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Abstract
Geographic genetic differentiation measures are used for purposes such as assessing 
genetic diversity and connectivity, and searching for signals of selection. Confirmation 
by unrelated measures can minimize false positives. A popular differentiation meas-
ure, Bray-Curtis, has been used increasingly in molecular ecology, renamed AFD 
(hereafter called BCAFD). Critically, BCAFD is expected to be partially independent 
of the commonly used Hill “Q-profile” measures. BCAFD needs scrutiny for potential 
biases, by examining limits on its value, and comparing simulations against expecta-
tions. BCAFD has two dependencies on within-population (alpha) variation, undesir-
able for a between-population (beta) measure. The first dependency is derived from 
similarity to GST and FST. The second dependency is that BCAFD cannot be larger 
than the highest allele proportion in either location (alpha variation), which can be 
overcome by data-filtering or by a modified statistic AA or “Adjusted AFD”. The first 
dependency does not forestall applications such as assessing connectivity or selec-
tion, if we know the measure's null behavior under selective neutrality with specified 
conditions—which is shown in this article for AA, for equilibrium, and nonequilibrium, 
for the commonly used data type of single-nucleotide-polymorphisms (SNPs) in two 
locations. Thus, AA can be used in tandem with mathematically contrasting differen-
tiation measures, with the aim of reducing false inferences. For detecting adaptive 
loci, the relative performance of AA and other measures was evaluated, showing that 
it is best to use two mathematically different measures simultaneously, and that AA 
is in one of the best such pairwise criteria. For any application, using AA, rather than 
BCAFD, avoids the counterintuitive limitation by maximum allele proportion within 
localities.
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1  |  INTRODUC TION

Comparisons of biodiversity between regions are important aspects 
of understanding both ecological and genetic systems. There are 
many geographic differentiation measures, used for purposes such 
as assessing genetic diversity and connectivity (Gruber et al., 2018; 
Guillot et al.,  2005; Manni et al., 2004; Meirmans, 2020; Sherwin 
et al.,  2017, 2021) and searching for signals of different selective 
regimes geographically, which is expected to have high false-positive 
rates (Bierne et al.,  2013; Lotterhos & Whitlock,  2014; Narum & 
Hess, 2011; Schneider et al., 2021; Xiang-Yu et al., 2016). Because 
of the anticipated high false-positive rates, it is important to con-
firm findings using a wide range of mathematically unrelated mea-
sures. Often these measures are chosen from the Hill “Q-profile,” 
which includes: counts or sharing of allelic types (Q = 0 measures); 
Shannon information and differentiation (Q = 1); and heterozygos-
ity, nucleotide diversity, Gini-Simpson, GST, FST, Morisita-Horn, DEST 
(Q = 2) (Chao et al., 2014; Gaggiotti et al., 2018; Jost, 2008; Jost 
et al., 2010; Sherwin et al., 2017, 2021). However, despite their dif-
ferent sensitivity to some matters, such as rare and common alleles, 
the members of the Q-profile are all mathematically related (Sherwin 
et al., 2017, 2021).

Notably, one recent addition to the range of measures in molec-
ular ecology is outside the Hill Q-profile: the Bray–Curtis index of 
dissimilarity, a method of assessing differentiation that is extremely 
popular in its original use, to assess differentiation between species 
assemblages (Bray & Curtis, 1957). During 2021 alone, Bray-Curtis 
was mentioned over 10,000 times in Google Scholar. Bray-Curtis 
can be expressed in a way that facilitates comparison with differ-
entiation measures derived from Hill numbers; the mathematical 
equivalence to other formulations of Bray-Curtis is documented in 
(Chao & Chiu, 2016; Jost et al., 2010; Ricotta et al., 2021; Ricotta & 
Pavoine, 2022; Ricotta & Podani, 2017).

where a1j and a2j are the abundances (counts or frequencies 0 ≤ a ≤ ∞ ) 
in each of two locations (1,2), for variant j (1 ≤ j ≤ S) and S is the total 
number of species. This measure satisfies many of the requirements 
of a good measurement of differentiation between assemblages (Chao 
& Chiu, 2016; Magurran, 2004; Ricotta & Podani, 2017). This index is 
also used for analysis of operational taxonomic units in metagenomics 
(Peng et al., 2020).

