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Pyroptosis-related gene-based
prognostic signature for
predicting the overall survival of
oral squamous cell carcinoma
patients
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Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental
Technology and Materials, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute
of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Purpose: Oral squamous cell carcinoma (OSCC) is the most common oral
cancer worldwide. Pyroptosis is a type of programmed cell death mediated
by caspase, accompanied by an inflammatory response, and plays an
important role in cancer progression. The purpose of this study was to
explore and identify potential biomarkers and further elucidate the potential
role of cell pyroptosis in OSCC.
Methods: We regarded the samples from The Cancer Genome Atlas database
as a training dataset, screened differentially expressed genes (DEGs), and
further screened out OSCC phenotypic characteristic genes by using
weighted gene co-expression network analysis. The analysis of 42 known
pyroptosis-related genes showed that Psuch genes were widely expressed,
mutated, and methylated in OSCC samples.
Results: Through correlation analysis, we identified our OSCC pyroptosis-
related DEGs. To further evaluate the prognostic value of pyroptosis-related
regulators, we constructed a seven gene-based prognostic signature using
Cox univariate analysis and least absolute shrinkage and selection operator
Cox regression analysis. Meanwhile, we found that patients in the low-risk
group had higher immune infiltration. Moreover, our results also indicated
significant differences in sensitivity to cisplatin and gefitinib between the
high-risk and low-risk groups.
Conclusion: Our study successfully constructed the pyroptosis-related
prognostic signature, which might play a potential prediction role in OSCC
prognosis. Our findings also suggested that pyroptosis-related regulators
might be novel biomarkers for tumor diagnosis and treatment in OSCC.

KEYWORDS

oral squamous cell carcinoma, pyroptosis, immune infiltration, overall survival,

prognostic signature
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2022.903271&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2022.903271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2022.903271/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.903271/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.903271/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.903271/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.903271/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2022.903271
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Zeng et al. 10.3389/fsurg.2022.903271
Introduction

Oral squamous cell carcinoma (OSCC) is a commonmalignant

tumor type of oral cancer and brings huge health burden to society

(1). According to the report of the World Health Organization

(WHO), the annual incidence rate of OSCC worldwide is more

than 300,000 cases globally (2). The prognosis of OSCC patients

is poor, with an approximately 50% 5-year survival rate due to

the limited understanding of molecular mechanisms (3). In the

last few decades, although the technological and biological

advances recently have been developed, the prognosis of this

disease has not changed (4). Therefore, the identification of novel

and efficient prognostic predictors is necessary and may guide

personalized clinical treatment.

Pyroptosis is a programmed mode of cell death in the

body’s immune response, mediated by cysteine aspartate-

specific proteases (caspase), accompanied by an inflammatory

response, and has been reported to play an important role in

cancer development (5, 6). Pyroptosis is thought to be a

response to infection and is reported to be usually triggered

by inflammasome (7). Increasing evidence revealed that

pyroptosis could affect the overall survival of cancer patients

by changing the immune infiltration levels in the tumor

microenvironment (TME) (8). For example, Liang et al.

constructed a prognostic model using pyroptosis-related genes

and found that this model might efficiently predict the

prognosis of gastric cancer patients (9). Cao et al. identified a

series of long non-coding RNAs regulating the progression of

pyroptosis and then established a pyroptosis-related lncRNA

prognostic model for ovarian cancer (10). In addition, many

reports confirmed that the pyroptosis level was significantly

correlated to immunotherapy response in diverse types of

human cancers such as glioma (11), pancreatic

adenocarcinoma (12), and esophageal adenocarcinoma (13).

These studies further determined the crucial value of

pyroptosis in cancer, as well as the patient prognosis.

However, the potential prognostic significance of pyroptosis in

OSCC is still lacking and needs to be extended for guiding

clinical directed treatment.

In the present study, we identified 278 potential regulators

that are differentially expressed in OSCC, which are

significantly associated with 42 pyroptosis genes by using the

limma and weighted gene co-expression network analysis

(WGCNA) function packages in R. The least absolute

shrinkage and selection operator (LASSO) Cox regression

model is a popular algorithm widely used in medical research

for feature selection (14–17). Further, we integrated the

LASSO Cox regression model analysis to narrow down the

range of candidate genes and finally screened out seven

pyroptosis-related regulators to construct a prognostic model.

