
cancers

Communication

Transcriptomic Profiling Reveals Novel Candidate Genes and
Signalling Programs in Breast Cancer Quiescence and Dormancy †

Lewis A. Quayle 1,*, Amy Spicer 1,2, Penelope D. Ottewell 1 and Ingunn Holen 1

����������
�������

Citation: Quayle, L.A.; Spicer, A.;

Ottewell, P.D.; Holen, I. Transcriptomic

Profiling Reveals Novel Candidate

Genes and Signalling Programs in

Breast Cancer Quiescence and

Dormancy. Cancers 2021, 13, 3922.

https://doi.org/10.3390/

cancers13163922

Academic Editor: Ettore Capoluongo

Received: 9 July 2021

Accepted: 30 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road,
Sheffield S10 2RX, UK; amy.spicer-hadlington@crick.ac.uk (A.S.); p.d.ottewell@sheffield.ac.uk (P.D.O.);
i.holen@sheffield.ac.uk (I.H.)

2 The Francis Crick Institute, Midland Road, London NW1 1AT, UK
* Correspondence: l.quayle@sheffield.ac.uk; Tel.: +44-114-215-9209
† This manuscript is dedicated to the memory of the late Andy Sims, our colleague, friend and mentor.

Simple Summary: Breast cancer can return many years after treatment of the primary tumour. This
is caused by cells that have spread to other parts of the body and entered a non-dividing state
called quiescence or dormancy that can last for decades. Dormant cancer cells are not sensitive
to conventional chemo- and radiotherapies, which primarily target fast growing cells, and so can
eventually resume growth to cause formation of tumours at secondary sites. The exact processes by
which cancer cells become dormant are currently poorly understood. This study describes the use of
model systems specifically developed to compare the genes used by dormant and dividing breast
cancer cells, allowing the identification of a number of genes and cellular mechanisms that might
underpin breast cancer cell dormancy and therefore represent promising novel candidates to inform
development of new treatments to prevent breast cancer recurrence.

Abstract: Metastatic recurrence, the major cause of breast cancer mortality, is driven by reactivation of
dormant disseminated tumour cells that are defined by mitotic quiescence and chemoresistance. The
molecular mechanisms underpinning mitotic quiescence in cancer are poorly understood, severely
limiting the development of novel therapies for removal of residual, metastasis-initiating tumour
cells. Here, we present a molecular portrait of the quiescent breast cancer cell transcriptome across the
four main breast cancer sub-types (luminal, HER2-enriched, basal-like and claudin-low) and identify
a novel quiescence-associated 22-gene signature using an established lipophilic-dye (Vybrant® DiD)
retention model and whole-transcriptomic profiling (mRNA-Seq). Using functional association
network analysis, we elucidate the molecular interactors of these signature genes. We then go on to
demonstrate that our novel 22-gene signature strongly correlates with low tumoural proliferative
activity, and with dormant disease and late metastatic recurrence (≥5 years after primary tumour
diagnosis) in metastatic breast cancer in multiple clinical cohorts. These genes may govern the
formation and persistence of disseminated tumour cell populations responsible for breast cancer
recurrence, and therefore represent prospective novel candidates to inform future development of
therapeutic strategies to target disseminated tumour cells in breast cancer, eliminate minimal residual
disease and prevent metastatic recurrence.

Keywords: breast cancer; dormancy; quiescence; RNA-Seq; transcriptomics

1. Introduction

Metastatic recurrence is the leading cause of mortality in advanced breast cancer. This
process involves reactivation of disseminated tumour cells (DTCs) that colonise distal sites
early during disease pathogenesis and remain clinically undetectable for a protracted time
period before emerging to initiate secondary tumour growth [1]. Latent recurrence in breast
cancer can be classified as both medium-term (2–5 years) or long-term (≥5 years) and is
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dependent on several independent risk factors, including primary tumour volume, tumour
stage and oestrogen receptor (ER) status [2]. The median time to recurrence for patients
with oestrogen receptor-negative (ER−) tumours is approximately 2 years, while more
than 50% of relapses in oestrogen receptor-positive (ER+) cases occur 5 years or more after
primary tumour diagnosis and surgical resection [3,4]. However, the 15-year recurrence
and mortality rates for both ER− and ER+ breast cancer sub-types are comparable in
patients diagnosed at early stages of disease [5]. These observations indicate both broad
heterogeneity in recurrence patterns and potential commonality in the biology governing
mitotic kinetics in DTC populations involved in latent relapse across breast cancer sub-types.

The phenomenon by which DTCs or micro-metastases remain at undetectable levels
for prolonged latency periods is referred to as dormancy. Evidence from pre-clinical
modelling and limited surgical samples indicate that tumour cell dormancy is the result of
mitotic quiescence: a state of reversible or intermittent postponement of active cell cycle
transition [6]. This quiescent state confers an innate ability of DTCs to survive conventional
adjuvant treatments that primarily target proliferating cells [7,8]. Quiescent cancer cells
have also been shown to actively regulate survival signalling mechanisms post-therapy,
demonstrating that they do not merely survive therapeutic insult in a passive manner [9].
The consequent inability of conventional anti-cancer therapy to eliminate quiescent DTCs
is a major barrier to development of curative treatments for latent metastatic disease
that results in eventual progression and death in approximately 20% of breast cancer
patients [10]. A greater understanding of the processes governing tumour cell quiescence
therefore holds the key to development of anti-dormancy therapies required to prevent
metastatic relapse.