Unification of ecological and genetic approaches is desirable, be-
cause of their interaction as parts of the same biological systems, 
and because of their underlying mathematical similarities (Rosindell 
et al., 2015; Sherwin, 2018), so it is good to see that a simplified 

version of Bray-Curtis has been proposed as a measure of differen-
tiation in molecular ecology and evolution (Berner, 2019a, 2019b; 
Shriver et al., 1997), echoing a similar measure in community ecol-
ogy (Whittaker, 1975) (p 118). It was renamed “allele frequency dif-
ference” AFD, but I will call it BCAFD, in deference to its original 
proponents, and because it is a difference of proportions (0 ≤ p ≤ 1) 
rather than frequencies (0 ≤ a ≤ ∞). In the two-variant two-location 
case, Bray-Curtis simplifies to the unsigned difference between lo-
cations 1 and 2 of proportions of either of the two allelic variants 
(Berner, 2019a, 2019b).

where p1 = a1 ∕
(
a1 + a2

)
 and q1 = 1 − p1, and similarly for the other 

location p2 and q2. When there are multiple alleles, it is suggested to 
use the sum of the absolute allele proportion differences divided by 
two ([Berner,  2019a], Table S1), which actually is equivalent to the 
more general Equation  (1). However, unless otherwise stated this ar-
ticle will deal with the biallelic case which is very common in current 
molecular ecology—SNPs or single-nucleotide polymorphisms.

In the molecular ecology literature, BCAFD has been used or men-
tioned many times since Berner's publications (Berner, 2019a, 2019b), 
including for assessment of population differentiation in time or 
space, with implications for likely genetic connectivity (Amos, 2021; 
Lou et al., 2021; Popovic et al., 2021; Subramanian, 2021; Taylor 
et al., 2021; Weldekidan et al., 2022; Wolf et al., 2021), as well as 
identifying candidate adaptive loci by their strong differentiation 
relative to other presumably neutral loci (Bharti et al., 2021; Boyle 
et al., 2021; Haenel, Guerard, et al., 2021; Haenel, Oke, et al., 2021; 
Price et al., 2020; Yin et al., 2021; Zhou et al., 2021).

For applications including selection detection and assessment of 
connectivity between locations, it is critical to know the measure's 
null behavior, that is, in the absence of selection (“neutrality”), with 
specified conditions such as population size, dispersal, and muta-
tion (Bierne et al., 2013; Gruber et al., 2018; Guillot et al.,  2005; 
Lotterhos & Whitlock, 2014; Manni et al., 2004; Meirmans, 2020; 
Narum & Hess, 2011; Schneider et al., 2021; Sherwin et al., 2017, 
2021; Xiang-Yu et al., 2016). Despite not belonging to the Hill Q-
profile, BCAFD appears to have some mathematical relationship to 
two of the Hill measures: GST and FST (Appendix 1). Therefore, based 
on forecasts for those two measures, it will be shown that it is pos-
sible to develop forecasts for BCAFD for two-location, two-variant 
systems such as single-nucleotide polymorphisms (SNPs).

All diversity measures must be scrutinized for their particu-
lar properties (Leinster & Cobbold, 2012; Leinster,  2021; Sherwin 
et al., 2017; Sherwin et al., 2021). An important property of differ-
entiation measures is independence between alpha (within location) 
variation, beta (between location) differentiation, and total (gamma) 

(1)Bray − Curtis =

∑S

j=1

���a1j − a2j
���

∑S

j=1

�
a1j + a2j

�

(2 and A1.1)BCAFD = ∣ p1 − p2 ∣
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variation (Chao et al., 2014; Gaggiotti et al., 2018; Jost, 2008; Jost 
et al., 2010; Leinster, 2021; Sherwin et al., 2017; Sherwin et al., 2021). 
Critically, GST and FST are well-known to have the serious limitation of 
being heavily influenced by within-location variation (alpha), some-
thing that is not desirable in a between-location (beta) differentia-
tion measure. Although FST was explicitly proposed as a measure of 
between-subgroup differentiation (Wright, 1943) and has been used 
for that extensively, unlike some other Hill-profile measures, FST 
shows strong dependence on alpha within-locality diversity, as does 
the related measure GST (Jost,  2008; Meirmans & Hedrick,  2010; 
Nei, 1977, 1973). Because of its relationship to GST and FST, it is likely 
that there will be dependency of BCAFD on alpha variation.

