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Abstract: The aim of this study was to evaluate the influence of a sonic application of self-adhesive
resin cements on the bond strength of glass fiber posts to root dentin. Eighty bovine incisors were
randomly divided into eight groups (n = 10). Four self-adhesive resin cements were used—RelyX
U200 (3M/ESPE), Bifix SE (Voco), seT PP (SDI), and Panavia SA (Kuraray). The cements were inserted
into the root canal in two different modes—Centrix syringe (control) or with a sonic device (Sonic
Smart). The roots were sectioned and taken to a universal test machine (Instron 3342) to perform
the push-out test. The fracture pattern was evaluated by stereomicroscope and scanning electron
microscope. The bond strength data were analyzed by two-way ANOVA and Tukey tests (α = 0.05).
The interaction between the main factors was significant (p = 0.002). The sonic application increased
the bond strength in comparison with the conventional application for the RelyX U200 (p < 0.001)
and Bifix SE (p < 0.017) cements. However, for the seT PP and Panavia SA cements, the bond strength
values did not differ significantly (p > 0.05). The fracture pattern showed adhesive at the interface
between the luting cement and the dentin. Using a sonic device in the application of self-adhesive
resin cement helpedpromote an increase in the bond strength for RelyX U200 and Bifix SE.
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1. Introduction

Some resin cements require acid etching of the dental hard tissues, and the use of an adhesive
system requires numerous operating steps (e.g., acid etching and application of the primer and
adhesive) with a longer working time, in addition to being more technique sensitive because of these
various steps [1–3]. With the purpose of simplifying the cementation technique, self-adhesive resin
cements were introduced, as they require a lower number of clinical steps [4,5]. Another advantage of
using these materials is the increased control of the humidity of the substrate [6] because there is no
need to remove the smear layer [7]. The bond of these cements is performed by acidic monomers that
have a high affinity for the calcium of hydroxyapatite [5,8].
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Despite the development of self-adhesive cements, the cementation of glass fiber posts (GFPs)
within the root canal continues to be challenging. Usually, the material is inserted with the use of a
microbrush, endodontic files, exploratory probes, or the GFP itself, which may lead to the appearance
of failures in the interfacial layer [9]. To overcome this problem, the use of the Centrix syringe is one of
the techniques most frequently used. This device is capable of diminishing the number of bubbles
present at the interface of the material, which may influence the self-adhesive resin cement’s bond with
the GFPs [10]. Nevertheless, during cementation, the resin cement must be applied under pressure
to guarantee intimate contact between the cement and the dentin. When this pressure is inadequate,
there is deficient adaptation and a low bond strength [8].

However, new techniques have been developed as a way to minimize the failures in this operating
step, such as the use of devices for sonic application [11]. Recently, some authors have shown that the
active application of universal adhesives in self-etch mode to enamel appears as a viable alternative
to selective enamel etching [12]. Recently, an in vitro study showed that application of the adhesive
systems with a sonic device oscillating at 170 Hz improved the bond strength of adhesive systems
to coronal [11] and root dentin [13].When adhesive materials are applied under sonic vibration, the
fluids penetrate into areas where the applicator bristles do not reach and vibratory waves are created
in the adhesive, which generate a greater diffusion of the material into the dentin substrate [13,14].
Furthermore, bubbles present in the adhesive material are pushed against the dentin walls and
burst [13]. In addition, cements that have a high viscosity can increase their fluidity through the energy
generated by sonic vibration [15]. However, the effectiveness of this technique, which may improve
the interaction of self-adhesive resin cements with root dentin, for the cementation of intraradicular
posts has not yet been investigated.

Therefore, the aim of the present study was to evaluate the influence, in vitro, of the sonic insertion
of self-adhesive resin cements on the GFP bond strength. The null hypothesis tested was that the use
of sonic application would not interfere with the bond strength of self-adhesive resin cements.