Although obtaining quiescent DTCs from patient material remains unfeasible, a wide
variety of pre-clinical models for identification, isolation and analysis of quiescent tumour
cells now exist [6,11,12]. Amongst these, the use of lipophilic fluorochromes for pulse-chase
tracking of cancer cell mitotic kinetics is one of the most affordable, reliable and easily
implemented. The relative simplicity of this dye-retention method should not belie its
effectiveness and potential; it has been successfully used to isolate and study quiescent,
putative metastasis-initiating cells or DTCs in several cancers, including brain, breast, colon,
ovarian, pancreatic, prostate and skin cancers [8,13–19]. The quiescent cells identified in
these studies exhibit multiple proposed traits of DTCs, including enhanced metastatic and
tumorigenic potential, chemo- and radio-therapy resistance, and morphogenetic charac-
teristics associated with epithelial-mesenchymal-transition (EMT) and niche cell mimicry.
Despite increased accessibility and affordability of gene- and protein-level profiling tech-
nologies, such as RNA sequencing (RNA-Seq) and reverse phase protein arrays (RPPA),
most studies have not progressed beyond basic model validation and functional characteri-
sation of isolated quiescent cells, thereby failing to realise the full potential for discovery of
quiescence-associated molecular programmes.

We have developed a highly reliable Vybrant® DiD retention model for identifica-
tion, isolation and characterisation of mitotically quiescent tumour cell populations with
potential to elucidate molecular mechanisms associated with tumour cell quiescence and
dormant disease [8]. Here, we apply this model for isolation and whole-transcriptomic
profiling of quiescent tumour cells from four distinct breast cancer sub-types and go on to
identify a series of genes and functional programmes over-represented in both established
and predicted quiescence-associated ontologies that correlate strongly with late recurrence
(≥5 years after primary tumour diagnosis) in clinical breast cancer datasets. These genes
represent sets of prospective novel targets for further unravelling the biology of quiescent
DTCs and may provide future candidates for therapeutic strategies for patients with latent
metastatic breast cancer.
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2. Materials and Methods
2.1. Cell Culture

Fully authenticated MCF-7, SK-BR-3, MDA-MB-468 and MDA-MB-231 human breast
cancer cell lines, sourced directly from the American Type Culture Collection (ATCC)
(Manassas, VA, USA.) were maintained in RPMI-1640 basal medium (11 mM glucose, 2 mM
L-glutamine) supplemented with 10% (v/v) foetal bovine serum (FBS) (Life Technologies
Ltd., Paisley, UK).

2.2. Fluorescent Dye Labelling, Dye Retention Assays and Cell Sorting

Vybrant® DiD labelling was performed in suspension according to the manufacturer’s
instructions (Molecular Probes MP22885). Labelled samples were grown as adherent cul-
tures for six passages post-staining. Cytofluorimetric analyses and fluorescence activated
cell sorting (FACS) were undertaken as previously described using the BD™ LSR-II™
and BD™ FACSAria™ platforms (Beckton, Dickenson and Co. Plc., Oxford, UK), respec-
tively [8].

2.3. RNA Extraction, Sequencing Library Preparation and mRNA Sequencing

Total RNA was isolated from DiD− and DiD+ cells at passage six post-labelling using
the miRNeasy Micro Kit (Qiagen UK, Manchester, UK). NEBNext® Ultra II Directional RNA
Library Prep Kit for Illumina® (NEB E7760S/L) and NEBNext Poly(A) mRNA Magnetic
Isolation Module (NEB E7490) were used for preparation of sequencing libraries (New
England Biolabs (UK) Ltd., Hitchin, UK). In total, 200 ng of DNA-free total RNA was used
as input for each experimental sample and PCR undertaken during cDNA synthesis was
for 12 cycles. NEBNext® Multiplex Oligos for Illumina® were used as index primers in
accordance with the manufacturer−specified instructions (NEB E7335S/L). Sequencing
was undertaken on the Illumina HiSeq™ 2500 platform in rapid run mode using the
Illumina HiSeq™ Rapid Cluster Kit (Illumina, Inc., San Diego, CA, USA).

2.4. Bioinformatic and Statistical Analyses

FASTQ files were quality checked using FastQC v0.11.8 [20]. Samples were filtered
for low quality reads (Phred quality score <20) and adapters removed using Cutadapt
v2.6 [21]. Quality controlled reads were then aligned to the Human reference genome
assembly GRCh38.p13 using STAR aligner v2.7.0f [22]. Quantification of transcripts was
performed using RSEM v1.3.1. [23]. All downstream processing of transcript count data,
statistical analyses and graphical modelling of data were performed in R v4.0.3.

Testing for differential expression of genes was conducted using the quasi-likelihood
functionality of edgeR v3.32.1 [24]. A model matrix was constructed specifying the ex-
perimental design, linear model coefficients and parameterisation used for differential
expression analysis. Lowly expressed genes were filtered by retaining those with count
per million (CPM) read values above k in n samples, where k was determined by sam-
ple library sizes and n by the design matrix. Library size normalisation was undertaken
using the Trimmed Mean of M-values (TMM) method. Negative binomial dispersions
(common, trended and gene-wise) were estimated by weighted likelihood empirical Bayes
method before a quasi-likelihood negative binomial generalised log-linear model was fitted
to the data. Gene-wise testing for differential expression was undertaken according to
the contrasts specified by the design matrix relative to a defined fold-change threshold.
Differentially expressed genes were detected with a log2 fold-change significantly above
1.5 (up-regulated) or below −1.5 (down-regulated) at a false-discovery rate (FDR) cut-off
of 5%.

Principal component analysis (PCA) and unsupervised agglomerative hierarchical
clustering on the basis of Euclidean distance computed with an average-linkage matrix were
performed using TMM normalised, log2-transformed CPM values. Gene set enrichment
analysis (GSEA) was performed for gene sets retrieved from Molecular Signatures Database
(MSigDB) using fgsea v1.16.0 [25] and msigdbr v7.2.1 [26], respectively. A composite
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functional association network was constructed, visualised and topologically analysed
with igraph v1.2.6 [27] using interaction data downloaded from GeneMANIA [28] and
STRING [29] databases. Self-loops and weightless edges were removed and duplicate edges
aggregated according to their mean weight during network construction. Centrality metrics
calculated during topological analysis included total degree, betweenness, eigenvalue,
and closeness. A weighted centrality score for each network node was computed by
multidimensional scaling (where dimensionality of the reconstructed space (k) = 1) followed
by log10 transformation.