Another dependency of BCAFD on alpha variation is that it is ob-
vious from Equation  (2) that BCAFD can never be larger than pmax, 
the higher of the two allele proportions, p1 and p2. In other words, 
if either p1 or p2 is zero, then the value of Bray-Curtis will be equal 
to the other, more abundant, proportion. Of course, the values p1 
and p2 are within-location proportions of one of the two alleles—a 
within-population (alpha) measure. This is an extremely counterintu-
itive limitation on a between-location (beta) differentiation measure, 
and is expected to result in biased values. This might be particularly 
important when using the measure to search for loci that experience 
different directions of selection in different locations, because this 
difference of selective regime will obviously give a signal of large 
differentiation values between locations, relative to other neutral 
loci. As a result, the truncation of large values of BCAFD due to pmax 
might be expected to reduce the ability to distinguish such adaptive 
loci from neutral loci.

The confounds with alpha variation due to relationship to GST, 
and restriction by maximal allele proportion pmax, require examina-
tion in this article; however another possible confound does not 
appear to be of concern. As well as the proportions of variants, a 
between location (beta) differentiation measure can be confounded 
by the number of variant types. This confound can be avoided by 
restriction to two-variant systems such as SNPs, as is done in this 
article. Also, it does not appear to be a problem for the multiallelic 
version of BCAFD (Equation (1), also [Berner, 2019a] Table S1). When 
there is maximal differentiation, that is, no alleles shared between 
locations, one expects to always get the maximal value for the ge-
netic differentiation statistic. This in fact does happen. For example, 
if there are four alleles w, x, y, and z, with w and x in location 1, and 
the other two in location 2, so that p1w = p1x = p2y = p2z = 0.5, and 
other proportions are equal to zero, then the multiallelic statistic is 
equal to BCAFD = 1.0. Also, if location 1 only has allele w, and the 
other three alleles are in location 2, with p1w = 1; p2x = p2y = p2z =

1

3
 , 

then the multiallelic statistic remains BCAFD = 1.0, as expected for 
the same situation of maximal differentiation (no shared alleles).

Irrespective of these confounds, it should be noted that the 
alpha-dependency of GST ∕FST does not forestall all use of these mea-
sures, provided that we know their behavior under selective neutral-
ity with specified conditions such as population size, dispersal, and 
mutation (Bierne et al., 2013; Gruber et al., 2018; Guillot et al., 2005; 
Lotterhos & Whitlock, 2014; Manni et al., 2004; Meirmans, 2020; 

Narum & Hess, 2011; Schneider et al., 2021; Sherwin et al., 2017, 
2021; Xiang-Yu et al., 2016). With this in mind, and responding to the 
increased use of BCAFD in molecular ecology described above, this 
paper carries out the following tasks:

•	 It creates a modified version of BCAFD termed AA (“Adjusted 
AFD”) that is corrected for the limitation by pmax.

•	 Forecasts are made and tested, for Bray-Curtis (BCAFD) and AA, 
for selectively neutral biallelic SNPs—a very common data type 
at present—under various scenarios of population size, mutation, 
and dispersal. This will allow BCAFD, and especially AA, to be used 
for evaluating competing models of population connectivity, mak-
ing projections for the future, or identifying outlier loci whose dif-
ferentiation level departs from neutral expectations, and so are 
candidate adaptive loci.

•	 Simulations are performed to investigate how the AA correction 
for bias performs in detecting loci under directional selection, 
in comparison to competing measures, or in consort with those 
measures.

2  |  MATERIAL S AND METHODS

Forecasting equations for Bray-Curtis were developed for the com-
mon and simple case of a single neutral biallelic SNP locus, with two 
locations (1,2); the measure can be averaged over multiple loci, and 
can be applied to haploids, or to diploids in Hardy–Weinberg equi-
librium (i.e., no population-wide correlation between the two alleles 
within diploid genotypes). When there are only two variants, the 
Bray-Curtis equation is: BCAFD = ||p1 − p2

|| (Berner,  2019a, 2019b) 
(Equation 2, above) where p1 and p2 are proportions of one of the 
two alleles at each location (q1 = 1 − p1; q2 = 1 − p2).