2. Materials and Methods

2.1. Preparation of Specimens

Eighty bovine incisors with straight roots, closed apices, and lengthsof 40 mm (+1.0) were used.
The teeth were radiographed and curved or atresic canals were excluded. The crowns were sectioned
below the cement–enamel junction by using a diamond-coated disk (KG Sorensen, Cotia, Brazil) at
low speed under cooling to standardize the root length to 15 mm (±0.1). The coronal diameters of the
root canals were measured in the mesio–distal and vestibular–lingual directions, with a digital caliper
(Mitutoyo, Suzano, Brazil). Root canals with a coronal diameter equal to 2 mm (±0.1) were selected.
The specimens were randomly allocated to eight experimental groups (n = 10), according to the type of
cement and cement insertion technique used.

2.2. Post Cementation

A single operator, specialist in endodontics and who experienced all of the techniques used in this
study, performed the root canal preparation, obturation, and post cementation procedures. Cleaning
and shaping were performed using a crown-down canal root preparation technique using K-type files
#80 (DentsplyMaillefer, Ballaigues, Switzerland). Working length was set at 1 mm from the apical
foramen. Apical enlargement was performed with an instrument size of up to No. 70. Then the
specimens were washed with 6% sodium hypochlorite solution and 17% EDTA (BiodinâmicaQuímica
e Farmacêuitca Ltda., Ibiporã, PR, Brazil) for 5 min.

The root canals were obturated by lateral condensation of the gutta percha cones (Dentsply Sirona,
York, PA, USA) and the calcium hydroxide cement (Sealer 26; Dentsply Sirona, York, PA, USA) and
were prepared with a specific burr for the glass fiber post (GFP) system used (White Post DC #1, FGM,
Joinville, Brazil), which was inserted up to the length of 9 mm in a single movement.
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Dentin debris and gutta percha were removed with distilled water, followed by drying with
absorbent paper tips (Dentsply Maillefer, Ballaigues, Switzerland). For the root canal standardization,
the drill corresponding to the glassfiber post No. 1 was used. After the removal of the gutta percha, the
glassfiber posts were placed in the post space to assess the adaptation of the posts. Before the adhesion
process, the GFPs were cleaned with 70% alcohol. After this, a layer of silane was applied (Prosil, FGM,
Joinville, Brazil) on the post surfaces, with the help of an applicator brush (FGM, Joinville, Brazil).
The cements were mixed in accordance with the manufacturers’ recommendations (Table 1).

Table 1. Self-adhesive resin cement materials, manufacturer, lot number, composition, and application
mode of the adhesive systems used.

Cements Composition Application Mode

RELYX U200
(3M/ESPE, St.Paul, MN, USA)

Lot Number
(1509000193)

Base Paste: Silane-treated glass powder, 2-Propenoic acid,
2-methyl,1,1′-[1-(hydroxymethyl)-1,2-ethanodiyl] ester,
triethylene glycol dimethacrylate (TEGDMA),
silane-treated silica, glass fiber, sodium persulfate, and
Tert-butyl peroxy-3,5,5-trimethylhexanoate.
Catalyzer paste: Silane-treated glass powder,
dimethacrylate substitute, silane-treated silica, Sodium
p-toluenesulfonate, 1-Benzyl-5-phenylbarbituric acid,
calcium salts, 1,12-Dodecanediol dimethacrylate, calcium
hudroxide, and titanium dioxide.

1. Equal proportions of base
and catalyzer pastes were
dispensed on a glass plate
and mixed with a metal
spatula for 20 s;

2. Mixture was inserted into
the root canal;

3. Light polymerization for
20 s.

BIFIX SE
(Voco GmbH, Cuxhaven,

Germany)
Lot Number

(1504155)

Base Paste: UDMA 25%, Bis-GMA 15%, Gli-DMA 10%, Kat
N, N Bis 2%, Camphorquinone 1%, DABE 2%, BHT 0.1%,
Glass Particles 39.9%, Silica 4.9%, and Ferric Oxide 0.1%.
Catalyzer paste: UDMA 12%, Monomer BG 20%, Gli-DMA
20%, BHT 0.1%, DiHEMAPO4 1.9%, Glass Particles 38%,
Silica 5%, BPO 50 FT 2%, and Titanium Dioxide 1%.