Seven pyroptosis-related regulators determined the efficiency

and accuracy of the predictive model in both datasets,

including training and validation sets.
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Moreover, we also evaluated the immune infiltration levels

between two risk groups and found that patients in the low-

risk group had a stronger infiltration ratio of the

microenvironment. Our results suggested that the prognostic

model might guide the use of antineoplastic drugs such as

gefitinib and cisplatin clinically.
Materials and methods

Data collection and processing

The RNA FPKM expression profiles and clinical

information of the training dataset (316 OSCC samples and

30 normal samples) were downloaded from the HNSCC

cohort of The Cancer Genome Atlas (TCGA-HNSC).

Meanwhile, similar information about the validation dataset

(40 OSCC samples) was generated from the International

Cancer Genome Consortium (ICGC). The original data is

normalized by the log2
(x+1) method, and the standardization

was performed based on the robust multi-array method.

Subsequently, the differential expression analysis was carried

out by the limma function package of R language (18), with |

log 2 [fold change (FC)]| > 1 and P≤ 0.05 as the set.
Weighted gene co-expression
network analysis

The “WGCNA” function package of R language was used to

perform the WGCNA as previously described (19). In brief,

according to the gene expression value of genes, genes with

high similarity were divided into the same module by the

dynamic clipping tree method, and the module was identified.

Next, the module eigengene (ME) value and the correlation

coefficient between the ME value and phenotype of interest

were calculated. Furthermore, phenotypes referred to disease

states, specifically, under the significant correlation coefficient

(P < 0.05); the larger the absolute value of ME, the closer the

module to the benefit phenotype.
Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes pathway
enrichment analysis

The 42 pyroptosis-related genes were obtained from

previous studies and the GO:0070269 pathway (20–24), and

they are presented in Supplementary Table S1. For 42 genes,

Gene Ontology (GO) analysis (including biological process,

molecular function, and cellular component) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis was conducted by the clusterProfiler
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function package of R language (25), with P < 0.05 as the

significant threshold.
Construction and validation of the
prognostic signature

To screen out the key genes that associated with OSCC

prognosis, univariate Cox regression analysis was applied by

using the “survival” function of R language. Then, a prognosis

model was constructed with these candidate genes. Risk score

= Gene 1 * β1 + Gene 2 * β2 +… Gene n * βn. The β symbol

represents the regression coefficient for each gene of interest

obtained from the training dataset. Subsequently, we divided

patients into high- and low-risk groups based on the median

risk score. The prognostic effect was evaluated by using the

time-dependent ROC curve using the “timeROC” function. In

addition, the validation dataset was used to verify the

accuracy of this prognostic signature.
Immune infiltration analysis

XCELL in TIMER (http://timer.comp-genomics.org/) was

used to evaluate the percentage of immune cell types, that is,

the infiltration levels of diverse types of immune cells among

OSCC samples as previously described (26). Further, the

differences in immune cell invasion between two risk groups

was assessed using SSGESA according to the previous studies (27).
Evaluation of the correlation between risk
score and clinical response to
chemotherapeutic agents

To investigate whether patients with OSCC could benefit

clinically from immunotherapy, chemotherapy combined with

immunotherapy has been shown to be more effective than

either alone. We investigated the correlation between risk

score and clinical response to chemotherapeutic agents.

pRRophetic is an R software package designed to assess

clinical drug responses (the half-maximal inhibitory

concentration, IC50) by integrating baseline gene expression

levels and drug sensitivity data in cancer cell lines (1, 28).
Statistical analysis

R V4.1.0 (http://www.Rproject.org) was used to perform the

statistical evaluation. The Wilcoxon test was used to compare

the differences between the two groups. P < 0.05 was

considered the significant threshold.
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Results