The quantity in Equation  (2) is a transform of two well-known 
differentiation measures (Halliburton, 2004; Wright, 1943):

where �2
p
 is the variance of p between locations, H is the Hardy–

Weinberg (Binomial) expected heterozygosity, for example, 
HT = 1 − p2 − q2;H1 = 1 − p2

1
− q2

1
; and p is the average p over the two 

locations (1,2); q = 1 − p. The measures GST and FST in Equation (3) are 
identical in the two-allele, two location case ([Halliburton, 2004] Box 
9.5). Appendix 1 shows that

Because of its close relationship to G ST or F ST, BCAFD fore-
casts can be based on well-known forecasts for those measures 
(Appendix 1). The expectation for diploid BCAFD at drift-dispersal-
mutation equilibrium is:

(3 and A1.2)GST =
[
HT − H1,H2

]
∕HT ≈ FST = �

2
p
∕pq

(4 and A1.4)BCAFD2
= 4pqGST = 2HTGST

(5 and A1.7)BCAFD =

√
2 2D − 2

2D(1 + 8N(2m + �))
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where m is symmetrical dispersal between the two locations (0 ≤ m ≤ 1); 
μ is the rate of mutation (0 ≤ μ ≤ 1); N is the effective population size at 
each location (identical); and 2D is the second order Hill diversity, or 
effective number of alleles 2D = 1∕

(
1 − HT

)
.

The equivalent equation for the haploid SNPs simulated in this 
article is:

The performance of these equations was assessed by simulation 
of biallelic neutral single-nucleotide polymorphisms (SNPs) in two 
haploid subpopulations, for a wide range of scenarios covering all 
possible combinations of three symmetric dispersal rates (m = 0.01, 
0.03, 0.1) and three subpopulation effective sizes (N = 1000, 10,000, 
100,000). Starting allele proportions in each subpopulation (p val-
ues) were randomized in each replicate. Simulations used the typical 
SNP mutation rate (μ = 10−9), but essentially identical results were 
obtained with rates between μ  =  10−6 and 10−12. The simulation 
was programmed in MATLAB, and full details are in Appendix 2, and 
Dewar et al.  (2011). There were 1000 replicate iterations of each 
scenario, which could also be considered as 1000 independently in-
herited loci (i.e., in linkage equilibrium). Each iteration was run for 
200 generations, and each generation included stochastic binomial 
sampling of the parents' alleles to establish the allele proportions 
for the offspring, followed by symmetrical dispersal to create the 
parent populations for the next generation. Because the forecasts 
are for drift-dispersal-mutation equilibrium, it is important to know 
whether the simulations had reached equilibrium. The adequacy of 
the run-time of 200 generations was confirmed in three ways, de-
tailed in Appendix 2: 200 generations was several times longer than 
the expected time to half-equilibrium values; inspection ensured an 
asymptote to a stable value for BCAFD; and the variance of BCAFD 
between-generations was much lower than variance between repli-
cate iterations (typically one tenth or less). The performance of the 
simulation was checked by comparison with results of EASYPOP 
(Balloux, 2001) and with known predictions for GST (see Appendix 2 
for details).

To assess whether the expectation from Equation (6) was an ad-
equate forecast of BCAFD, BCAFD was calculated at the final gener-
ation, then linear regression was used (in EXCEL). If the expectation 
from Equation (6) is accurate, it is expected that a regression of the 
simulated BCAFD against the expected BCAFD should have a slope 
of unity and an intercept of zero. Additionally, alpha-dependence 
was assessed, and possible corrections suggested, including an ad-
justed measure AA that has no limitation by pmax.

In other investigations, I examined the relationship between 
BCAFD and three other differentiation measures: GST, DEST, and 
mutual information, I (Sherwin et al., 2017, 2021). I also examined 
whether the forecasts could be made completely independent of 
within-location variation. Finally, I produced nonequilibrium fore-
casts, suitable for situations where there has been recent distur-
bance to connectivity, for example.

