
Received: April 3, 2024. Revised: June 26, 2024. Accepted: July 17, 2024 
© The Author(s) 2024. Published by Oxford University Press. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/ 
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com 

Briefings in Bioinformatics, 2024, 25(5), bbae376

https://doi.org/10.1093/bib/bbae376

Problem Solving Protocol

A pan-cancer interrogation of intronic polyadenylation 
and its association with cancer characteristics 
Liang Liu 1,2, *, Peiqing Sun1, Wei Zhang1,2, * 

1Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States 
2Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, 
NC 27157, United States 

*Corresponding authors. Liang Liu, Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winson-Salem, NC 27157, 
United States. Tel: 336-713-7514; E-mail: lliu@wakehealth.edu; Wei Zhang, Department of Cancer Biology, Wake Forest University School of Medicine, Medical 
Center Blvd, Winson-Salem, NC 27157, United States. Tel: 336-713-7508; E-mail: wezhang@wakehealth.edu 

Abstract 
3′UTR-APAs have been extensively studied, but intronic polyadenylations (IPAs) remain largely unexplored. We characterized the 
profiles of 22 260 IPAs in 9679 patient samples across 32 cancer types from the Cancer Genome Atlas cohort. By comparing tumor 
and paired normal tissues, we identified 180 ∼ 4645 dysregulated IPAs in 132 ∼ 2249 genes in each of 690 patient tumors from 22 cancer 
types that showed consistent patterns within individual cancer types. We selected 2741 genes that showed consistently patterns across 
cancer types, including 1834 pan-cancer tumor-enriched and 907 tumor-depleted IPA genes; the former were amply represented in the 
functional pathways such as deoxyribonucleic acid damage repair. Expression of IPA isoforms was associated with tumor mutation 
burden and patient characteristics (e.g. sex, race, cancer stages, and subtypes) in cancer-specific and feature-specific manners, and 
could be a more accurate prognostic marker than gene expression (summary of all isoforms). In summary, our study reveals the roles 
and the clinical relevance of tumor-associated IPAs. 
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Background 
Messenger ribonucleic acid (mRNA) cleavage and polyadenylation 
(CPA) constitute crucial final steps in mRNA processing, com-
mencing with the cleavage of the 3′ end of the precursor mRNA, 
followed by the sequential addition of adenosine to form a poly(A) 
tail [1, 2]. Dynamic alternative cleavage and polyadenylation (APA) 
occur in numerous physiologic processes, such as cell devel-
opment, differentiation, proliferation, and reprogramming [3–5], 
and in human diseases, such as viral infection [6] and cancers 
[7–11]. APA primarily manifests in the 3′-most exons of genes 
(3’UTR-APA), resulting in gain or loss of important cis-regulatory 
elements, such as microRNA (miRNA) binding sites [12]. Intronic 
polyadenylation (IPA) halts normal transcription, generating trun-
cated mRNA isoforms and proteins or non-coding RNAs (ncRNAs) 
[1]. IPA is implicated in inactivation of deoxyribonucleic acid 
(DNA) damage repair (DDR) genes [13, 14] and tumor suppressors 
[15] in cancer, as well as in enhancing transcript diversity in 
immune cells [16]. Nevertheless, the clinical relevance of IPAs is 
poorly understood. 

Various experimental approaches have been developed to 
evaluate the usage of polyadenylation sites (PAs) on a genome-
wide scale [17–20]. These techniques, applied across normal and 
abnormal tissues, enable the study of regulatory mechanisms 
and functional consequences of APA status, thereby advancing 
our understanding of this post-transcriptional process under 

diverse biological conditions [3–8]. However, these approaches 
are relatively laborious and/or costly in contrast to conven-
tional RNA sequencing (RNA-seq), which has been extensively 
employed to elucidate the transcriptomics landcape of large-
scale sample cohorts, such as the Cancer Genome Atlas (TCGA) 
[21]. In this study, we employed a bioinformatics approach 
to quantify IPAs from conventional RNA-seq data of samples 
from TCGA and illustrated systematic patterns of IPA iso-
forms, resulting impaired gene transcription, and their clinical 
relevance. 