Identification of phenotypic-specific
differentially expressed genes

First, the differential expression analysis between OSCC

samples and normal samples was performed, and we identified

2,956 differentially expressed genes (DEGs) (Figure 1A). To

perform the WGCNA analysis, the soft threshold power

analysis was used to obtain the scale-free fitting index of

network topology (Figure 1B). Here, according to the

WGCNA algorithm, the gene expression network was assumed

to obey the scale-free distribution, and the gene co-expression

network was constructed. Subsequently, we constructed the

hierarchical clustering trees by calculating the dissimilarity

coefficients of different nodes. In addition, we grouped high-

similarity genes into the same module and low-similarity genes

into different modules and visualized these modules. For

WGCNA analysis of 2,956 DEGs, we set the soft threshold to 7

to construct a scale-free network (Figure 1C). Further, the

adjacency matrix and topological overlap matrix were

constructed and are shown in Figure 1D. Finally, seven

modules were obtained based on average hierarchical clustering

and dynamic tree clipping (Figure 1E). The MEs and Pearson

correlation coefficients for disease status were calculated for all

modules to determine which module was associated with

OSCC, and we found that the blue module (R = 0.68, P = 3e-

48) was significantly negatively correlated to disease status

(Figure 1E). Scatter plot of correlation between the blue

module most related to phenotype and genes is shown in

Figure 1F. Hence, the 310 genes in the blue module were

selected for the subsequent analysis.
Evaluation of pyroptosis genes in oral
squamous cell carcinoma (OSCC)

To assess the change of pyroptosis genes in OSCC, we

downloaded the 42 pyroptosis-related genes from previous

studies and the GO:0070269 pathway. As shown in Figures

2A,B, we found that the expression and methylation

modification of 42 pyroptosis-related genes were significantly

changed in OSCC samples compared to normal samples.

Meanwhile, we observed the extensive mutations of

pyroptosis-related genes in OSCC samples compared to that

in normal samples (Figure 2C). Then, GO and KEGG

enrichment analyses were carried out using these 42

pyroptosis-related genes, and the results revealed that these

genes were mainly enriched in pyroptosis, interleukin-1 β

production, interleukin-1 production, regulation of

interleukin-1 β production, and other biological processes

(Figure 2D) and also in the NOD-like receptor signaling
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FIGURE 1

Identification of phenotypic-specific differentially expressed genes (DEGs). (A) Differential gene volcano map between Oral squamous cell carcinoma
(OSCC) samples and normal samples. (B) Soft threshold power analysis for generating the scale-free fitting index of network topology. (C)
Hierarchical cluster analysis to detect co-expression clusters with corresponding color assignments. (D) Heat map depicting the topological
overlap matrix between DEGs based on co-representation module (TOM). (E) Heat maps of correlations between modular signature genes and
OSCC phenotypes. (F) Scatter plot of the correlation between blue module and genes most correlated to phenotype.
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FIGURE 2

Evaluation of pyroptosis genes in Oral squamous cell carcinoma. Expression heat map (A), methylation heat map (B), and top 30 mutant waterfall
diagrams (C) of 42 pyroptosis-related genes in the training dataset. Gene Ontology analysis (D) and Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analysis (E) using 42 pyroptosis-related genes in the training dataset.
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FIGURE 3

Identification of pyroptosis-related key regulators. (A) Correlation network diagram of 278 pyroptosis-related key regulators and 42 pyroptosis-
related genes. Expression heat map (B,C) and methylation heat map (D) of 278 pyroptosis-related key regulators in the training dataset. (E) PCA
clustering of 278 pyroptosis-related key regulators in the training dataset. (F) Prognostic forest map of 13 pyroptosis-related signatures.
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FIGURE 4

Construction and validation of the prognostic model. (A) Correlation network diagram of 13 pyroptosis-related key regulators. (B) Parameter selection
in least absolute shrinkage and selection operator (LASSO) regression. (C) Coefficient distribution in LASSO regression. Survival analysis based on risk
scores in the training set (D) and validation dataset (D). (E) Univariate Cox risk regression considering other clinical factors in the training dataset.
(F) Univariate Cox risk regression considering other clinical factors in the validation dataset.
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TABLE 1 Corresponding penalty coefficients of seven retained
signatures.

Gene Coefficients

Zeng et al. 10.3389/fsurg.2022.903271
pathway, legionellosis, Salmonella infection, pathogenic