Publicly available cell line data were downloaded from Broad Institute Cancer Cell
Line Encyclopaedia (CCLE). Clinical data sets were downloaded from the Gene Expression
Omnibus and the MSKCC Cancer Genomics Data Server using GEOquery v2.58.0 [30] and
cgdsr v1.3.0 [31], respectively. All gene level expression data used in composite data sets
were normalised and log2 transformed prior to integration using the ComBat algorithm in
sva v3.38.0 to remove dataset-specific bias [32]. Optimised one-to-one mapping between
gene and probe sets was achieved for microarray data using jetset v3.4.0 [33]. Summarised
expression of multiple genes as a single, integrated signature score was achieved by
calculating the standardised (mean-centred and scaled) difference between geometric
means of the normalised and log2-transformed expression values for all up- and down-
regulated genes prior to subsequent analysis.

Kaplan–Meier survival curves were estimated using survival v3.2.7 [34] and survminer
v.0.4.8 [35]. Cohorts were dichotomised into “high” and “low” signature score expression
groups based on the optimal stratification point. This was determined using survivALL
v0.9.3 [36] to iteratively calculate every possible point of stratification for the cohort (n−1)
when ranked in increasing order of expression value and selecting the cut-off with the most-
significant corresponding FDR-adjusted p-value. For exhaustive Cox regression analyses,
this was done for all genes in the input gene list and the summed log2 hazard ratio for
all significant stratification points (FDR-adjusted p-value ≤ 0.05) normalised to the total
rank (cohort) size for each gene calculated. These values were adjusted automatically for
significant covariates in multivariate analyses.

Univariate statistical comparisons between two groups were performed in R v4.0.3
using the Wilcoxon rank-sum test (Mann–Whitney U test), as indicated, where appropriate,
in the respective figure legend. Statistical significance was attributed when a p-value of
≤0.05 was obtained.

3. Results
3.1. Fluorescent Dye-Retaining Sub-Clones as a Model of Breast Cancer Cell Quiescence

In order to facilitate identification of molecular programmes central to breast cancer
cell quiescence irrespective of molecular sub-type, we expanded our established in vitro
model system to incorporate a panel of cell lines that broadly represent the main types of
human breast tumour; MCF-7 (luminal), SK-BR-3 (HER2-enriched), MDA-MB-468 (basal-
like) and MDA-MB-231 (claudin-low) (Figure 1A). Vybrant® DiD was progressively diluted
from cultures over sequential passages to reveal a dye-retaining, quiescent sub-population.
After six passages, the mean number of DiD− cells exceeded 50%, while DiD+ cells
accounted for less than 0.5% of the total population in all cultures (Figure 1B,C). At this
point, dye-retaining DiD+ cells were distinguishable from cells that had lost their initial
DiD label, or cells that retained only a low level of DiD, as assessed by flow cytometry
and fluorescence microscopy (Figure 1B,D). These data were consistent with our previous
report that DiD retention is inversely correlated with net mitotic activity and pilot studies
indicating latent tumourigenicity of DID+ cells in vivo (data not shown) [8].
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control sample that had been freshly labelled with Vybrant® DiD. (C) Proportion of label-retaining 
cells within adherent MCF-7, SK-BR-3, MDA-MB-468 and MDA-MB-231 cultures over six consecu-
tive passages of culture growth as measured by flow cytometry. Data are expressed as mean ± SE (n 
= 3). (D) Phase-contrast and fluorescent image overlays of MCF-7, SK-BR-3, MDA-MB-468 and 
MDA-MB-231 cultures after 6 passages of culture growth post-staining with Vybrant® DiD (scale 
bar = 50μm). White arrows indicate DiD+ cells (red). 

Figure 1. Identification of Quiescent Breast Cancer Cells by Lipophilic Dye Retention In vitro.
(A) Schematic depicting the prognosis of the main breast tumour subtypes and the representative
cell line selected to model each of these. (B) Cytofluorimetric dot plot illustrating the gating strategy
for identification of Vybrant® DiD retaining cells in adherent human breast cancer cell cultures after
six passages of culture growth. Cytofluorimetric platforms were calibrated at the outset of each
experiment using a Vybrant® DiD negative (DiD−) control sample and a Vybrant® DiD positive
(DiD+) control sample that had been freshly labelled with Vybrant® DiD. (C) Proportion of label-
retaining cells within adherent MCF-7, SK-BR-3, MDA-MB-468 and MDA-MB-231 cultures over
six consecutive passages of culture growth as measured by flow cytometry. Data are expressed as
mean ± SE (n = 3). (D) Phase-contrast and fluorescent image overlays of MCF-7, SK-BR-3, MDA-MB-
468 and MDA-MB-231 cultures after 6 passages of culture growth post-staining with Vybrant® DiD
(scale bar = 50µm). White arrows indicate DiD+ cells (red).
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3.2. Transcriptomic Profiling of Dye-Retaining Sub-Clones Identifies Quiescence-Associated
Biological Programmes