1. Equal proportions of base
and catalyzer pastes were
dispensed on a glass plate
and mixed with a metal
spatula for 20 s;

2. Mixture was inserted into
the root canal;

3. Light polymerization for
20 s.

seT PP
SDI, Bayswater, Australia)

Lot Number
(S1407381)

Phosphoric Methacrylate ester, UDMA, photoinitiator,
Fluoroaluminosilicate, glass, and pyrogenic silica.

1. Equal proportions of base
and catalyzer pastes were
dispensed and the two
pastes were mixed for 20 s;

2. Mixture was inserted into
the root canal;

3. Light polymerization for
20 s.

PANAVIA SA
(Kuraray Medical, Inc, Tokyo,

Japan)
Lot Number

(460039)

Base Paste: 10-Methacryloyloxydecyl dihydrogen
phosphate (MDP), bisphenol A diglycidyl methacrylate
(Bis-GMA), Triethylene Glycol Dimethacrylate (TEGDMA),
hydrophobic dimethacrylate,
2-hydroxymethylmethacrylate, (HEMA), silanated barium,
Silanated colloidal silica, dl-Camphorquinone, peroxide,
catalyzers, and pigments.
Catalyzer paste: Hydrophobic aromatic dimethacrylate,
Hydrophobic aliphatic dimethacrylate, silinated barium,
sodium fluoride, accelerators, and pigments.

1. Equal proportions of base
and catalyzer pastes were
dispensed and the two
pastes were mixed for 20 s;

2. Mixture was inserted into
the root canal;

3. Light polymerization for
20 s.

Bis-GMA: bisphenol A diglycidyl ether methacrylate; HEMA: 2-hydroxyethylmethacrylate; TEGDMA: triethylene
glycol dimethacrylate; BHT: 2,6-Di-tert-butyl-p-cresol; MDP: 10-Methacryloyloxydecyl dihydrogen phosphate;
UDMA: urethane dimethacrylate.

In the groups in which the sonic device (Smart, FGM, Joinville, Brazil) was used, the first portion
of cement was inserted into Centrix syringe (DFL, Rio de Janeiro, Brazil) and the cement was placed
in the apical area (Figure 1). After this, a microbrush (Cavibrush regular, FGM, Joinville, Brazil) was
attached on Sonic device andpositioned on the root dentin walls in continuous movements of friction
against all the canal surfaces (vestibular, mesial, distal, and lingual) for a period of 10 s and a frequency
of 170 Hz [11] (Figure 1). A finalportion of cement was inserted with a Centrix syringe, and the posts
(DC #1, FGM, Joinville, Brazil) were inserted immediately, and light polymerized(Demi LED; Kerr
Corporation, Orange, CA, USA) for 40 s with an intensity of 800 mW/cm2 (Demetron L.E.D. Radiometer;
Kerr, Orange, CA, USA) with the light source positioned in the coronal portion of the root (Figure 1).
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Figure 1. Schematic illustrating the root filling, cementation procedures of the post and push-out test.

2.3. Push-Out Bond Strength Test

The roots were sectioned perpendicular to their long axis into six disks of 1.2 mm (±0.1) (i.e.,
six slices per root), with a double-faced diamond disk coupled to a cutting machine (Isomet 5000,
Buehler, Lake Bluff, Illinois, USA) under constant cooling (Figure 1).

The coronal and apical sides of each slice were photographed using a stereomicroscope (Kozo
Optical and Electronic Instruments, Nanjing, China) at 30× magnification. The coronal and apical
diameters of the root canal of each slice were measured with the aid of software (Image J, version
1.46, National Institutes of Health, Bethesda, MD, USA), and the thickness was measured with a
digital caliper.

