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Abstract

Background

Most existing risk stratification systems predicting mortality in emergency departments or

admission units are complex in clinical use or have not been validated to a level where use

is considered appropriate. We aimed to develop and validate a simple system that predicts

seven-day mortality of acutely admitted medical patients using routinely collected variables

obtained within the first minutes after arrival.

Methods and Findings

This observational prospective cohort study used three independent cohorts at the medical

admission units at a regional teaching hospital and a tertiary university hospital and includ-

ed all adult (�15 years) patients. Multivariable logistic regression analysis was used to iden-

tify the clinical variables that best predicted the endpoint. From this, we developed a

simplified model that can be calculated without specialized tools or loss of predictive ability.

The outcome was defined as seven-day all-cause mortality. 76 patients (2.5%) met the end-

point in the development cohort, 57 (2.0%) in the first validation cohort, and 111 (4.3%) in

the second. Systolic blood Pressure, Age, Respiratory rate, loss of Independence, and pe-

ripheral oxygen Saturation were associated with the endpoint (full model). Based on this,

we developed a simple score (range 0–5), ie, the PARIS score, by dichotomizing the vari-

ables. The ability to identify patients at increased risk (discriminatory power and calibration)

was excellent for all three cohorts using both models. For patients with a PARIS score�3,

sensitivity was 62.5–74.0%, specificity 85.9–91.1%, positive predictive value 11.2–17.5%,
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and negative predictive value 98.3–99.3%. Patients with a score�1 had a low mortality

(�1%); with 2, intermediate mortality (2–5%); and�3, high mortality (�10%).

Conclusions

Seven-day mortality can be predicted upon admission with high sensitivity and specificity

and excellent negative predictive values.

Introduction
Emergency departments and admission units across the globe are experiencing a steady in-
crease in admissions.[1–4] Frontline personnel treating these patients must quickly assess the
severity of illness. However, clinical assessment and prognostication are difficult.

Although prognostication is key to treatment selection, it is not an integrated part of mod-
ern medicine,[5] and many physicians feel inadequately trained.[6] The lack of training in
prognostication adds to the importance of developing risk stratification systems that can assist
in estimating the prognosis for a patient and plan treatment and resource allocation according-
ly. Indeed, two studies on patients admitted to intensive care have shown that a high number
of patients received inadequate care before transfer, resulting in a potential increase in mortali-
ty.[7,8]

Triage is widely used when handling high-risk patients, but the goal of triage is resource al-
location,[9] not risk stratification. Several specific risk stratification systems have been intro-
duced.[10,11] However, most of these have been developed using inadequate methodology and
do not reach standards necessary for implementation in daily clinical practice.[10,11] For a sys-
tem to be clinically valuable, it has to be easy to use, have adequate performance, and show reli-
ability across groups of patients in various settings.[12]

Our objective was to develop a risk stratification system that, at admission, can accurately
predict seven-day mortality of acutely admitted medical patients using routinely collected vari-
ables easily obtained within the first few minutes after arrival.

Materials and Methods
We used multivariable logistic regression to identify the clinical variables that best predict
seven-day all-cause mortality. On the basis of this, we developed a simplified model that can be
calculated without special technology and without loss of performance (see Online-only
Material).

We have included only parameters that are easily recorded upon admission and validated
our models extensively. Only variables that provided a high prediction of outcome were includ-
ed in our model, without compromising performance and reliability.

Setting
This prospective observational cohort study consists of three independent cohorts. The devel-
opment cohort was collected at the medical admission units (MAUs) at Sydvestjysk Sygehus
from October 2008 through February 2009. The first validation cohort was collected from Feb-
ruary 2010 through May 2010, and the second validation cohort at the MAU at Odense Uni-
versity Hospital fromMarch 2011 through July 2011.
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Sydvestjysk Sygehus Esbjerg is a regional 460-bed teaching hospital in western Denmark
with a mixed urban and rural contingency population of 220 000. All subspecialties of internal
medicine, pediatrics, and general and orthopedic surgery and a 12-bed intensive care unit
(ICU) are present. Odense University Hospital is a 1300-bed, level 1 trauma center and a uni-
versity teaching hospital with all specialties present and a contingency population of 290 000
and serves as a tertiary referral center for 1.2 million people. All adult medical patients (age 15
and older) who are admitted through the MAU (cardiology, neurology, hematology, oncology,
and nephrology patients are admitted through other departments at Odense University Hospi-
tal) from all sources (ie, emergency department, family physician or out-patient clinic)
were included.