Results 
Broadly and recurrently aberrant intronic 
polyadenylations across tumor types 
We gathered RNA-seq data from 9679 tumor tissues across 32 
cancer types from TCGA [21] (Fig. 1a; Table S1a). Given that stan-
dard RNA-seq analysis methods are not specifically tailored to 
differentiate reads for different isoforms of the same gene, we 
applied APAlyzer v1.9.4 [22] to quantify the usage of ∼32 000 IPAs 
within ∼9000 genes by defining genomic regions according to IPA 
site(s) within each gene (PolyA_DB v3.2 database [23]; Supple-
mental methods) and counting RNA-seq reads mapped into each 
region (Fig. 1b). Across all tumor samples, we observed 22 260 IPAs 
(Fig. S1a). Generally, tumor has higher IPA burdens than normal
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Figure 1. IPA landscape in the TCGA cohort. (a) Data source for the 33 cancer types in this study. Bar charts describe numbers of tumor (yellow) and 
normal samples (grey) with available RNA-seq for each cancer type (cancer abbreviations are shown in Table S1a). (b) Workflow and criteria for IPA 
quantification using RNA-seq data. RE: relative expression; dPA: distal PA; IU: IPA upstream; ID; IPA downstream; RD: read density. (c) IPAs (row) with 
increased (red) or decreased (blue) usage in each tumor type (column). The upper histogram shows the numbers of IPAs with increased (red) or decreased 
(blue) usages in each tumor type. The side histograms show the numbers of cancer types with dysregulated IPAs. A hierarchical clustering method was 
used. Pan-cancer IPA sites (n = 2011): consistently dysregulated in 11 cancer types, intermediately specific IPAs (n = 7570): Consistently dysregulated in 
2–10 cancer types, and cancer specific IPAs (n = 2394): dysregulated in only 1 cancer type. 

samples except for a few cancer types, such as pan-kidney cancers 
[ 24] (KIRC, KIRP, and KICH; Fig. S1b; Abbreviations of cancer types 
are shown in Table S1a.). 

Next, we identified IPAs with differential usages between 
matched tumor and normal samples. For this analysis, we 
selected cancer types with at least two matched tumor and 
normal samples. This selection resulted in 22 cancer types, 
encompassing a total of 690 matched patient tumor and normal 
samples (Table S1b). We defined a significantly dysregulated 
IPA based on its relative expression difference (| d (RE(IPA)) |≥ 
1) and adjusted p < 0.05 from Fisher’s exact test (Fig. 1b; 
Supplemental methods). The number of differential IPAs varies 
between 180 and 4645 in 132 to 2249 genes among the 690 
tumor samples (Fig. S1c). Most of the IPAs are consistently 
dysregulated in tumors compared to matched normal samples 
within individual cancer types (Fig. S1d), although heterogeneity 
exists between samples that may reflect the specificity of each 
individual cancer patients. 

We selected IPAs exhibiting consistent patterns in each cancer 
type (Supplemental methods). Most cancer types show markedly 
elevated IPA usage, such as LUAD and LUSC. However, five cancer 
types show opposite trends, including KIRC, THCA, CHOL, KIRP 
and PCPG (Fig. S1e; Table S1b). Dysregulated IPAs demonstrated 
consistency among cancer types with similar histologic features 
(Fig. 1c). For example, lung cancer (LUSC and LUAD), pan-kidney 
cancers (KIRC, KIRP and KICH), and gynecologic and breast can-
cers [25] (UCEC, CESC, and BRCA) show similar patterns in our 
hierarchical clustering analyses. 

While no IPAs exhibit consistently higher or lower usage in 
tumors compared to matched normal tissue across all 22 cancer 
types, the majority (9581 out of 11 975) demonstrate consistent 
patterns in at least two cancer types (Fig. 1c). Specifically, there 
are 2011 pan-cancer dysregulated IPAs with consistently higher 
or lower usage in at least 11 cancer types, along with 7570 IPAs 
showing consistently higher or lower usage in 2 to 11 cancer 
types, and 2394 cancer-specific IPAs that are dysregulated in only
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Figure 2. IPA-regulated genes across TCGA tumor types. (a) Strategy to determine if one gene was considered as a tumor-enriched or depleted IPA gene 
in each cancer type. (b) Example of tumor-enriched (RECK) and depleted (ITFG2) IPA genes in tumors compared to the matched normal samples. (c) 
The central heat map shows tumor-enriched (red) or depleted (blue) IPA genes in each tumor (columns). The upper histogram shows the number of 
genes per tumor. The side histograms show the numbers of tumors with tumor-enriched (left) or depleted IPA (right) genes. The central heat map shows 
cancer-type tumor-enriched or depleted IPA genes in each cancer type. The upper histogram shows the numbers of tumor-enriched (red) and depleted 
(blue) IPA genes in each cancer type. The left histograms show the numbers of cancer types with cancer-type tumor-enriched (red) and depleted (blue) 
IPA genes. The right histograms show whether the gene is selected as a pan-cancer tumor-enriched (red) and -depleted (blue) IPA gene. A hierarchical 
clustering method was used. 

1 cancer type. The pan-cancer dysregulated IPAs represent 52.1% 
of dysregulated IPAs in LIHC (the highest), but only 27.8% in 
CESC (the lowest); whereas cancer-specific IPAs account for 9.2% 
in CESC and 1.6% in BLCA (the highest and lowest percentages, 
respectively) ( Fig. S1f). 

Pan-cancer intronic polyadenylation-derived 
early transcriptional termination 
We classified a gene as a tumor-enriched or -depleted IPA gene 
based on the usage changes of IPAs within this gene (Fig. 2a and b; 
Supplemental methods). Across 690 tumors (compared to paired 
normal samples), these IPA-regulated genes vary from 132 to 2249 
(Figs 2c and S2A). Many genes exhibited consistent patterns of IPA 
regulation (Fig. S2b). 