The push-out test was performed in a universal test machine (Instron 3342, Canton, MA, USA) at
a speed of 1.0 mm/min until the post was extruded (Figure 1). For each slice, the loading rod diameter
was selected so that it could be 0.2 mm smaller than the apical diameter, in order to prevent it from
touching the dentin walls during the test. The bond strength value, expressed in MPa, was calculated
by the formula F/A, in which ‘F’ is the maximum force before the rupture of the interface, recorded by
the universal testing machine in Newtons (N), and ‘A’ is the bonded interface area in millimeters.

The dentin/post interface area was calculated using the truncated cone area formula,

(R + r)
[
h2 + [R− r]2

]0.5
, in which π is a constant equal to 3.14, h is the slice height, and R is the

greatest and r is the smallest post radius, and obtained on the coronal and apical diameters of each
slice, respectively.
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2.4. Stereomicroscope Pattern Evaluation (Fracture Pattern)

After the mechanical test, the specimens were evaluated under a stereomicroscope at 40×
magnification (Kozo Optical and Electronic Instruments, Nanjing, China). The failures were classified
into five types [16]: (1) adhesive between the self-adhesive resin cement and post, (2) adhesive between
the resin cement and root dentin, (3) mixed, (4) cohesive in dentin, and (5) cohesive in post.

2.5. Scanning Electron Microscopy (SEM)

Test specimens representative of each type of fracture, resulting from the push-out test, were
selected for SEM analysis For SEM examinations, the specimens were dried in a dessicator at room
temperature (25◦ C) for 48 h. The opposing sides of the slice were bonded with double-sided carbon
taped and then observed with an acceleration voltage of 15 kV in vacuum using SEM (TM 3030, Hitachi,
Tokyo, Japan).The surfaces were observed in different locations at ×100 and ×250 magnifications in
backscattered electrons mode [17].

2.6. Statistical Analysis

The experimental unit in this study was the root. The push-out bond strength test result of all
slices from the same root was averaged for statistical purposes. The statistical analysis was performed
by using Sigma Plot 13.0 (Systat Software Inc., San Jose, CA, USA). After observing the normality of
the data distribution (Shapiro–Wilk test), the statistical analysis was performed by two-way analysis of
variance (application mode vs. resin cements) and Tukey tests (α = 0.05).

3. Results

3.1. Push-Out Bond Strength Test

The Figure 2 shows the means and standard deviations (MPa) obtained with the self-adhesive
cements in all the experimental conditions evaluated. The analysis of variance demonstrated significant
interaction between the main factors (p = 0.002). In the groups where RelyX U200 and Bifix SE cements
were used with sonic insertion, there were significantly higher bond strength values than those obtained
with a conventional application (p < 0.001). However, Panavia SA and seT PP cements presented
similar bond strength values, irrespective of the application mode used (p > 0.5).

Figure 2. Mean and standard deviation of push-out bond strength values (MPa) in all the conditions
evaluated. Different letters indicate statistical difference between the groups (p < 0.05).

3.2. Stereomicroscope Pattern Evaluation (Fracture Pattern)

In the fracture pattern analysis (Figure 3), all the cements presented predominantly cement/dentin
adhesive failures, irrespective of the type of application.



Materials 2019, 12, 1930 6 of 11

Figure 3. Percentage of fracture pattern (number of slices) of the groups evaluated.

3.3. Scanning Electron Microscopy (SEM)

Cohesive failures in dentin or cohesive failures in posts were not observed. Only fractures between
adhesive cement/dentin (Figure 4a), post/cement (Figure 4b) and mixed were found (Figure 4c). SEM
images, representative of the different types of fracture observed in the groups evaluated, are presented
in Figure 5.