Escherichia coli infection, and other signaling pathways

(Figure 2E).
FAM72D 1.2739586562672

COL27A1 1.91803710252839

HIST1H3F 0.410730915853282

MAML3 −0.532129522990241

LOC283314 0.205946072872406

FST 1.35454747894868

MCEE −0.574992503960348
Identification of pyroptosis-related key
regulators

To explore which key genes might affect the process of

pyroptosis and thus the occurrence and development of

OSCC, we conducted the correlation analysis of 310 DEGs in

the blue module and 42 pyroptosis-related genes and obtained

a total of 278 key genes that might impact the pyroptosis-

related genes (Figure 3A), suggesting that these genes might

regulate the pyroapoptotic process of OSCC. The expression

and methylation modification of 278 pyroptosis-related

regulators were significantly changed in OSCS samples

compared to those in normal samples (Figures 3B,D). PCA

analysis showed that these 278 pyroptosis-related regulators

could distinguish OSCC samples from normal samples

(Figure 3C). Finally, by performing the Univariate Cox

regression analysis combined with clinical information of

patients, we screened out 13 key pyroptosis-related key

regulators that are closely correlated to OSCC prognosis

(Figure 3E). These genes were NFKBIL2, FAM72D, FAM72B,

COL27A1, TAF1A, AURKAPS1, DDX12, CKS2, HIST1H3F,

MAML3, LOC283314, FST, and MCEE.
Construction and validation of the
prognostic model

Then, we evaluated the prognostic values of these

pyroptosis-related key regulators. Correlation analysis showed

that there was an obvious expression correlation among the

13 pyroptosis-related key regulators (Figure 4A). Then, the

penalty coefficient of LASSO regression was generated by

using the glmnet function of R language, and we found that

as lambda increases, the degrees of freedom and residuals

decrease (Figure 4B). Genes with penalty factor 0 were

reserved as the final screening variables (Figure 4C).

Therefore, seven genes (FAM72D, COL27A1, HIST1H3F,

MAML3, LOC283314, FST, and MCEE) were retained, and

their corresponding penalty coefficients are given in Table 1.

Subsequently, risk scores were the sum of the product of the

penalty coefficient and expression value. Then, we set the

median value of risk scores as the threshold and separated

patients in the training dataset into high- and low-score

groups; survival analysis revealed that patients in low-score

groups had a better prognosis than that in high-score group

(Figure 4D). Moreover, a similar method was applied to the

validation dataset, and the same trend was observed (Figure

4E). Based on the clinical characteristics of univariate Cox
Frontiers in Surgery 08
risk regression combined with the training set and validation

set, the results demonstrated that the risk score was a relative

independent prognostic indicator considering the age, gender,

grade, and stage in both the training dataset (Figure 4F) and

validation dataset (Figure 4G).
Analysis of immune infiltration levels

Subsequently, we evaluated the difference in immune

infiltration between high- and low-risk score groups and found

that the levels of immune infiltration in the high-risk group

were obviously lower than those in the low-risk group (Figure

5A). The correlation scatter plot also showed that the

infiltration ratio of immune cells and stromal cells in the

tumor microenvironment was negatively correlated to the

prognostic of OSCC patients determined by our prognostic

model. The higher the risk score, the lower the infiltration ratio

of the microenvironment (Figures 5B–D). In addition, patients

in the low-risk group showed a significant survival advantage

due to the abundant infiltration of innate immune cells,

including B cells, iDCs, TIL, and activated CD8 T cells (Figure

5E). Meanwhile, check-point, cytolytic_activity, MHC_class_I,

T_cell_co-inhibition, and other immune functions exhibited

higher levels in the low-risk group (Figure 5F).
Evaluation of the association between the
risk model and chemotherapy response

Next, we analyzed the DEGs between high- and low-risk

score groups= and identified 2,830 DEGs (Figure 6A). GO

analysis revealed that these DEGs were closely enriched in

mitotic nuclear division, centromeric region, ATP-dependent

activity, acting on DNA biological processes (Figure 6B), and

also enriched in DNA replication, ECM−receptor interaction,

and mismatch repair signaling pathways (Figure 6C). To

investigate whether patients with OSCC could benefit from

immunotherapy clinically, we evaluated the risk model and

chemotherapy response (cisplatin and gefitinib) using the

pRRophetic function of R language and found that there were
frontiersin.org
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FIGURE 5

Analysis of immune infiltration levels. (A) Comparison of immune microenvironments between high and low-risk groups. (B–D) Scatter plot of the
correlation between total score, stromal cell score, immune cell score, and risk score in the microenvironment. (E) Difference between groups at high
or low risk of Oral squamous cell carcinoma under different immune cell types. (F) Differences between groups at high and low risk of OSCC under
different activated immune pathways.
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FIGURE 6