To examine the consistency of IPA regulation, in each cancer 
type, we designated a gene as a cancer-type tumor-enriched IPA 
gene if more tumor samples (≥ 50% and at least 2) consistently 
exhibit this gene as a tumor-enriched IPA gene, or as a cancer-
type tumor-depleted IPA gene if more samples (≥ 50% and at least 
2) displayed this gene as a tumor-depleted IPA gene (Fig. 2a; Sup-
plemental methods). For example, RECK is a cancer-type tumor-
enriched IPA-truncated gene found in 21 cancer samples, while 
ITFG2 is a cancer-type tumor-depleted IPA gene found in 19 cancer 
samples (Fig. 2b). Most cancer types show markedly elevated 
number of tumor-enriched than depleted IPA genes in the tumors, 
such as LUSC, BLCA, and LUAD; whereas KIRC, THCA, CHOL, 
and KIRP have opposite trends (Fig. S2c; Table S2a). Addition-
ally, unsupervised clustering analysis revealed the similarity of 

tumor-enriched and -depleted genes among cancer types with 
similar histologic features (Fig. 2d), such as lung cancer (LUSC and 
LUAD), pan-kidney cancers (KIRC, KIRP and KICH), pan-gyn organ 
sites (UCEC, CESC and BRCA), suggesting a similar regulatory role 
of IPA in cancers of common tissue origin. 

Our analyses yielded 4491 cancer-type tumor-enriched or 
depleted IPA genes across 22 cancer types (Fig. 2d). Seven 
hundred seventy-one genes (17.6%) consistently express the same 
transcripts in at least 11 cancer types, and 2808 genes exhibit 
consistent patterns in at least 2 cancer types. To explore the 
pan-cancer consistency, we identified 1834 pan-cancer tumor-
enriched IPA genes occurring in at least half of the cancer types, 
which was approximately twice the number of pan-cancer tumor-
depleted IPA genes (n = 907; Fig. 2d; Table S2b). 

Next, we utilized the tool coding-potential assessment tool 
(CPAT) [26] to predict coding probability of the IPA isoforms 
(Supplemental methods). Of the 1834 pan-cancer tumor-enriched 
IPA genes (Fig. S3a), 791 IPA isoforms (43.6%) have coding 
probability scores (CPS) greater than 0.364. This threshold, 
identified as optimal for discerning coding potential in human 
data [26], indicates the likelihood of these isoforms to generate 
protein-coding mRNAs and proteins (Fig. S3b). The remaining 
1043 IPAs (56.4%; CPS < 0.364) likely generate micropeptides 
or represent ncRNAs (IPA-ncRNA; Fig. S3c), suggesting that 
IPA diversifies the transcriptomic landscape and potentially 
leads to the loss of protein-coding genes and their func-
tional protein products in human cancers. The ability to 
code proteins is not associated with polyadenylation signaling
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Figure 3. Functional enrichment of pan-cancer tumor-enriched and depleted IPA genes. (a and c) GO enrichment of pan-cancer (a) tumor-enriched and 
(c) depleted IPA genes. (b and d) Examples of tumor-enriched (B: ERCC8) and depleted (D: DHX8) IPA DNA damage repair genes. 

sequences or IPA locations but is correlated with intron length 
( Fig. S3d). 

Furthermore, 453 IPA isoforms are, in fact, 5′ IPA iso-
forms (IPA located at first intron; Fig. S3d). Of these, 212 
may generate protein-coding genes with the length of open 
reading frames ranging between 126 and 5394 bp (Fig. S3e); 
others likely generate micropeptides or represent IPA-ncRNAs 
(Fig. S3f). 

Pan-cancer tumor-enriched intronic 
polyadenylation genes are involved in cilium 
assembly and deoxyribonucleic acid repair 
To better understand the biological consequences of IPA in cancer, 
we applied the enrichR tool [27] to characterize the pathways 
associated with the identified genes. Gene ontology (GO) analyses 
showed that the 1834 pan-cancer tumor-enriched IPA genes were 
enriched in the functional terms related to cilium assembly and 
DNA repair (Fig. 3a; Table S3a). Evidence is accumulating that 
ciliary defects lead to multiple diseases [28] and ciliary deregula-
tion plays crucial roles in cancer formation and progression [29– 
31]; restoring the cilia can suppress proliferation in cancer cells 
[32, 33]. The DNA repair process operates through a number of 
mechanisms such as excision repair and homologous recombi-
nation repair to protect the human genome from damage and 
provide genome stability. DNA repair deficiency enables can-
cer cells to accumulate genomic alterations and contributes to 
their aggressive phenotype [34, 35]. Damage in one of the major 
DNA repair mechanisms, homologous recombination, by IPA has 
been reported previously through the depletion of CDK12 [13, 14]. 
ERCC8 (Fig. 3b) is the top gene that is truncated in tumors by 
aberrant IPAs in 17 cancer types, followed by FANCN. The former 
participates in excision repair and the latter plays roles in double-
strand break repair. 