As we aimed to identify differentially regulated genes between quiescent and prolifera-
tive breast cancer cells, irrespective of molecular sub-type, total RNA was extracted from the
DiD− and DiD+ fractions of each cell line and subjected to whole-transcriptomic mRNA-
Seq. Differential expression testing and unsupervised dimensionality reduction analyses
revealed a tendency of DiD− and DiD+ cells to cluster separately, with a notable degree
of reproducibility between biological replicates (Figure 2A, Supplementary Figure S1A)
and distinctive cell-type specific profiles of differentially regulated genes (Figure 2A,
Supplementary Figures S1B and S2). When all data sets were analysed together, 127 genes
were detected as differentially expressed between quiescent and proliferating cells with
a log2 fold-change significantly above 1.5 or below −1.5 at a FDR cut-off of 5% (123/127
up-regulated and 4/127 down-regulated), irrespective of molecular sub-type (Figure 2A).
Approximately 90% of these differentially regulated genes (113/127) are reported to corre-
late with metastasis (Supplementary Table S1). Ontological enrichment analysis showed
that the quiescent breast cancer cell transcriptome was significantly enriched with genes
involved in epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) interac-
tion/degradation, immunoregulation and stress-tolerance-related signalling (e.g., hypoxia
and KRAS) (Supplementary Figure S3A). These data are consistent with both reported and
consensus predicted traits of quiescent breast cancer cells in the context of dissemination, tu-
mour initiation and mitotic quiescence. In addition, the most strongly negatively enriched
pathways all pertained to reduced mitotic activity (Figure 2B, Supplementary Figure S3A).
Analysis of the leading-edge genes driving significant enrichment profiles in GSEA re-
vealed 19 genes of high biological interest due to their contribution to the enrichment
signal of multiple (≥2) gene sets (Figure 2C). Of these, 89% (17/19) have previously been
associated with metastasis, of which approximately 25% (4/17) have been correlated with
quiescence or dormancy in cancer (Supplementary Table S1).
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Figure 2. Ontological and Functional Analysis of the Quiescent Breast Cancer Cell Transcriptome. (A) Agglomerative
hierarchically clustered heatmap of mean-centered, TMM normalised log2-transformed CPM gene expression values as
quantified by mRNA-Seq. Clustering is unsupervised and based on Euclidean distances calculated from an average-linkage
matrix. All genes detected as differentially expressed with a log2 fold-change significantly above 1.5 (up-regulated) or below
−1.5 (down-regulated) at an FDR-adjusted p-value (q-value) ≤ 5% across all breast cancer cell lines are shown (127 total).
Grey and red bars represent Vybrant® DiD−negative (DiD−) and Vybrant® DiD− positive (DiD+) grouping, respectively.
(B) Gene set enrichment analysis of the differentially expressed genes using MSigDB hallmark collection gene ontologies
denoted by enrichment score normalised to mean enrichment of randomised equivalent samples (hypergeometric test
with post-hoc Benjamini-Hochberg FDR adjustment). (C) Analysis of leading edge genes identified as driving significant
enrichment of MSigDB hallmark collection gene sets. Columns indicate quiescence-associated signature genes contributing
to the enrichment signal of the gene set(s) indicated by row labels. Colour is scaled to the number of leading edge gene
sets in which each gene appears. For clarity, only signature genes that appear in ≥1 ontologies are shown. (D) Composite
functional association network constructed for genes detected as differentially regulated with a log2 fold-change significantly
above 1.5 (up-regulated) or below −1.5 (down-regulated) at an FDR-adjusted p-value (q-value) ≤ 5% across all four breast
cancer cell lines. For clarity, only empirically determined (non-inferred) network members are shown. Vertex (circle) size is
proportional to FDR-adjusted p-value of differential regulation (q-value); node colour is proportional to the log2 fold-change
between proliferative and quiescent breast cancer cells. Connecting edge (line) colour and type represents interaction
relationship. Edge thickness is proportional to linear regression–derived network weighting. (E) Topological analysis of
the quiescence-associated signature gene network. Centrality score represents the log10 transformed combined centrality
metrics (total degree, betweenness, eigenvalue, and closeness) calculated during topological analysis. Genes with combined
centrality scores in the upper−quartile (75th percentile) are designated as “high centrality” while those that failed to meet
this cut-off as “low centrality”.

To comprehensively understand the functional context within which the differentially
regulated quiescence-associated gene products may interact, a composite functional associ-
ation network was constructed, integrating information from multiple sources collated in
the GeneMANIA and STRING databases (Figure 2D). Validation analyses showed that the
average quiescence-associated network clustering coefficient was significantly greater than
those of networks generated by 104 rounds of degree-preserving randomised edge rewiring
events (p = 2.2 × 10−16, two-tailed one-sample Z-test, Supplementary Figure S3B), and that
inferred network members were enriched within the quiescence-associated transcriptome
(NES = 1.91, p = 1.04 × 10−5, Supplementary Figure S3C). These results importantly showed
that differentially expressed quiescence-associated gene products have a greater propensity
to form a network of connected protein groups (modules) than would be expected by ran-
dom chance alone. Subsequent network topological analysis revealed 28 proteins that were
highly linked to neighbouring nodes (weighted centrality scores in the 75th percentile),
suggesting that they may participate in one or more sub-networks of functionally related
proteins (Figure 2E, Supplementary Table S1). In support of this, network community
detection analysis identified a total of 20 sub-network communities with ≥3 members;
~80% (22/28) of genes identified as being of high biological interest based on their cen-
trality metrics were represented in the four largest, most highly interconnected networks
(Supplementary Table S1). As expected, there was a significant proportional overlap be-
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tween genes identified as being of high biological interest by leading edge analysis and
those identified by network analyses (p = 0.000488, Fisher’s exact test), and functional
themes included EMT, ECM adhesion and remodelling, inflammation and immune regu-
lation. Collectively, these analyses identify a panel of genes relating to cancer metastasis
and/or dormancy, highlight strongly connected interactors and common functional associ-
ations between these genes, and suggest the roles that these genes and ontologies might
play in underpinning the biology of quiescent breast cancer cells.