Figure 4. Representative SEM images of the failure modes observed in the study. (A) (250×
magnification—Bar 300 µm): adhesive fracture between resin cement and root dentin (black arrow);
(B) (100× magnification—Bar 1 mm): mixed fracture between post, resin cement and root dentin.
Observe the fracture line extending along the interfaces (black arrows); (C) (100×magnification—Bar
1 mm): adhesive fracture between resin cement and post (black arrow). (D is Dentin, P is Post and C
is Cement).
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Figure 5. SEM images of the fractured specimens of push-out bond strength test. (A) (100×
magnification—Bar 1 mm): U200 material—Centrix mode: a mixed fracture mode (adhesive
cement/dentin and cement/post). It is possible to observe a fracture at the adhesive interface between
the resin cement and the root dentin (black arrow), in addition to a fracture at the cement/post
interface (white arrow). (B) (100× magnification—Bar 1 mm): U200 material—Sonic vibration: a
mixed fracture (adhesive cement/dentin and cement/post). It is possible to observe a large quantity
of resin cement on the dentin wall, in addition to a cohesive fracture in the resin cement (black
arrow); (C) (100×magnification—Bar 1 mm): seT PP—Centrix mode: a mixed fracture mode (adhesive
cement/dentin and cement/post). Fracture at the adhesive interface between the resin cement and
the root dentin (black arrow), in addition to a fracture at the cement/post interface (white arrow).
(D) (100×magnification—Bar 1 mm): seT PP—Sonic vibration: adhesive fracture cement/dentin (black
arrow). (E) (100×magnification—Bar 1 mm): Bifix SE—Centrix mode: adhesive cement/dentin fracture
mode (black arrow). (F) (100×magnification—Bar 1 mm): Bifix SE—sonic vibration: adhesive fracture
(cement/dentin); (G) (100×magnification—Bar 1 mm): Panavia—Centrix mode: It is possible to observe
a fracture between the resin cement and the root dentin (black arrow). (H) (100×magnification—Bar
1 mm): Panavia—Sonic vibration: a mixed fracture (adhesive cement/dentin and cement/post). It is
possible to observe anadhesive fracture of the cement/post (white arrow)and cement/dentin interface
(black arrow). (D is Dentin, P is Post and C is Cement).

4. Discussion

The present study proposed the use of a sonic application technique as an alternative, with the
purpose of improving the self-adhesive cement interaction with the dental substrate. However, in this
study, the efficacy of the ultrasonic device was observed to be material dependent. Sonic application
was more effective than the control application for the RelyX U200 and Bifix SE cements, while no
difference was found for the Panavia SA and seT PP materials. Therefore, the null hypothesis proposed
in this study was partially rejected.

With the purpose of reducing the operating stages and minimizing errors in bonding, self-adhesive
resin cements with a chemical affinity for the dental structure have been used [5,18]. However, poor
signs of demineralization on dentin could be observed when self-adhesive resin cement was used. Some
studies have demonstrated the limited capacity of self-adhesive cements to demineralize and dissolve
the smear layer in order to interact with the adjacent dentin [19,20]. This limitation is attributed to the
high viscosity of the cement, which makes it difficult for it to penetrate into the dentin tubules [2,4,21].
The low penetration potential of acidic monomers in self-adhesive cements affects their ability to
penetrate in the smear layer. This may interfere in hybrid layer formation, thereby compromising the
bond of self-adhesive cements [20,22].

Some studies have demonstrated that the sonic application of adhesive materials may be an
excellent alternative for improving the interaction of these materials with the mineral structure of
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dentin [11,13,14,23,24]. The present study demonstrated that the use of the ultrasonic technique
improved the performance of the self-adhesive resin cements RelyX U200 and Bifix SE. Sonic vibration
promoted a greater interaction and wettability of the dentin walls, by creating waves of pressure that
facilitated the penetration of the material into the dentin substrate [13]. The Centrix syringe exerts no
pressure on the cement, which may make its chemical and mechanical interaction with dentin difficult.