Variables
Before beginning inclusion of patients, we had selected nine potential independent variables
for inclusion based upon relevancy and practical concerns: loss of independence (LOI), systolic
blood pressure, age, peripheral oxygen saturation (SaO2), respiratory rate, level of conscious-
ness, temperature, pulse, and blood glucose. Upon admission, a nurse registered the first col-
lected vital signs as well as assessing LOI on a form, and the data were entered into an
electronic database. During data collection, all nurses were blinded to details of the study pur-
pose (i.e. precise endpoint and prioritized independent variables).

SaO2 was measured using the department’s electronic non-invasive equipment. To take the
fraction of inspired oxygen (FiO2) into account, we used the SaO2/FiO2 ratio suggested by Rice
et al.[13] and Pandharipande[14]. LOI was defined as an inability to get into bed without assis-
tance, either from a wheelchair or emergency department/ambulance gurney, regardless of pre-
vious status. Level of consciousness was recorded using the AVPU (defined as Alert, responsive
to Vocal stimuli, responsive to Pain, or Unresponsive) scale.[15,16]

Endpoint
The endpoint was all-cause seven-day mortality regardless of admission status, co-morbidity,
and “do not attempt resuscitation” orders. Data on the endpoint were extracted from the Dan-
ish Person Register[17] and retrieved after all patients were discharged. Foreign nationals
(n = 50; 0.6%) who were discharged alive were considered to be alive at the endpoint, even
though complete follow-up was impossible.

Ethics
The study was approved by the Danish Data Protection Agency and reported in accordance
with the STROBE statement.[18] Danish law does not require approval by the regional ethics
committee for observational studies.

Statistics
To reduce the risk of overfitting,[19–21] we required 10 events per independent variable, ie, 90,
to include all predefined variables. In case of fewer events, we needed to reduce the number of
independent variables. Before beginning analyses, we decided that LOI, systolic blood pressure,
age, and respiratory rate would remain, based on the existing literature. We determined that
blood glucose could be discarded (because it is easily lowered and increased), as could tempera-
ture because it can be measured in various ways (eg, tympanic, axillary, and rectal), which
could affect predictions.[22] If further variables were to be discarded, we prioritized level of
consciousness, peripheral oxygen saturation, and lowest, pulse.
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Both the full and the simple models were developed using only patients from the develop-
ment cohort. Both models were afterwards validated independently in the validation cohorts
using coefficients and scores as identified in the development cohort (see S1 Text).

Generation of the full model
We analyzed the association between the independent variables and the endpoint using uni-
variable analyses with a 25% significance level. The variables were included in a multivariable
logistic regression analysis with a 5% significance level. We tested for interaction, co-linearity
and deviation from linearity using fractional polynomials in the continuous variables.[23] To
minimize the impact of missing values, we used multiple imputation (data considered to be
missing at random)[24–26] in our main analyses and report these coefficients.

Generation of the simplified model
To develop a model that would be easy to use in clinical practice and make mental calculation
possible, we defined a simplified model by dichotomizing the continuous variables included in
the full model. The cutoff level for dichotomization was arbitrarily defined as the point at
which the mortality of each variable rose above 5%. Because SaO2/FiO2 is difficult to calculate
mentally, we defined the threshold as SaO2 below the 5% mortality level on room air or if the
patient received any supplementary oxygen.

Performance of the models
Discriminatory power (the ability to identify the participants at highest risk) for both the full
and simplified models was assessed using area under the receiver-operating characteristic
curve (AUROC).[27] Calibration (ie, the ability to correctly estimate risk of death) was tested
using the Hosmer-Lemeshow goodness-of-fit test[28] for the full model and Pearson’s χ2 good-
ness-of-fit test for the simplified model. To further explore the calibration of our simplified
model, we decided to replicate the method introduced by Seymour et al.[29] Briefly, we first
predicted the probabilities of the individual scores using logistic regression analysis and then
calculated the Hosmer-Lemeshow goodness-of-fit test.

Discriminatory power was considered to be excellent when AUROC was over 0.8,[28] and
calibration was considered acceptable when the goodness-of-fit test reached P>05.[28]

Sensitivity analysis
We planned an extensive set of sensitivity analyses. Our primary concern was missing data,
and we reran the analysis using list-wise deletion and imputation of the mean instead of multi-
ple imputation.[24–26]

Development of our full model was not automated and could potentially be affected by irra-
tional preferences. We performed an automated model development using stepwise regression
with backward elimination initially using both all nine potential independent variables and
only the prioritized variables (in case of too few events).