On the other hand, the 904 pan-cancer tumor-depleted 
IPA genes that produce full-length mRNAs in tumors are 
enriched in mRNA processing tasks such as splicing and 3′-
end processing (Fig. 3c; Table S3b). For example, the IPAs of 
DHX8, encoding an RNA-binding protein involved in splicing, 
are inhibited in 13 cancer types (Fig. 3d), and the IPAs of 
hnRNPL, encoding a protein regulating both mRNA splicing 
and IPA processing [36, 37], are inhibited in 11 cancer types. 
These indicate that IPA truncation of these genes is inhibited 

in tumors, consequently promoting the post-transcriptional 
regulation in human cancers. Moreover, genes associated with 
cancer hallmark signatures, such as epithelial–mesenchymal 
transition and E2F targets, are also overrepresented in these 
genes (Fig. S4), suggesting that IPA inhibition exerts an oncogenic 
effect. 

Correlations between truncating mutations, 
deoxyribonucleic acid damage repair, tumor 
mutation burden, and intronic polyadenylation 
We demonstrated that the aberrant IPAs in tumors led to early 
termination of transcription of numerous genes, resulting in the 
generation of truncated proteins lacking essential domains or 
IPA-ncRNAs. This phenocopied the effects of truncating muta-
tions at DNA level. Across the 22 cancer types analyzed, 563 
out of 690 samples carry truncating mutations in 5344 genes, 
whereas truncation by aberrant IPAs occurs in all samples and 
affects 6055 genes. Only 377 genes in 148 samples from 17 can-
cer types harbor both truncating mutations and aberrant IPAs 
(Table S4a), indicating that these two mechanisms independently 
regulate transcriptome diversity. Furthermore, in individual sam-
ples, IPAs affect more genes than truncating mutations (Fig. 4a; 
Table S4b). 

Subsequently, we examined DDR genes in particular, as the 
loss of DNA repair is common in many cancer types due to 
somatic mutations [38]. A total of 132 out of 289 DDR genes 
(derived from GO:0006281 DNA repair) GO exhibit aberrant IPAs 
in all 690 samples, and 77 genes have truncating mutations in 94 
samples; 11 genes have both in at least one sample (Table S4b). 
RAD51B is the top gene regulated only by aberrant IPAs in 425 
samples (out of 690; 61.5%). TP53 is the top gene carrying trun-
cating mutations (32 samples; 4.6%), existing in BRCA (n = 2),  
COAD (n = 2), ESCA (n = 1), HNSC (n = 10), KICH (n = 1), LUAD (n = 6),  
LUSC (n = 3), READ (n = 2),  and  STAD  (n = 2), or both (4 samples 
from KICH, ESCA, HNSC, and BLCA; 0.58%; Fig. 4b; Table S4c). In 
contrast, MEN1 is the most frequently truncating mutation-only 
gene, which occurs in only three samples (from HNSC, LUAD, and 
STAD). 

Given that genes targeted by truncating mutations often 
function as tumor suppressors [39], we investigated whether 
such genes are overrepresented among those regulated by IPAs. 
Among 301 tumor suppressor genes (TSG) [39], 62 do not contain
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Figure 4. IPA and truncating mutations independently diverse cancer transcriptomics. (a) Numbers of genes truncated by IPA, truncating mutations, 
or both in each cancer type. (b) Samples having both TP53 truncating mutations and IPA isoforms in tumors compared to matched normal samples. 
Pan-cancer tumor-enriched IPA DNA repair genes associated with tumor mutation burden. Colors indicate the log10 (P-value) with positive (blue) or 
negative (orange) correlations. 

IPAs or truncating mutations. Of the remaining 239 genes, 
151 express IPA-truncated isoforms in at least one of the 690 
samples, while 191 genes contain truncating mutations. FUBP1 
is the top second gene regulated only by IPA in 419 samples 
(out of 690; 60.7%), following TP53, functions as both DDR and 
TSG. Conversely, APC is the top gene regulated by truncating 
mutations (21 samples; 3.0%). Only 27 genes have co-occurring 
IPAs and truncating mutations, including KMT2C (5 samples), 
TP53 (4 samples), CASP8 (3 samples), PTEN (3 samples), NSD1 (2 
samples), and SETD2 (2 samples; Fig. S5a; Table S4d). KMT2C 
(MLL3) is a chromatin remodeling gene that mediate H3K4 
monomethylation (H3K4me1). KMT2C mutations contribute to 
tumorigenesis and are associated with poor survival rates [40, 
41]. In particular, the complete loss of KMT2C due to truncating 
mutations is correlated with significantly shorter progression-
free survival in patients with breast cancer patients who undergo 
estrogen therapy [42] and in patients with metastatic prostate 
cancer [43]. The IPA-associated loss of KMT2C warrants further 
validation. 