3.3. Quiescence-Associated Gene Expression Correlates with Low Proliferative Activity and Late
Breast Cancer Recurrence

In order to ascertain the potential prognostic value of the 127 quiescence-associated
genes, a composite data set of 572 patients (CB572, Supplementary Table S2) was constructed
from three gene expression profiling data sets (GSE11276, GSE2034 and GSE2603) widely
used to validate experimentally determined genes and signatures implicated in metastasis
and dormancy in breast cancer [37–41]. Critically, these data sets contain primary tumour
ER status, distant metastatic event indicators and distant metastasis-free survival (DMFS)
follow-up times of at least 7 years. They also contain sufficient cumulative patient num-
bers to facilitate statistically viable comparisons between early and late distant metastatic
recurrence events (<5 and ≥5 years after primary tumour diagnosis, respectively).

As ER status is an established independent risk factor determining latency of metastatic
recurrence in breast cancer [2], we initially established the relationship between ER status
and the integrated expression score for the quiescence-associated gene set. There was a
significant positive correlation between ER status and signature score in 2 out of 3 of the
CB572 data sets (Figure 3A). More importantly, the integrated expression scores were signif-
icantly higher in ER+ compared to ER− tumours in the CB572 cohort (p = 0.00298, Wilcoxon
rank-sum test, Figure 3A), reflecting the longer latency period generally associated with
ER+ breast cancer.

To provide an indication of the correlation between expression of quiescence-associated
genes and late DMFS, survival analysis was conducted using the Kaplan–Meier model
to estimate time to recurrence when stratified by quiescence-associated signature score
within the ER− and ER+ sub-sets of the CB572 cohort. In both cases, high expression
of quiescence-associated genes was associated with a significant increase in the median
time to metastatic recurrence. In patients with ER− tumours, the median time to distant
recurrence increased from approximately 18 months to over 3 years (p = 0.0170, log-rank
test, Figure 3B), while in patients with ER+ tumours, this was extended from approxi-
mately 5 years to 9.5 years (p = 0.0200, log-rank test, Figure 3C). These data suggest that
high expression of the quiescence-associated gene set identified is associated with later
metastatic recurrence, irrespective of ER status.

To more comprehensively assess the prognostic value of the 127 quiescence-associated
gene set, an exhaustive multivariate Cox regression analysis approach was used, with ER
status as a covariate [36]. This enabled quantification of the overall association between the
quiescence-associated signature and risk of early or late distant recurrence, and facilitated
identification of individual genes with potential prognostic importance, all while account-
ing for any additional variance resulting from ER status. The results demonstrated that a
significantly greater number of quiescence signature genes are associated with an increased
risk of late metastatic recurrence (p = 3.31 × 10−8, Wilcoxon rank-sum test, Figure 3D). This
association was further validated in a second independent breast cancer cohort (CB482,
Supplementary Table S2) composed of three further microarray gene expression profiling
data sets (GSE1456, GSE6532 and GSE7930) that met all inclusion criteria as detailed for
CB572 (p = 4.62 × 10−5, Wilcoxon rank-sum test, Supplementary Figure S3D). Taken to-
gether, these data indicate that high expression of quiescence-associated signature genes
within primary tumours correlates more strongly with late, compared to early, distant
breast cancer recurrence.
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Figure 3. Quiescence-Associated Genes are Correlated with Late Metastatic Recurrence. (A) Com-
parison of integrated expression scores for quiescence-associated genes in patients with oestrogen
receptor-positive (ER+) and oestrogen receptor-negative (ER−) tumours within data sets (GSE2034,
GSE2603 and GSE12276) comprising the CB572 cohort (Wilcoxon rank-sum test, ** = p ≤ 0.01,
*** = p ≤ 0.001). (B) Distant metastasis-free survival probability over time in patients within the
CB572 cohort with ER− tumours integrated signature scores for expression of quiescence-associated
signature genes (n = 186, log-rank test). (C) Distant metastasis-free survival probability over time
in patients within the CB572 cohort with ER+ tumours stratified by integrated signature scores for
expression of quiescence-associated signature genes (n = 371, log-rank test). (D) Cox proportional
hazards survival analysis of the quiescence-associated signature genes represented in primary breast
tumours of patients in the CB572 composite data set (n = 572). Patients were stratified at all possible
cut-off points (n−1) for all signature genes. For each gene, the log2-transformed cumulative hazard
ratio for all cut-off points significantly (p ≤ 0.05) associated with late distant metastatic recurrence and
early distant metastatic recurrence (<5 and ≥5 years after primary tumour diagnosis, respectively)
normalised to total possible cut-off points are shown. Quiescence-associated signature genes were
significantly associated with late metastatic recurrence (Wilcoxon rank-sum test, **** = p ≤ 0.0001).
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Finally, the outcomes of the leading-edge gene set analysis, functional association
network analysis and proportional-hazards survival modelling were combined to iden-
tify a condensed quiescence-associated gene signature with both high functional and
prognostic value. This final 22-gene signature includes genes that appeared in multiple
leading-edge gene sets driving the enrichment of MSigDB Hallmark ontologies, were
identified as being highly interactive during network topological analysis and that were
significantly associated with late metastatic recurrence in CB572 and/or CB482 data sets
(Figure 4A, Table 1). To assess the potential predictive value of this signature, correlative
regression analysis was conducted to determine the association between the integrated
22-gene signature expression score and the inherent proliferative capacity (relative pro-
portional Ki67 expression in 3D mammosphere culture) reported for 19 human breast
cancer cell lines [42] (Figure 4B). No statistically significant correlation between the Ki67
proliferation index and signature score was found for ER− cell lines, but there was a strong
negative correlation for ER+ cell lines (Spearman’s rank correlation coefficient ρ = −0.055,
p = 0.90 and Spearman’s rank correlation coefficient ρ = −0.79, p = 0.01, respectively).
This suggested that the quiescence-associated signature identified was indicative of a
program that imposes slower growth kinetics on ER+ tumour cells that may, in turn, lead
to quiescence in ER+ tumours in vivo. In order to establish whether this was the case, the
integrated expression score for the 22 quiescence-associated signature genes was compared
between patient tumours with high and low proliferation rates in ER− and ER+ strata
of the METABRIC cohort (Figure 4C). As predicted, the results showed no significant
difference between the mean gene signature expression scores for fast and slow growing
ER− tumours (Wilcoxon rank-sum test, p = 6.03 × 10−1) but a strongly significant increase
in the mean expression of the 22-gene signature in slow growing ER+ tumours (Wilcoxon
rank-sum test, p = 1.38 × 10−23). Taken together, these findings show that high expres-
sion of the quiescence-associated 22-gene signature correlates with both low proliferative
activity and with late metastatic recurrence or dormant disease in breast cancer.
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Figure 4. Quiescence-Associated Signature Gene Expression is Elevated in Oestrogen Receptor-
Positive Breast Cancers with Low Proliferative Activity. (A) Venn diagram illustrating selection of
the 22 quiescence-associated signature genes based on having both high functional and prognostic
significance in gene set enrichment or network topological analysis and proportional hazards regres-
sion analysis. (B) Correlation analysis of quiescence-associated signature expression scores for breast
cancer cell lines with their respective published proliferation indices determined by Ki67 expression
in 3D culture [42]. Oestrogen receptor-negative (ER−) cell lines (shown in blue, Spearman’s rank
correlation coefficient ρ = −0.0545, p = 0.90) and oestrogen receptor-positive (ER+) cell lines (shown in
red, Spearman’s rank correlation coefficient ρ = −0.787, p = 0.01) are plotted independently. (C) Com-
parison of integrated expression score for the 22 gene quiescence-associated signature between
patient tumours with high and low proliferation rates (pre-determined by Memorial Sloan Kettering
Cancer Centre using the ERα, HER2 and AURKA three-gene classifier) in ER+ and ER− METABRIC
cohorts (Wilcoxon rank-sum test, **** = p ≤ 0.0001).
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Table 1. Quiescence-Associated Genes with High Functional and Prognostic Significance.

