrated by comparison of

liar predictor means.

In fact, some–but perhaps even most–of the chance difference between the empirical and

simulated data can be explained by error in the empirical data. Since in the control condition

probe and irrelevant items were assigned completely randomly, the difference between them

must always converge to zero. That is, with a large enough (or infinite) sample that cancels out
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random noise, this difference will always be zero. However, there is always some random vari-

ation in empirical control data that leads to probe-irrelevant differences that are small and sta-

tistically nonsignificant, but may still nominally influence between-condition effect sizes and

AUCs. For example, in the first experiment by Kleinberg & Verschuere (2016 Exp. 1; dataset

#4), the probe means were somewhat smaller than irrelevant means (d = 0.11), hence the mean

probe-irrelevant differences were biased in the negative direction (–5.2±24.1 ms; see Table 1),

and thereby introduced a small positive bias in the between-condition effect size and AUC (as

compared to the AUC using a theoretical larger sample with zero probe-irrelevant differences).

As seen in Table 3 and Fig 5 (dataset #4), the simulated effect size and AUC (using a control

data mean of zero) is slightly smaller, and presumably more precise. Conversely, one of the

designs in the Verschuere et al. (MP; 2015; dataset #11) had notably larger probe means than

irrelevant means (d = 0.14; probe-irrelevant differences: 8.0±29.5 ms), thereby decreasing

between-condition effect size and AUC–which are somewhat larger, and probably more pre-

cise, when using the simulated data (Table 1 and Fig 5; dataset #11). Tellingly, all 12 datasets,

with no exception, follow the very same pattern (i.e., negatively and positively biased empirical

Fig 5. Areas under the curves using empirical or simulated control data. Means with 95% CIs in error bars. Datasets are individual experimental designs designated

with numbers in the alphabetical order of their full name, as in Table 1.

https://doi.org/10.1371/journal.pone.0240259.g005
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control predictors result in, respectively, smaller and larger simulated outcomes for both effect

sizes and AUCs). Therefore, from this perspective, the simulated data can actually be assumed

to more precisely reflect real outcomes than a empirical control data of limited sample size.

Conclusions and recommendations

The main points that we demonstrated in this paper are that (1) dispersion matters: comparing

mean differences is not strictly indicative of classification efficiency, and (2) a reliable estima-

tion of classification efficiency can be generated using a simple simulation procedure.

With regard to point (1), the differences between probe and irrelevant means and the

related within-test probe-irrelevant effect sizes are regularly used to assess, informally or for-

mally, the efficiency of different lie detection methods, even in comparisons across entirely dif-

ferent studies, paradigms, and technologies, and consequently, based on these comparisons,

authors draw important practical conclusions [15, 62–66]. As we have shown here, such con-

clusions cannot be directly drawn. Comparison of liar probe-irrelevant differences should

always be complemented by the addition of a control data.

This control data, however, may be simulated based on the dispersion of liar data, which

brings us to point (2). Based on 12 real empirical control datasets, we devised and tested a sim-

ulation procedure that proved to be highly accurate. In S4 Script, we provide a demonstration

of how this simulation may be performed in an instant using a few simple lines of code. The

AUCs with simulated control data can be used to verify that the dispersion has no substantial

influence.

Nonetheless, such simulated data cannot perfectly equal empirical data in all scenarios, and

we still encourage the collection of empirical control data whenever sufficient resources are

available. In the future, such new empirical data may also be used to recalculate (and reverify)

the optimal simulations procedure.

Power calculation

Prospective (a priori) power analysis to determine the required sample size is crucial for behav-

ioral experiments [67]. To determine the smallest effect size of interest required for the power

analysis, the ideal way is to rely on objective justification [68–70]. In case of the CIT, one may

consider the sample size required for a reasonable increase in the rate of correct detections of

liars and truthtellers in relation to the costs of the required sample size. However, when plan-

ning the collection of two groups of liar participants whose mean probe-irrelevant RT differ-

ences are to be directly compared to each other, the effect size (standardized mean difference)

has no direct implication for the practical consequences in diagnostics. Unsurprisingly, no

RT-CIT study to date has reported any objective (i.e., diagnostics-related) justification for sam-

ple sizes. Practical consequences can however be estimated a priori using the very same simula-

tion procedure described in the present paper: Diagnostic efficiency values (e.g., correct

detection rates and areas under the curves) can be simulated for any given expected effect sizes

between liar conditions alone. An online Shiny R implementation for such estimations is freely

available via https://github.com/gasparl/esdi (including detailed documentation and usage

examples specific to RT-CIT).

Data sharing

As a beneficial corollary of our study, we also provide a neatly arranged data file of raw trials

from 2265 individual tests (including 8001 separate probes, from 12 different experimental

designs, all involving both liar and truthteller conditions), which can be directly used for fur-

ther large volume exploratory analyses, such as gauging the effects of overlapping visual
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features (e.g., probe starts with same letter as target), passing of time (e.g., probe-irrelevant dif-

ferences in function of trial number), assessing potential model-based predictors combining

various variables (e.g., error rates, target RT, etc.), or repeating our analyses for independent

replication or to answer further related questions.

On a related note, we would like to urge authors to always upload their raw trial-level (and

possibly also aggregated) data, along with a clear description when needed, to a publicly avail-

able repository to allow for studies like ours and the ones outlined above to be conducted [71].

This is also in the interest of the original authors if they want to keep track of their own data,

which may be otherwise difficult to locate and decipher later on. We also see a role here for

reviewers, who in the peer review process can ensure that the data is indeed fully available.

This should not only help future efforts as described above but also help the reviewers more

accurately assess the quality of the study under review [72, 73].

Summary

In the present paper we showed that previously suggested alternative predictor calculations

have no particular benefit in the RT-CIT, and relatedly demonstrated that cutoff points, while

fairly generalizable, are not stable across different experiments. Based on empirical data, we

demonstrated that comparing mean differences is not strictly indicative of classification effi-

ciency, and we devised and validated procedure for generating control data to simulate AUCs.

Incidentally, we also shared the vast dataset–used for our analyses–of unified raw variables

from a number of different experiments for further large-scale analyses.
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Writing – original draft: Gáspár Lukács.
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