Furthermore, we investigated whether IPA isoform expres-
sion is associated with tumor mutation burden, as impaired 
DDR often leads to abundant mutations [44]. In this analysis 
encompassing all 8039 samples from the 22 cancer types 
(Supplemental methods), most pan-cancer tumor-enriched IPA 
genes (n = 1641) showed significant associations with tumor 
mutation burden (TMB) in at least 1 cancer type (Table S4e). 
BRCA exhibited the highest number of IPAs associated with TMB, 
while PCPG and CHOL had the fewest. Notably, most cancer types 
showed a higher number of positively correlated IPA isoforms, 
such as LUAD and PAAD (Fig. S5b). Specifically, 39 (out of 61) pan-
cancer tumor-enriched IPA isoforms of DDR genes are associated 
with TMB, most of which show positive correlations across cancer 
types (Fig. 4c). For instance, FNACA, a member of the Fanconi 
anemia complementation group involved in DNA repair, exhibited 
a positive correlation between its IPA isoform expression and TMB 
in nine cancer type (Fig. S5c). Thus, impairment of DDR genes by 
IPA events may significantly contribute to mutation accumulation 
in human tumors. 

Upstream regulatory factors for intronic 
polyadenylations and effects of intronic 
polyadenylation–non-coding ribonucleic acids on 
signaling pathways 
Many factors may regulate the IPA process. CPA factors such 
as CPSF, CstF, CFIm, and CFIIm can directly bind or associate 
with mRNA core regulatory cis-elements (e.g. AAUAAA and other 
auxiliary sequences like U/GU-rich downstream elements [1]) 
to regulate this process. Additionally, alternative splicing and 
splicing factors [45–49] also participate in the global APA pro-
cess. To explore potential regulatory factors for IPA in human 
cancer, we examined 42 CPA and 262 splicing factors across all 
8039 samples from the 22 cancer types. We defined positive and 
negative regulators based on whether a regulator was positively 
or negatively correlated with more IPAs in a given cancer type 
(Supplemental methods). For example, in HNSC, we identified 190 
putative master regulators, including 108 positive and 82 negative 
regulators. 

Overall we identified 282 putative master regulators across 
cancer types (Table S5), among which 95 and 59 factors exhibited 
strong positive and negative correlation with multiple IPAs in 
11 ∼ 22 cancer types, respectively, while 30 and 11 factors showed 
correlations in only 1 cancer type. CPSF3 is the top CPA factor 
that broadly promotes IPA activities in almost all cancer lineages, 
ranging from 24% in PCPG to 94% in LUSC (Figs S6a and b). The 
splicing factors POLR2D, EIF4A3, and HSPA8 are the top master 
regulators positively correlated with more IPAs across all cancers 
(Fig. S6c). 

Among the 282 master regulators, 18 are pan-cancer tumor-
enriched and 29 are pan-cancer tumor-depleted IPA genes, respec-
tively (Fig. 5). PCF11 is an tumor-enriched IPA gene whose tran-
scription is terminated by IPA in seven cancer types (Fig. S6d), 
where its gene expression is inversively correlated with IPA iso-
form expression (Fig. S6e). hnRNPL is an tumor-depleted IPA gene 
whose full-length transcript is consistently expressed in 11 cancer 
types, and its gene expression is positively correlated with IPA 
isoform expression. These data are consistent with the previously 
reported roles of PCF11 [50] and hnRNPL [36] in the IPA process.
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Figure 5. Putative regulators of IPA activities in human cancers. Pie charts show percentage of IPA isoforms that are positively (blue) or negatively (white) 
correlated with regulators (that were defined as pan-cancer tumor-enriched or depleted) in each cancer type. 

ncRNAs play critical roles in cellular processes related to 
tumorigenesis by interacting with mRNAs [ 51–55], and may 
inform optimal drug design [56, 57]. We examined interactions 
between 1043 IPA-ncRNA isoforms determined previously 
(CPS < 0.364) and their associated genes. Specifically, we focused 
on the associations of these IPA-ncRNAs and 335 genes involved 
in 10 cancer signaling pathways (p53, PI3K, Myc, RTK/RAS, cell 
cycle, Wnt, TGF beta, Nrf2, Notch, and Hippo) [58] and built an 
IPA ncRNA-gene regulatory network across cancer types based 
on co-expression between individual IPA and their putative target 
genes (Supplemental methods). We found that 735 IPA-ncRNAs 
were computationally correlated with 327 target genes in the 22 
cancer types. The most strongly associated pathway is RTK/RAS, 
especially in THYM and PAAD (Fig. S7a), and the top associated 
gene is RAC1 in the RTK/RAS pathway in PAAD, which is associated 
with expression of 98 IPA-ncRNAs (Fig. S7b; Table S6), including 
the IPA-ncRNA from TMEM8B (Fig. S7c). 