Simulations were used to investigate the effect of the adjusted 
measure AA on detectability of loci under different directional 
selection in each population. These simulations were identical to 
the ones described above, with two alterations. First, the simu-
lations were restricted to large population size and low dispersal 
(N  =  100,000, m  =  0.01). Second, selection was simulated each 
generation by, in one location, increasing the number of surviv-
ing progeny of one genotype by multiplying by a factor of 1 + s/2, 
and decreasing the same genotype by 1 − s/2 in the other location 
(s  =  0.001, 0.003, 0.005, 0.05). The highest selection strength 
(s  =  0.05) would be expected to result in very high differentia-
tion after the 200 generation simulation period. At the final 
generation, the program calculated the genetic differentiation 
measures: AA; BCAFD; GST; DEST (Jost, 2008); and mutual informa-
tion I  (Sherwin et al., 2017, 2021). For each measure, I tallied the 
percentage of loci (out of 1000 simulated) that would be identified 
as outliers (i.e., potentially under selection) using the “univariate” 
criterion that their genetic differentiation values were in the top 
1% of the 1000 loci simulated without selection in a parallel neu-
tral simulation, separately for each one of the five differentiation 
measures. As well as those univariate criteria, the same analysis 
was repeated using a series of more restrictive “bivariate” criteria, 
that is, that for a locus in the selection simulation to be identified 
as an outlier, it was required to have differentiation in the top 1% 
of neutral loci for each of a pair of the differentiation measures 
listed above. For each of these diagnoses (univariate or bivariate), 
the true positive (TP) was the number of loci known to be under 
selection that were actually identified as being under selection, 
out of the total of 1000 independent loci simulated with selec-
tion. The false positive (FP) was the number of loci identified as 
being under selection in the parallel neutral simulation, again of 
1000 loci; with the univariate criteria this of course must be 1%of 
1000 = 10 loci, but the bivariate criteria are expected to be more 
restrictive, giving lower FP. Then I calculated a performance value 
separately for each strength of selection. The performance value 
is the percentage of loci that are true positive, out of all loci that 
were identified as outliers potentially under selection (TP + FP); 
in the case that 1% of all loci were under that selective regime, 
and all other loci were neutral, the calculation is 100 × (TP × 0.01)/
[(TP × 0.01) + (FP × 0.99)]. Of course, the proportions of neutral 
and selected loci would not be known beforehand, but given that 
the analysis is standardized to a constant univariate FD rate, the 
performance values can be used to compare the performance of 
the different criteria.

3  |  RESULTS

Trials of Equation  (6) used the data from the haploid simula-
tion program described above. Figure  1a shows simulated BCAFD 
(Equation 2), calculated for all 9000 datapoints (nine scenarios × 1000 
replicates) regressed against algebraic predictions (Equation  6) of 
BCAFD for each replicate in each scenario (again 9000 points). The 

(6 and A1.8)BCAFD =

√
2 2D − 2

2D (1 + 4N(2m + �))
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predictions have to be made separately for each replicate because 
the stochastic nature of the simulations results in each replicate hav-
ing a different final value for 2D, which is used in Equation 6. Five 
things are apparent in Figure 1a:

•	 there are distinct clumps of points, which identify limits when 
p = q = 0.5 so that 2D = 2, which gives maximum expected BCAFD 
values of 0.035 when Nem ≥ 100, 0.064 when Nem = 30, and 
0.111 when Nem = 10 (Equation 6).

•	 there appears to be an oblique upper bound to the scatter of 
points from the 1000 replicates of each scenario; this will be dis-
cussed later.

•	 Despite the scatter of replicates, there is an extremely good re-
gression of simulated BCAFD on predicted BCAFD (significance P 
was extremely low—assigned to zero by the program, see caption 
of Figure 1a). Note that the scatter is not unexpected given that 
the initial allele proportions were randomized.

•	 the intercept is extremely close to zero, as expected
•	 however, the slope is slightly below the expected 45-degree 
line for perfect prediction, with a slope of 0.83, see caption of 
Figure 1a; the 95% confidence limits for the slope were 0.81 to 
0.85, so that the limits did not include the expected unity.

In the introduction it was pointed out that the value of BCAFD is 
restricted by the maximum p value pmax in either of the two locations, 
at the generation where BCAFD is calculated. This is a potential rea-
son for the oblique upper bound for the observations in Figure 1a. 
To Investigate this, the regression of simulated BCAFD on expected 
BCAFD was repeated on ten subsets of the 9000 datapoints, subdi-
vided by the final value of pmax, the maximum p in either of the two 
locations. Results in Table 1 show that the departure from a 1:1 slope 
is indeed due to the restriction by pmax. The bottom two rows of this 
table are where there is the least constraint on simulated BCAFD 
values (0.8 ≤ pmax ≤ 0.899 and 0.9 ≤ pmax ≤ 1), and in these two cases 
the slope of the regression of simulated BCAFD on expected BCAFD 
is indeed unity as expected. The slope of this regression decreases 
linearly when it is more constrained, that is, with lower pmax values 
(Table 1 and Figure 2).