Name HUGO Symbol Entrez
ID Ensembl ID Log2

Fold-Change a DE q-Value b
MSigDB

Hallmark Gene Set
Leading Edges c

Centrality
Score d

Centrality
Designation e

Correlation
with

Late Recurrence f
Metastasis

Associated g

Quiescence
or

Dormancy
Associated h

C-C motif chemokine ligand 5 CCL5 6352 ENSG00000271503 2.75622625 6.40 × 10−7 5 1.726356886 Low CB572 + CB482 + +

cellular communication network factor 3 CCN3 4856 ENSG00000136999 1.159158799 0.003129394 0 2.369572457 High CB572 + CB482 +

cadherin 11 CDH11 1009 ENSG00000140937 0.924409835 0.001008869 2 0.017134571 Low CB572 + CB482 + +

collagen type XVII alpha 1 chain COL17A1 1308 ENSG00000065618 1.159975436 0.002670111 0 2.021417131 High CB572 + CB482 +

formyl peptide receptor 3 FPR3 2359 ENSG00000187474 2.954316158 3.43 × 10−8 0 2.487201841 High CB572 +

3-hydroxy-3-methylglutaryl-CoA
synthase 2 HMGCS2 3158 ENSG00000134240 1.36731073 0.000805151 2 0.004347429 Low CB572 + CB482 +

insulin like growth factor binding
protein 5 IGFBP5 3488 ENSG00000115461 1.115110029 0.00391699 0 2.801887967 High CB572 + CB482 +

kallikrein related peptidase 8 KLK8 11202 ENSG00000129455 1.33535789 7.97 × 10−5 3 1.277111171 Low CB482 +

maltase-glucoamylase MGAM 8972 ENSG00000257335 1.391777411 0.042802637 0 2.039476442 High CB572 + CB482 +

mucin 5AC, oligomeric
mucus/gel-forming MUC5AC 4586 ENSG00000215182 1.422900799 0.000379937 0 2.021250734 High CB572 + +

2’-5’-oligoadenylate synthetase like OASL 8638 ENSG00000135114 1.151350653 0.023043447 2 2.819995388 High CB572 + CB482

plasminogen activator, tissue type PLAT 5327 ENSG00000104368 1.053223792 0.031200647 4 2.391649253 High CB572 +

prostaglandin F receptor PTGFR 5737 ENSG00000122420 1.228190238 0.004757316 2 2.315990672 High CB482 +

prostaglandin-endoperoxide synthase 2 PTGS2 5743 ENSG00000073756 1.429349462 0.022239393 3 2.233337779 High CB482 +

protein tyrosine phosphatase receptor
type H PTPRH 5794 ENSG00000080031 1.065756445 0.001072713 0 2.487144917 High CB572 +

protein tyrosine phosphatase receptor
type N2 PTPRN2 5799 ENSG00000155093 1.878824513 2.86 × 10−5 0 2.607454659 High CB572 +

radical S-adenosyl methionine domain
containing 2 RSAD2 91543 ENSG00000134321 1.765109846 8.21 × 10−7 3 0.021323383 Low CB572 + CB482 +

serpin family A member 1 SERPINA1 5265 ENSG00000197249 1.203836437 7.93 × 10−6 3 2.928302569 High CB482 +

serpin family A member 3 SERPINA3 12 ENSG00000196136 1.255309782 0.00051306 2 0.008651795 Low CB572 +

serpin family E member 1 SERPINE1 5054 ENSG00000106366 1.423828199 0.013356874 8 2.933522416 High CB572 +