LOI is not widely used in risk stratification, and there is no generally accepted definition.
We thus tested two other markers, ie, inability to stand unaided[30] and inability to rise from a
chair unaided.[31]

Use of SaO2/FiO2 is new in this context. For this reason, we introduced the partial pressure
of O2 (PaO2)/FiO2 as an alternative, as suggested by Rice et al. and Pandharipande.[13,14]
PaO2 was estimated using linear regression.
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Our arbitrary choice of a 5% cutoff for the dichotomization in the simplified model was not
based on statistical calculation. As an alternative, we applied a 10% cutoff.

Last, we recalculated the simplified model under the assumption that missing values of the
variables in the score were normal, ie, that they had a score of 0.

Sample size and descriptive statistics
To define the sample size, we required 90 cases if we were to include nine independent vari-
ables.[19–21] With an estimated 3% mortality, we required 3000 cases in the
development cohort.

Data are reported as mean (standard deviation [SD]) or proportions whenever appropriate,
with the 95% confidence interval (CI) when applicable. Stata version 12.1 (Stata Corp LP, Col-
lege Station, Texas, USA) was used for analyses.

Results
We had 3046 admissions (2608 patients) in the development cohort; 2848 (2463 patients) in
the first validation cohort; 2561 (2210 patients) in the second validation cohort; and all were in-
cluded in the study. Seventy-six patients (2.5%) died within seven days from admission in the
development cohort, as did 57 patients (2.0%) in the first validation cohort and 111 (4.3%) in
the second. Patients who died had a higher age, pulse, blood glucose, and respiratory rate but a
lower systolic blood pressure, temperature, and SaO2/FiO2 while fewer were alert and more
had lost their independence. Characteristics of the admissions can be found in Table 1.

Development of the full model
We could, according to the number of outcomes (fewest in the first validation cohort), analyze
six independent variables and had, as previously stated, prioritized LOI, systolic blood pressure,
age, SaO2/FiO2, respiratory rate, and level of consciousness. All were associated with the end-
point in univariable analyses.

Using multivariable logistic regression, we found systolic blood pressure, age, respiratory
rate, SaO2/FiO2, and LOI to be associated with the endpoint whereas loss of consciousness was
not (see S1 Table). We did not identify interaction between variables and found no evidence of
deviation from linearity (see also S1 Text). The full model is presented in Table 2.

Development of the simplified model
Mortality rose above 5% when systolic blood pressure was�115 mmHg, age�80 years, respi-
ratory rate�25 breaths per minute, and SaO2 �93%. These limits, any use of supplementary
oxygen, and LOI were used as cutoffs in our simplified model, allowing for a score ranging
from 0–5 (Table 2). We named our simplified model the PARIS score, derived from systolic
blood Pressure, Age, Respiratory rate, loss of Independence and peripheral oxygen Saturation.

Sensitivity analyses
Our sensitivity analyses did not lead to improvement or major deviations from our models (see
S2, S3, S4 and S5 Tables).

Performance of the models
The discriminatory power was excellent (AUROC�0.87) and the calibration good for the full
model in all cohorts (Table 3). In the PARIS score, we found excellent discriminatory power
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(AUROC�0.86) in all cohorts, and calibration was acceptable in the first validation cohort but
failed in the second validation cohort (Table 3).

In the PARIS score, seven-day mortality increased with increasing score (Fig 1). With a
score of three or higher, sensitivity was 74.0%, specificity 85.9%, positive predictive value
11.9%, and negative predictive value 99.2% in the development cohort. Sensitivity was lower in
the validation cohorts, specificity was slightly higher, and the negative predictive value re-
mained high (Table 4). Patients with score�1 had mortality�1.1%; with 2, mortality was 1.9–
4.6%; and�3, mortality was�8.3% (S6 and S7 Tables).

Discussion
We have developed and validated a risk stratification system that can predict seven-day all-
cause mortality for acutely admitted medical patients. Using five easily obtainable variables (ie,

Table 3. Performance measures of the models, both discriminatory power (ability to identify patients
at increased risk) and calibration (precision in predictions).