Evaluation of the association between the risk model and chemotherapy response. (A) Volcano map of DEGs in high- and low-risk groups in the
training dataset. Gene Ontology analysis (B) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (C) of DEGs in two risk
groups in the training dataset. (D) Predicted differences in drug sensitivity between high- and low-risk groups. (E) GSEA analysis of differential
genes in drug resistance pathways between high- and low-risk groups.
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significant differences in sensitivity to cisplatin and gefitinib

between high- and low-risk groups (Figure 6D). Finally, we

conducted gene set enrichment analysis (GSEA) based on the

DEGs between high- and low-risk groups to explore the drug

resistance signaling pathway, and the results showed that the

DEGs could affect the drug resistance of gefitinib, cisplatin,

adriamycin, and other drugs (Figure 6E). These findings

suggested that our model might guide the use of antineoplastic

drugs clinically.
Discussion

Oral cancer is becoming a global health problem due to its

relatively high incidence and mortality. Also, due to the poor

prognosis of OSCC after surgery combined with

chemoradiotherapy (29, 30), increasing research studies have

paid more attention to the identification of efficient prognostic

predictors in OSCC such as microRNA levels (31), long non-

coding RNAs (32), and apoptosis-related genes (33). Although

the role of pyroptosis in human cancers have been studied,

their prognostic values in many other malignancies have not

been well characterized. Pyroptosis occurs in pathogen-infected

cells as a manifestation of programmed cell death, which

induces an inflammatory response in the body (34) and has

diverse roles. Pyroptosis has tumor growth inhibitory effects on

colorectal and skin cancers (35, 36); hence, we hypothesized

that pyroptosis might also play a potential role in OSCC. In

this study, our results systematically analyzed the expression of

pyroptosis-related genes in OSCC samples and further

identified a series of potential genes that regulated these genes.

Then, a prognosis model was constructed based on seven

optimized pyroptosis-related regulators, and our data

determined that the prognostic model might be useful for

predicting the prognosis of OSCC patients.

In the present study, seven pyroptosis-related regulatory

genes (FAM72D, COL27A1, HIST1H3F, MAML3, LOC283314,

FST, and MCEE) were finally selected for the construction of

a prognostic model, and our data confirmed that the seven

gene-based prognostic model could accurately predict the

outcome of OSCC patients. The prognostic values of these

seven key genes in OSCC or other human diseases have been

investigated. For example, a previous study established a

signature using nine hepatitis C virus-induced genes including

FAM72D, which could better predict the prognosis of hepatic

cancer and also provide a novel way to investigate the

potential mechanism of HCVIGs in this disease (37). Hu

et al. found the downregulation of COL27A1 in poor

segmental congenital scoliosis (38), and Laura et al. revealed a

steel syndrome patient due to the compound heterozygous

COL27A1 mutations in the eye (39). Garciaz et al. found that

the downregulation of the HIST1H3F level could predict a

better prognosis in patients with acute myeloid leukemia (40).
Frontiers in Surgery 11
A recent study performed an integrated analysis and revealed

that miR-20°c-3p and miR-52°c-3p could intermediate core-

regulatory genes including MAML3 to affect stemness and

metastasis in gastric cancer (41). Liu et al. demonstrated that

the downregulated level of FST was significantly correlated to

the poor survival of patients with triple-negative breast cancer

(42). Tang et al. analyzed the genetic polymorphisms that

affected pancreatic cancer survival and found that MCEE level

was closely related to triple-negative breast cancer prognosis

(43). Although the prognostic values of these seven

pyroptosis-related regulatory genes in human cancers have

been partially explored, their significance in OSCC remains

unclear. Here, we investigated the prognostic values of the

seven genes and revealed that this seven-gene-based

prognostic model could be potentially used for clinical

prediction of overall survival. Our findings might provide a

new way for personalized treatment.

Gefitinib is a tyrosine kinase inhibitor with low molecular

weight (44), and cisplatin is a cytotoxic, DNA-damaging

alkylated chemotherapy drug (45). Increasing clinical

applications have reported that these two drugs were widely

used for the treatment of different types of solid tumors

including OSCC (46). However, the efficiency of two drugs in

tumors often depends on the tumor size, stage, and other

clinical factors. Hence, a well understanding of chemotherapy

response against different tumor types is more urgent, which

might contribute to applying efficient chemotherapy drugs. In

this study, there were significant differences in sensitivity to

cisplatin and gefitinib between high- and low-risk groups.

These findings might provide clinical medicine for OSCC.

In conclusion, we constructed a seven-gene-based

prognostic signature based on seven pyroptosis-related

regulators and even investigated the correlation between the

risk model and chemotherapy response. The results might

guide the use of antineoplastic drugs clinically. However,

more patient data were needed to be collected for verifying

the accuracy of our prognostic model.
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