TNF receptor superfamily member 10c TNFRSF10C 8794 ENSG00000173535 1.136170418 0.013356874 0 2.021292344 High CB482 +

von Willebrand factor A domain
containing 5A VWA5A 4013 ENSG00000110002 1.412217075 0.001530294 2 0.00434743 Low CB482

a Log2-transformed fold change in mean normalised gene transcript counts as determined by RNA-Seq (proliferating Vybrant® DiD- versus quiescent Vybrant® DiD+ sub-populations), b False discovery rate
adjusted p-value of differential expression according to comparison of mean normalised gene transcript counts, c Number of times the corresponding gene was found in the leading edge gene set driving the
statistically significant enrichment of one of the MSigDB Hallmark gene sets analysed in GSEA, d Centrality score calculated as the log10-transformed weighted sum of total degree, betweenness, eigenvalue,
and closeness centrality metrics combined by multidimensional scaling, e Designation as having a “high” or “low” centrality score metric relative to the 75th percentile cut-off value (centrality score ≥ 2),
f Indication of which clinical data set(s) in which the corresponding gene was found to have a statistically significant association with late metastatic recurrence (≥5 years after primary tumour diagnosis) by Cox
regression analysis, g Association with metastasis according to automated mining of PubMed® using the search “gene[Title/Abstract] AND metasta*[Title/Abstract]”, h Association with dormancy or quiescence
in cancer according to automated mining of PubMed® combining the results of searches “gene[Title/Abstract] AND quiescen*[Title/Abstract] AND cancer[Title/Abstract]” or “gene[Title/Abstract] AND
dorman*[Title/Abstract] AND cancer[Title/Abstract]”.



Cancers 2021, 13, 3922 13 of 18

4. Discussion

Here, we present a molecular portrait of the quiescent breast cancer cell transcriptome
across molecular sub-types, as well as a novel 22-gene quiescence-associated signature
in breast cancer. These data were developed by extracting highly differentially regulated
genes from the combined expression profiles of Vybrant® DiD−retaining quiescent sub-
clones isolated from four breast cancer sub-types in vitro. The gene expression profiles
of these populations, both individually and collectively, exhibited up-regulation of genes
with well-characterised roles in halting cell cycle progression (e.g., CDKN1A and IGFBP5),
as well as displaying ubiquitous negative enrichment for hallmark gene sets involved in
transcriptional regulation of proliferation, cell cycle transition and mitosis [43,44]. Both
the differentially regulated set of 127 quiescence-associated genes and gene sets positively
enriched within the broader quiescent breast tumour cell transcriptome incorporate ele-
ments of established dormancy-instructive programmes, such as hypoxia, TGF-β, p38 and
p53 signalling [45]. These findings are in agreement with our previous demonstration of
the quiescent nature of dye-retaining cells, indicating that the transcriptional programmes
associated with this population might represent elements of novel molecular mechanisms
involved in metastatic breast cancer dormancy [8]. Correlative analyses using publicly
available clinical breast cancer data sets support this hypothesis; the median time to distant
metastatic recurrence was found to be significantly longer in patients with tumours display-
ing a high overall quiescence-associated gene signature scores than those who exhibited
lower scores. Furthermore, a significantly greater proportion of quiescence-associated
genes possessed hazard ratios indicative of increased probability of late metastatic recur-
rence. Although promising indicators, these represent correlative associations, and it will
be imperative to establish mechanistic causal links between individual genes, or sets of
genes, described here and cellular quiescence or tumoural dormancy using pharmaco-
logical or genetic means (e.g. siRNA). The functional association programmes we have
identified provide useful starting points for such studies. Establishing such a mechanistic
link could pave the way for development of targeted therapies to maintain the activity
of dormancy-instructive genes, thereby prolonging quiescence and retaining disease at a
chronic state. Early reports of the successful development of an effective specific agonist
of the tumour dormancy-regulating orphan nuclear receptor NR2F1 have provided an
exciting indication of the potential for such targeted therapeutics [46]. The inhibition of key
survival genes or pathways could also potentially enable specific removal dormant tumour
cells before they resume growth and progression, thereby reducing the risk of recurrence
while avoiding disruption of normal physiological processes such as haematopoiesis and
tissue regeneration that rely on cellular quiescence.

The transcriptomes of quiescent breast cancer cells were not only enriched for pro-
grammes governing proliferative activity but were also significantly enriched for genes
associated with purported features of metastasis-initiating DTCs; stemness, morphogenetic
signalling and EMT, ECM interaction/degradation, angiogenic regulation and xenobiotic
metabolism [12,45,47]. A large proportion of these genes have previously been associated
with metastasis, further supporting the relevance of the gene set identified in defining the
metastatic potential of tumour cells. We have previously reported that dye-retaining breast
cancer cells exhibit de novo chemoresistance and subsequent clonal outgrowth in vitro,
as well as elevated activity of the stemness marker and drug metabolising enzyme family
aldehyde dehydrogenase (ALDH) [48,49], a member of which (ALDH1A1) was also found
to be significantly up-regulated across all breast cancer types here. These findings collec-
tively indicate that the dye-retaining population consists of cells with enhanced metastatic
potential; data from a closely related study in prostate cancer has previously demonstrated
that dye-retaining cells are significantly more metastatic in vivo compared to their rapidly
dividing counterparts [18]. Going forward it will be important to comprehensively estab-
lish whether dye-retaining breast cancer cells of various molecular sub-types are able to
form tumours in vivo, whether they display enhanced capacity to engraft at distal sites,
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and how the temporal course of tumourigenesis and spread compares with that of the
proliferative cell population.

It is well established that cellular signalling cascades that result in tumoural dormancy
are subject to reciprocal crosstalk between DTCs and their microenvironment [1,12,45,47].
The quiescence-associated programmes elucidated from the dye-retention model in vitro do
not account for any signal reprogramming or interactions that occur within the metastatic
niche in vivo. What at first glance could appear to be a deficiency of the model system may
be exploited to dissect dormancy-instructive programmes and establish how they are influ-
enced by microenvironmental interactions. Although comparable systems have generated
gene signatures with considerable prognostic utility in breast cancer [50], it is crucial to
recognise the absence of this added layer of signalling complexity and the potential role of
reciprocal interplay between the tumour cell intrinsic quiescence programmes identified
here and metastatic niche constituents in vivo.