Furthermore, ultrasonic vibration may have had an influence on the thixotropic properties of the
cementation agents and contributed to an increase in flow of the cement, improving the interaction of
the cement with the substrate. An oscillating wave across the cement increases the fluidity, leading to a
reduction in viscosity and consequently providing a greater power of diffusion [25]. Recently, one
study showed that sonic devices resulted in films with fewer defects and that the use of sonic vibrations
during the post accommodation process enhanced the cement flow [23]. Most authors investigating
the effect of sonically applied dental material used ultrasonic devices. The positive effects of ultrasonic
irrigation are based on cavitation, microstreaming and an increase of temperature. Ultrasonic devices
range in frequency from 1000 (low-frequency ultrasonic) to 40,000 Hz [15]. The sonic device used
in the present study had a mean frequency of 170 Hz and a direct comparison of the two methods
is not possible. The good results of push-out bond strength under sonic application may be due to
the increase in the degree of conversion of the material [13]. For this study, the authors justify the
increase of the degree of conversion with the use of the sonic device is due to solvent evaporation of
the adhesive system. On the other hand, the sonic movement can modify the kinetic energy of the
material that would favor the increase of the degree of conversion. In the same way as it does with the
use of sonic vibration in bulk-fill resins [26].

In its composition, RelyX U200 cement contains phosphoric acid ester and modified multifunctional
methacrylate monomers, which have a high affinity for the minerals in the substrate. This may explain
the better results of RelyXUnicem when compared with the resin cement Bifix SE [27].

Additionally, when Bifix SE was used for the cementation of zirconium crowns, it was capable of
presenting a higher level of retention after one year, with good mechanical properties even after being
submitted to stress for a long period [28]. Bifix SE is a cement that is more dependent on chemical
activation than on light activation [29]. The sonic application may have been capable of accelerating and
improving this chemical activation, and may have been responsible for the results found in this study.

Panavia SA has 10-MDP in its composition, which may have led to its good performance,
irrespective of the mode of cement application. This monomer has a high chemical affinity for calcium;
it is stable against hydrolysis and responsible for the interaction of the cement with hydroxyapatite [30].
The water solubility of 10-MDP-Ca salt was the lowest among the salts produced by the reaction
between phosphoric acid ester monomers and apatite [31,32]. This monomer forms nanolayers at the
bond interface, where the calcium ions released after partial dissolution of the hydroxyapatite bind
together to form the 10-MDP-Ca bond, which is highly stable [33]. This chemical affinity is responsible
for the low rates of dissolution of calcium salts, resulting in an optimum performance of these materials
in the bond strength tests [31].

On the other hand, the lowest bond strength values were found for the cement seT PP, irrespective
of the mode of application. For enamel and dentin conditioning to occur, and the later binding of
the acidic groups to calcium and hydroxyapatite, the pH of a self-adhesive cement must initially be
low when in contact with water and the humidity of the tooth. This will allow the formation of a
stable bond between the methacrylate network and the dental structure [4]. However, the pH of seT
PP remains very low after the reaction begins, which leads to the hydrophilicity of the cement and
compromises its mechanical stability and its bond with the dentin substrate, thus reflecting negatively
on its bond strength [34]. A recent study reported comparable microtensile bond strength values
for seT PP and found this material demonstrated the lowest bond strength with multiple premature
failures [20]. Some previous studies have reported that all specimens of seT PP cements failed before
the test [34,35].
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When analyzing the fracture pattern distribution of the self-adhesive cements, it was possible to
observe a predominance of fractures of the cement/dentin adhesive type (Figure 2). When compared
with the other cements, Panavia SA presented a higher number of mixed failures, irrespective of its
mode of insertion into the root canal, which may indicate a low cohesive strength of the material.

This study is the first regarding the use of a sonic application for self-adhesive resin cements in
the cementation of GFPs, and, up to now, only studies with a sonic application of adhesive systems
with good results have been evaluated.

5. Conclusions

The insertion of the self-adhesive cement into the root canal for the cementation of glass fiber posts
using a sonic device promoted an increase in the bond strength values for the RelyX U200 and Bifix SE
cements. The proposed sonic treatment may be considered as an alternative to amanual application in
order to improve the bond strength of these cements.
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