Measure Full model Simplified model (PARIS score)

Discriminatory power

- Development cohort 0.87 (0.82–0.93) 0.86 (0.80–0.91)

- First validation cohort 0.90 (0.87–0.93) 0.87 (0.82–0.92)

- Second validation cohort 0.88 (0.84–0.91) 0.86 (0.82–0.90)

Calibration—Hosmer-Lemeshow goodness of fit

- Development cohort P = 0.97 P = 0.42

- First validation cohort P = 0.75 P = 0.74

- Second validation cohort P = 0.33 P<0.001

Pearson’s χ2 goodness of fit

- Development cohort - -

- First validation cohort - P = 0.42

- Second validation cohort - P<0.001

doi:10.1371/journal.pone.0122480.t003

Table 2. Results of model development for both the full and simplified models (PARIS score). For the
full model, we provide both exact coefficients and odds ratios.

Variable Full model,
coefficients

Full model, odds
ratios

PARIS score, cutoffs

Systolic blood pressure
(mmHg)-

-0.025 (-0.036–
0.014)

�115

Per 10 mmHg 0.78 (0.70–0.87)

Age (years) 0.024 (0.0059–
0.043)

�80

- Per 10 years 1.28 (1.08–1.53)

Respiratory rate (breaths/
min)

0.042 (0.0076–
0.077)

�25

- Per 5 breaths 1.23 (1.04–1.47)

SaO2/FiO2 (%/100) -0.0044 (-0.0071–
0.0017)

�93% (SaO2) or any
supplemental oxygen

- Per 50 (%/100) 0.80 (0.70–0.92)

Loss of independence
(yes/no)

1.6 (0.90–2.3) 4.96 (2.45–10.06) Yes

Intercept -2.2 (-4.6–0.091) - -

doi:10.1371/journal.pone.0122480.t002
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systolic blood pressure, age, respiratory rate, peripheral oxygen saturation [corrected for the
fraction of inspired oxygen], and LOI), we have shown that an important outcome can be pre-
dicted at the time of admission with high accuracy.

Use of risk stratification tools might help the clinician but is not without important limita-
tions. Statistics, chance, and human perseverance dictate that even the best risk stratification
system will not be completely accurate and patients predicted to be at low risk might eventually
die. This is one reason why authors have advocated that these systems should be used with cau-
tion on individual patients,[32–35] as our data remind us. Even with a cutoff of 1, two patients
in the development cohort would have been designated as low risk yet still died (Table 4).

Clinical assessment relying on experience alone is an interesting alternative to complex
models. However, clinical assessment alone has never been scientifically proven as a strong pre-
dictive tool in an admission unit. Data from other environments suggest that it has limitations.
Comparing a clinician gut feeling to clinical features (eg, medical history, observation, and clin-
ical examination), Van den Bruel et al. found that gut feeling could identify sick children
missed by clinical features at a cost of decreased specificity.[36] Asking attending physicians,
residents, and nurses to predict in-hospital mortality of medical ICU patients, Meadow et al.
found a high level of discordant predictions, and only 52% of the patients predicted to die actu-
ally died while 15% survived unexpectedly.[37] Our PARIS score is not perfect either. Use
without critical evaluation will lead to cases being missed. If the suggested cutoff of�3 is im-
plemented, 13–29 patients will be missed and 198–273 falsely identified. Development of more
accurate models is needed.

Compared to clinical experience, risk stratification systems have some advantages. First of
all, they are expected to have better intra- and inter-observer reliability because fewer parame-
ters are subject to interpretation. Second, they should have improved external validity because
they do not require exactly the same clinicians to be present at each institution to make the pre-
diction. Last, most scores can be calculated automatically once the staff has collected the infor-
mation. The predicted mortality could then be added to the overall picture and provide
another piece of the puzzle for the physician. At this point, we do not know to which degree
risk stratification systems supplement performance in clinical practice, and further studies
are warranted.

Table 4. Classification function of the simplified model (PARIS score). Data are specified for all three cohorts at a score�3, identified as the
optimal cutoff.

Score �1 Score �2 Score �3 Score �4 Score = 5

Development
cohort

Development
cohort

Development
cohort

First validation
cohort

Second
validation cohort

Development
cohort

Development
cohort

True positives 48 44 37 25 55 17 5

False negatives 2 6 13 15 29 33 45

True negatives 724 1305 1661 2023 1703 1859 1924

False positives 1210 629 273 198 259 75 10

Sensitivity 96 (86.3–99.5) 88 (75.7–95.5) 74 (59.7–85.4) 62.5 (45.8–
77.3)

65.5 (54.3–75.5) 34 (21.2–48.8) 10 (3.33–21.8)