Finally, although neither molecular sub-type nor clinical data were used to refine
our quiescence-associated gene signature, patients with ER+ breast cancers were found
to have significantly higher integrated signature scores for expression of these genes than
patients with ER− tumours. While the median time to distant metastatic recurrence was
significantly extended in patients with high gene signature expression scores in both
ER− and ER+ sub-groups, the overall time to distant recurrence was considerably longer
in patients with high signature scores in ER+ tumours, compared with ER− tumours.
The former observation suggests the potential for more comprehensive meta-analyses, or
extension of the dye-retention model to more discrete cell line panels to develop specific
gene signatures that could reflect sub-type-specific quiescence mechanisms. The latter
observation likely reflects the established general clinical tendency for ER+ tumours to
recur later compared with ER− tumours [2]. Given the established specific organotropism
of breast cancer sub-types [51], it may also be possible to deconvolute the gene signature
to identify sub-sets associated with dormancy in a metastatic site-specific manner. In
addition, a number of established quiescence mechanisms are conserved across cancer
types; for example, increased p38:ERK signalling ratio, NR2F1 and p27 have all been shown
to be dormancy-inductive in head and neck squamous cell carcinoma, breast and prostate
cancers [52–56]. On this basis, we can also speculate that elements of our quiescence
signature might be extended to other medium- or long-latency cancers such as colon and
prostate cancer.

5. Conclusions

In summary, we report a novel quiescence-associated breast cancer gene signature
extracted from whole-transcriptomic profiling of quiescent sub-clones across breast cancer
cell lines of distinct molecular sub-types. The genes within this signature show a significant
degree of functional and clinical relevance to breast cancer metastasis and dormancy.
Further investigation of these genes and the functional interactors we have identified might
yield novel targets for therapies enabling elimination of the cells responsible for dormant
cancer and late recurrence, thereby improving outcomes for patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13163922/s1, Figure S1: Cell Line-Specific Transcriptomic Analysis of Quiescent and
Proliferative Sub-Populations (A) Principal component analysis of the whole transcriptomic profiles
of proliferative Vybrant® DiD−negative (DiD−) and quiescent Vybrant® DiD−positive (DiD+) sub-
populations in MCF-7, SK-BR-3, MDA-MB-468 and MDA-MB-231 human breast cancer cell lines. The
first two principal components account for >50% of the total variance in all datasets. (B) Volcano plots
of genes quantified in the DiD− and DiD+ transcriptomes within MCF-7, SK-BR-3, MDA-MB-468 and
MDA-MB-231 human breast cancer cell lines. Vertical lines represent the log2 fold-change thresholds
for detection of significantly differentially expressed genes at the FDR-adjusted p-value (q-value) of
≤5%. The horizontal line on each plot represents the q-value cut-off. Figure S2: Cell Line-Specific
Differential Gene Expression Profiles. Agglomerative hierarchically clustered heatmaps of mean-
centered, TMM normalised log2-transformed CPM gene expression values as quantified by mRNA-

https://www.mdpi.com/article/10.3390/cancers13163922/s1
https://www.mdpi.com/article/10.3390/cancers13163922/s1
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Seq for Vybrant® DiD−negative (DiD−) and Vybrant® DiD−positive (DiD+) sub-populations within
MCF-7 (A), SK-BR-3 (B), MDA-MB-468 (C) and MDA-MB-231 (D) human breast cancer cell lines.
Clustering is unsupervised and based on Euclidean distances calculated from an average-linkage
matrix. The top 50 most highly differentially expressed genes with a log2 fold-change significantly
above 1.5 (up-regulated) or below −1.5 (down-regulated) at an FDR-adjusted p-value (q-value) ≤ 5%
are shown. Grey and red bars represent DiD− and DiD+ grouping, respectively. Figure S3: Analysis
of the Quiescent Breast Cancer Cell Transcriptome. (A) Agglomerative hierarchically clustered
heatmap of MSigDB hallmark collection gene ontologies according to significance of enrichment
as determined by gene set enrichment analysis. Values shown within cells are enrichment score
normalised to mean enrichment of randomised equivalent samples (hypergeometric test with post
hoc Benjamini-Hochberg FDR adjustment). For clarity, only statistically significant values are shown.
Clustering of cell lines and gene sets is unsupervised and based on Euclidean distances calculated
from an average-linkage matrix. (B) Comparison of the average clustering coefficient measured for
the quiescence-associated functional association network and random networks generated from 104

degree-preserving rounds of edge rewiring (two-tailed one-sample Z-test, **** = p ≤ 0.0001). (C) Gene
set enrichment plot for inferred members of the quiescence-associated functional association network.
Maximal enrichment score (ES = 0.696, dashed horizontal red line) and leading-edge genes (n = 32,
dashed vertical blue line) contributing to the enrichment score are indicated. (D) Cox proportional
hazards survival analysis of the quiescence-associated signature genes represented in primary breast
tumours of patients in the CB482 composite data set (n = 482). Patients were stratified at all possible
cut-off points (n−1) for all signature genes. For each gene, the log2-transformed cumulative hazard
ratio for all cut-off points significantly (p ≤ 0.05) associated with late distant metastatic recurrence and
early distant metastatic recurrence (<5 and ≥5 years after primary tumour diagnosis, respectively),
normalised to total possible cut-off points, are shown. Quiescence-associated signature genes were
significantly associated with late metastatic recurrence (Wilcoxon rank-sum test, **** = p ≤ 0.0001).
Table S1, Quiescence-Associated Gene Network, Table S2: Clinical Data Set Summary Statistics.
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