Clinical relevance of intronic polyadenylation 
isoforms 
We hypothesized that individual variations in IPA isoform expres-
sion might provide a meaningful predictor for patient clinical 
outcomes. Within the TCGA cohort, we categorized patients into 
two groups (≥ or < 90%; Supplemental methods) based on levels 
of IPA expression or gene expression (sum of all isoforms e.g. 
those from alternative polyadenylation and splicing) of each gene. 
Among the 1834 pan-cancer tumor-enriched IPA genes, many 
show significant associations with overall survival (OS) for either 
IPA isoform or total gene expression (the sum of all possible 
isoforms), but not both (Fig. 6a; Table S7a and b). The largest gene 
set (n = 225) for which gene expression and IPA isoform expression 
predicted patient survival was found in KIRC samples, whereas 
only one gene was found in the THYM. Intrudingly, we found 
225 genes whose expression and IPA isoforms predicted opposite 

survival outcomes in at least 1 cancer type (Table S7b). For exam-
ple, KDM4C has been reported as an oncogene and a negative 
biomarker for patients with multiple cancer types [59–61], and is 
associated with cancer metastasis [62] and immunosuppressive 
tumor microenvironment [63]. However, its gene expression is 
associated with better survival outcomes in patients with LUAD— 
unlike expression of its IPA isoform, which is associated with poor 
survival of those patients (Figs 6b and S8a). This negative corre-
lation is also observed in patients with LUSC, KICH, and BRCA, 
where the gene expression does not show significant association 
(Table S7b). Another example is DNAJB4 (also known as HLJ1), 
which plays a complex dual role in tumorigenesis [64–67]. We 
observed negative associations between its gene expression level 
and patient survival in multiple cancer types (Fig. 6b; Table S7b); 
however, its IPA isoform expression is a biomarker of better sur-
vival (Figs 6b and S8b). These observations suggest consideration 
of gene isoforms in cancer biomarker studies. 

We proceeded to examine whether IPAs correlated with 
patient immune cell profiles, a critical determinant of treatment 
outcomes. Utilizing CIBERSORT [68] to estimate immune cell 
fractions in patient tumors from the TCGA cohort 
(Supplemental methods), we identified 61 pan-cancer tumor-
enriched IPA isoforms within DDR genes, of which 39 consistently 
showed associations with tumor immune cell profiles across 
various cancer types (Table S7c). Notably, the expression of 
the HUS1 IPA isoform exhibited a positive correlation with 
CD8 T cell populations in seven cancer types (Fig. 6c) and  with  
natural killer cell populations in six cancer types (Fig. S8c). 
This suggests that truncation of HUS1 transcription, resulting 
in decreased levels of functional HUS1 proteins, fosters an anti-
tumor microenvironment. This observation aligns with prior 
studies demonstrating that miRNA-mediated depletion of HUS1 
inhibits de novo lung tumorigenesis [69]. Consistent with a 
pan-cancer analysis indicating that variant or low expression 
levels of FANCI are linked to poor patient survival [70], we

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
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Figure 6. Associations between IPA isoforms and clinical characteristics. (a) Numbers of genes whose expression or IPA usage predicted patient survival. 
(b) IPA isoform and gene expression of KDM4C and DNAJB4 had opposite correlations with OS in the TCGA cohort. (c) Pan-cancer tumor-enriched IPA 
DNA repair genes and associations with CD8 cell fractions. Colors indicated the log10 (P-value) with positive (blue) or negative (orange) correlations. (d) 
the top 50 genes showing significant associations with cancer stages in the TCGA cohort. Colors indicated the log10 (adjusted P-value). 

found that expression of the FANCI IPA isoform correlated 
negatively with CD8 T cells ( Fig. 6c), activated CD4 T cells, and 
natural killer cells (Fig. S8c). XRCC4, a component of canonical-
nonhomologous end-joining DNA repair, is associated with 
severe combined immunodeficiency and accelerated tumor 
development when deficient [71]. Our analysis also demonstrated 
that high expression levels of the XRCC4 IPA isoform were 
consistently associated with regulatory T cell populations across 
nine cancer types (Table S7c). 