Specificity 37.4 (35.3–39.6) 67.5 (65.3–69.6) 85.9 (84.3–87.4) 91.1 (89.8–
92.2)

86.8 (85.2–88.3) 96.1 (95.2–96.9) 99.5 (99.1–99.8)

Positive
predictive value

3.82 (2.83–5.03) 6.54 (4.79–8.68) 11.9 (8.54–16.1) 11.2 (7.4–16.1) 17.5 (13.5–22.2) 18.5 (11.1–27.9) 33.3 (11.8–61.6)

Negative
predictive value

99.7 (99.0–
100.0)

99.5 (99.0–99.8) 99.2 (98.7–99.6) 99.3 (98.8–
99.6)

98.3 (97.6–98.9) 98.3 (97.6–98.8) 97.7 (97.0–98.3)

doi:10.1371/journal.pone.0122480.t004
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We provide two models, a complex (full) model with a precise prediction of mortality and a
simplified model with a score for seven-day mortality (the PARIS score). Both models have
their place in a MAU. The full model, although precise, is difficult to calculate and requires
computational support. Discriminatory power is excellent and calibration good even in an ex-
ternal environment. We believe that the full model is best suited for research purposes (eg,
comparing cohorts). The PARIS score can easily be calculated mentally. Discriminatory power
is excellent, but calibration in an external environment was not perfect. However, increasing
mortality follows increasing scores (Fig 1), and we believe that the PARIS score can be used as
an additional tool in identifying patients at increased risk of poor outcome.

The external validity of our models is good. We included all patients admitted, not only pa-
tients thought to be of either high or low risk or other select characteristics. Our models have
been through rigorous statistical analyses and, most important, validated externally. Our sec-
ond validation cohort is a completely independent sample from an institution far removed
from our own, not only geographically but also in time and in terms of case-mix. In both vali-
dation cohorts, the nursing staffs were given a short written and oral introduction to the vari-
ables assessed and were fully able to register the necessary information. To further test the
generalizability of our score, dr. John Kellett of Nenagh Hospital in Ireland has kindly validated
our simplified score. He found a discriminatory power of 0.803 and acceptable calibration
(p = 0.08) in an Irish sample and a discriminatory power of 0.714 and good calibration
(p = 0.27) in a Ugandan cohort from Kitovu Hospital (personal communication).

The difference in case-mix (ie, mortality) between the two institutions would serve to ex-
plain the differences in negative and positive predictive values (as well as calibration) in the sec-
ond validation cohort. With mortality almost twice as high (for multifactorial reasons, eg,

Fig 1. Score and seven-day mortality in the simplified model (PARIS score) in all three cohorts, P for trend within cohorts <0.001. Approximately
1000 patients had a score of 0; 800 a score of 1; 500 a score of 2; 250 a score of 3; 70 a score of 4; and 10 a score of 5 in the three cohorts.

doi:10.1371/journal.pone.0122480.g001
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access to outpatient evaluation, proportion of urban population, and decision to admit made
by attending rather than resident physicians), this scenario is expected.

Our study has limitations and weaknesses. First, we were affected by missing data (especially
LOI and respiratory rate), and to compensate, we used multiple imputation. However, our ex-
tensive sensitivity analyses proved that this was not a problem. Second, we had a limited case-
mix because we have evaluated our models only on medical patients. However, within this
spectrum, our models have proven to be reliable although they still must be tested on surgical
patients. Also, our first two cohorts are very similar. Only the second validation cohort differs
significantly. Therefore, further validation in lager groups of medical patients is warranted.
Third, use of LOI is unconventional. It is not routinely documented, but we decided to include
it regardless because previous studies have shown that its inclusion improves models.[10]
Fourth, our model is limited by not including specific variables on co-morbidity and physical
capacity. To compensate, we added LOI as this can be seen as a general marker of capability.
Last, we have not assessed inter-observer reliability of our models or tested reproducibility.

From a patient, clinician, and organizational perspective, a risk stratification model has no
meaning in itself. The true value lies in its ability to guide the clinician to deliver improved
care. The optimal measure would be reduced seven-day mortality after implementation, but we
have not performed an impact analysis; therefore, we still need to test whether our model will
improve patient care.

Conclusions
We have shown and validated that seven-day all-cause mortality can be predicted with excel-
lent discriminatory power and acceptable calibration upon admission for acutely admitted
medical patients. Before our models should be used in clinical practice, there still is a need for
further independent validation studies as well as a randomized trial to evaluate patient out-
come when the scoring system is used.
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