We then examined cancer-related demographic and clinical 
features, including stage (available for 16 cancer types), race 
(available for 22 cancer types), and sex (available for 15 cancer 
types; excluding cancers specific to men or women), as well as 
subtypes (available for 9 cancer types; Table S7d), and identified 
associations between IPAs and these factors. In total, we discov-
ered 1210 clinically relevant IPA isoforms, encompassing 66.0% 
(1210/1834) of pan-cancer tumor-enriched IPA genes (Table S7e). 
These included 393 IPA isoforms associated with cancer stage, 
516 with patient race, 226 with sex differences, and 1066 corre-
lated with cancer subtypes. Most IPA isoforms exhibited cancer-
specific patterns concerning individual clinical features. Of these 
associations, 306 (77.9% of 393) IPA-cancer stage associations were 
unique to a single cancer type, with no gene showing associations 
in more than 8 (50% of 16) cancer types. Notably, the top genes, 
KLHL7 and RBCK1, were associated with tumor stages in five 
cancer types (Fig. 6d). Similarly, 386 (74.8% of 516) IPAs were linked 
to patient races in only 1 cancer type, with no gene showing 
associations in more than 8 (50% of 15) cancer types. Noteworthy 
race-associated genes included BOD1L1 and PREP, identified in 
five cancer types (Fig. S8d). Regarding patient sex, 208 (92.0% of 

226) IPA isoforms exhibited associations unique to a single cancer 
type, with only 1 gene, KDM5C, showing associations in 8 cancer 
types (Fig. S8e). Furthermore, 432 (40.5% of 1066) IPA isoforms 
were associated with patient subtypes in only 1 cancer type, while 
84 genes showed associations in more than 5 (50% of 9) cancer 
types. Notably, ZFAND4 demonstrated significant associations in 
8 cancer types (Fig. S8f). 

Moreover, the majority of IPAs exhibited feature-specific pat-
terns within individual cancer types (Fig. S8g). Among the five 
cancer types (COAD, ESCA, HNSC, READ, and STAD) with all four 
features available, no gene showed associations with all four 
features. In contrast, the substantial number of genes associated 
with just one feature. Among the 11 cancer types (BLCA, BRCA, 
CHOL, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, and THCA) with 
3 features available, only a small number of genes were associated 
with all three features: 13 genes (of 418) in BRCA, 2 (of 197) in 
KIRC, and 1 (of 105) in LUAD. Similar patterns were observed in 
the 3 cancer types with only two features available, with 5(of 347) 
genes in CESC, 4 (of 400) in SARC, and 66 (of 395) in UCEC showing 
associations with two features. 

Discussion 
Interrogating large-scale RNA-seq data sets from the TCGA 
cohort, we provided a systemic view of the IPA landscape in 
human cancer. The TCGA cohort, comprising approximately 10 
000 patient samples spanning 32 cancer types, was meticulously 
curated with stringent inclusion criteria to minimize potential 
biases, establishing it as a substantial resource for cancer 
research.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae376#supplementary-data
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In this study, only paired tumor and normal samples were 
included to detect the dysregulated IPAs for each individual 
patient. We did not include additional normal samples from 
other data resources, such as GTEx, due to the natural differences 
between adjacent normal samples from the TCGA cohort and 
normal samples from the GTEx cohort. Moreover, comparing 
paired samples from individual patients provides insights 
into inter-tumor heterogeneity and consistency. However, we 
acknowledge that the limited sample size in some cancer types 
may constrain the observation of inter-cancer heterogeneity. This 
limitation will be mitigated by the growth of sample size in the 
future. 

Our study revealed a robust pan-cancer pattern of aberrant 
IPAs and IPA-regulated genes that remained consistent across 
cancer patients and types, although certain IPAs exhibited inter-
and intra-tumor variation. These pan-cancer tumor-enriched IPA 
genes are enriched in functional pathways such as DNA repair, 
implying that dysregulated IPAs are involved in accumulation 
of somatic mutations in human tumors. This hypothesis was 
supported by our observations indicating that many IPAs are 
positively correlated with patient TMB. Furthermore, we found 
that the expression of IPA isoforms correlates with various clinical 
characteristics of patients, including survival, immune profiles, 
stage, subtype, sex, and race, highlighting the importance of IPA 
isoforms independent of gene expression (the sum of all iso-
forms). We are confident that the comprehensive scope of the 
TCGA dataset, combined with our robust analytical methodol-
ogy and consistent observations across diverse patient cohorts 
and cancer types, strengthens the validity and reliability of our 
findings. 

Our analysis identified 22 260 detectable IPA sites, most of 
which showed a consistent expression pattern across 33 can-
cer types. Pan-cancer IPAs have higher usage levels than others 
(Wilcoxon test p < 2.2 × 10−16 ; (Fig. 1c), reminiscent of charac-
teristics of protein-coding genes and enhancer RNAs (eRNAs)— 
the housekeeping genes and pan-cancer eRNAs are generally 
expressed at high levels compared with tissue-specific genes [72] 
and eRNAs [73], respectively. 

Both truncating mutations and aberrant IPAs in genes lead to 
early termination of protein-coding gene transcription, resulting 
in the generation of ncRNAs or truncated mRNAs that may exhibit 
altered functionality compared to full-length isoforms. Our obser-
vations indicate that IPA regulation is exclusive to truncating 
mutations, particularly prominent in DDR and TSG. Thus, IPA, 
alongside somatic mutations, contributes to the diversification 
of the cancer transcriptomic landscape and compromises tumor 
suppressive mechanisms in human cancers. 

Tumor cells often exhibit transcripts with systematically 
shorter 3’ UTRs compared to normal cells [11] achieved by 
preferentially selecting proximal polyadenylation sites in the 
3’ UTR. This mechanism often results in the upregulation of 
numerous oncogenes, enabling them to evade regulatory miRNA-
mediated repression [7, 10, 74]. In our study, we observed a 
plethora of tumor-enriched and depleted IPA genes in each tumor 
compared to paired normal tissues. Additionally, tumors tended 
to express IPA-truncated isoforms, with a higher prevalence of 
global IPA-related early transcriptional termination observed in 
more samples (n = 460 and 230, respectively). In contrast to 3’ UTR-
APA, which primarily impacts oncogenes, our findings indicate 
that pan-cancer tumor-enriched IPA genes are predominantly 
associated with DNA repair pathways; whereas, tumor-depleted 
IPA genes are linked to cancer hallmark signatures such as 
epithelial–mesenchymal transition (EMT) and E2F targets. Thus, 

APA processing, encompassing both 3’ UTR-APA and IPA, likely 
plays a role in tumor development and progression, suggesting its 
potential as a therapeutic target. 

We identified an notable number of IPA isoforms with potential 
clinical relevance that could serve as biomarkers. Traditionally, 
biomarker identification has relied on gene expression, which 
aggregates all possible isoforms, including those from alternative 
splicing and polyadenylations. However, this approach may lack 
accuracy due to the potentially distinct functions of individual 
isoforms. Through our analysis, we identified a subset of genes 
whose IPA isoform expression showed an inverse association with 
total gene expression in relation to patient survival, exemplified 
by KDM4C and DNAJB4. This suggests that isoform expression 
may offer a more precise prognostic marker than gene expression 
alone. This observation could potentially be elucidated by recent 
research highlighting the significance of long ncRNAs (lncRNAs), 
which are increasingly recognized for their diverse roles in gene 
regulation mechanisms. LncRNAs are increasingly implicated in 
various aspects of cancer biology, including initiation, progression, 
patient drug resistance, treatment outcomes, and as promising 
therapeutic targets [75]. Our analysis indicates that IPA truncation 
might lead to the generation of numerous IPA-ncRNAs, potentially 
involved in modulating transcriptional programs, cellular func-
tions, and cancer progression. 

DDR and the immune system exhibit a tight interconnec-
tion. Mutations in DDR genes and elevated TMB are correlated 
with cancer immunotherapeutic response and cancer prognosis 
[76–78]. IPA truncation of DDR also enables DNA damage defi-
ciency; consequently; we observed a strong association between 
DDR IPA isoform expression and immune cell profiles in patient 
tumors. The IPA-induced truncation of transcription may pro-
duce neoantigens, akin to mRNA splicing or truncating muta-
tions. Neoantigens can stimulate an immune system response 
against cancer cells [79, 80] and is a promising approach to tumor 
immunotherapy [81, 82]. 

Our study does have limitations. Firstly, while our study 
revealed the significance of IPA and highlighted that genes 
undergoing IPA regulation are enriched in pathways such as 
cilium assembly and DNA repair, both of which are strongly 
associated with cancer formation and progression, we concur 
that this finding does not offer a comprehensive portrayal of 
IPA’s roles in cellular functions, cancer initiation, progression, 
and treatment, areas in which our understanding is still 
lacking depth. Secondly, while our study primarily focused 
on establishing associations between IPA and patient clinical 
characteristics such as cancer state and patient survivals, 
we recognize the significance of investigating causality to 
better understand the underlying mechanisms. Our findings 
will likely provide basis and directions for the causality and 
mechanistic studies in the future. Thirdly, although our study 
investigates the correlation between IPA events and splicing/CPA 
factors, we acknowledge that it does not explore the molecular 
mechanisms governing IPA regulation, including genome alter-
ations, particularly those affecting core regulatory cis-elements 
(e.g. AAUAAA and other auxiliary sequences like U/GU-rich 
downstream elements [1]). This aspect merits further investi-
gation, especially through experimental validation and in-depth 
analysis. 

In summary, by using large-scale RNA-seq and clinical datasets 
from the TCGA cohort, we provide a comprehensive landscape 
of IPA events in human tumors and their clinical relevance. Our 
analysis can be a useful resource for further investigation regard-
ing regulating mechanisms and functions of IPA.
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Key Points 
• We have identified numerous dysregulated IPA isoforms 

in tumor samples compared to normal samples in the 
TCGA cohort, with many showing consistent patterns 
across various cancer types. 

• IPA regulation can impact multiple biological pathways, 
including DNA repair and cancer signaling pathways, 
which play pivotal roles in cancer development and 
treatment. 

• The expression of IPA isoforms correlates with patient 
clinical characteristics in cancer-specific and feature-
specific manners, indicating the potential of IPA iso-
forms as more precise prognostic markers. 
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