There are two possible corrections for this dependency on maxi-
mum p value. First, the data could be filtered to only include loci with 
very high maximum p values (0.8 ≤ pmax ≤ 1, Table 1, Figure 2), but of 
course this would greatly reduce the usable data. Second, because 
the regression in Figure 2 is very linear, one can correct the expecta-
tions for the effect seen in that figure, where

(coefficient of simulated BCAFD on expected BCAFD)  = 0.6152 + 
0.3985 × pmax, so that we create a modified version of BCAFD, called 
“AA” which is free of dependence upon pmax : 

We then find that the forecasts are general for all values of pmax , 
for haploid:

or the same for diploid loci in Hardy–Weinberg equilibrium, replacing 
4N with 8N:

Figure 1b shows the plot of AA (i.e., BCAFD adjusted to compen-
sate for limitation by pmax) plotted against the expectations from 
(Equation 8). This regression shows the expected slope of unity and 
intercept of zero, demonstrating that the simulation confirms the 
haploid prediction for AA in Equation (8), including for each individ-
ual scenario (Figure 1c).

There are nonlinear relationships between AA and three other dif-
ferentiation measures: GST, DEST, and mutual information, I, as was sug-
gested by a previous investigation of BCAFD (Berner, 2019a, 2019b) 
(Figure 3). This shows that AA provides information that is not linearly 
dependent on these other measures, which is important when using 
multiple measures for confirmation of results such as assessment of 
connectivity, and searches for loci potentially under selection.

As well as the equilibrium forecasts just described, it is important 
to have nonequilibrium forecasts for AA, which will often be relevant 
in many situations, including recently disturbed populations; non-
equilibrium forecasts are shown in Equation (A1.11b).

It was also investigated whether the dependence of BCAFD 
on within location (alpha) variation could be fixed by basing the 
expectations for BCAFD not on GST, but upon G"ST (Meirmans 
& Hedrick,  2010). Unlike GST, G"ST is free of influence of within-
population variation. In Equation (A1.14), it can be seen that this new 
formulation of BCAFD is still heavily dependent upon heterozygosity 
H, including the within population (alpha) measures H1 and H2.

With the false detection of selection held constant at 1%, the im-
portant matter is the performance value: what percentage of loci that 
are classified as outliers, due to their differentiation value surpassing 
the univariate or bivariate criterion, are actually under selection—the 
true positives (TP). For a wide range of selection strengths, Table 2 
shows the performance values for each univariate criterion (a sin-
gle differentiation measure), and each bivariate criterion (i.e., an 
outlier locus must surpass the cutoff value for two differentiation 
measures). Of course, with the strongest selection (s = 0.05), all cri-
teria performed well, but with very weak selection (s = 0.001), there 
was poor performance. The right-hand column of Table  2 shows 
the performance averaged over all selection strengths, which had 
similar rankings for the performance of the criteria. The univariate 
criteria did not perform as well as the bivariates, with no overlap of 
mean performance ±1 × SE. Within the univariates, there was simi-
lar performance for all criteria, but when averaged over all selection 
strengths, the three best performers were AA, I , and GST. Within the 
bivariate criteria again there was similar performance for all criteria. 
Nevertheless consistently the three best performers were “DEST & I  ,” 
tied with “DEST & GST,” followed by “

AA & GST.”

(7)AA =
BCAFD(

0.6152 + 0.3985 × pmax
) =

||p1 − p2
||(

0.6152 + 0.3985 × pmax
)

(8)AA=
||p1−p2

||(
0.6152+0.3985×pmax

) =

√
2 2D−2

2D(1+4N(2m+�))

(9)AA=
||p1−p2

||(
0.6152+0.3985×pmax

) =

√
2 2D−2

2D(1+8N(2m+�))
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4  |  DISCUSSION

Science progresses by making forecasts under given conditions, 
then testing to see whether these conditions are confirmed by 
the data. Examples include assessing levels of dispersal by identi-
fying whether neutral loci depart from expectations for isolation 

or panmixia, and testing for loci that may be responding to geo-
graphically variable selection, by identifying whether genetic dif-
ferentiation is higher than neutral expectation (“outlier loci,” (Bierne 
et al.,  2013; Lotterhos & Whitlock,  2014; Narum & Hess,  2011; 
Schneider et al., 2021; Xiang-Yu et al., 2016)). Unfortunately, there 
are expected to be many false results in such molecular ecological 
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methods (Bierne et al., 2013; Lotterhos & Whitlock, 2014; Narum 
& Hess, 2011; Schneider et al., 2021; Whitlock & McCauley, 1999; 
Xiang-Yu et al., 2016). Therefore, it is advisable to confirm conclu-
sions by methods that are mathematically independent or at least 
partially independent. Figure  3 shows that AA = 

||p1 − p2
||(

0.6152 + 0.3985 × pmax
) 

(Equation 7) provides information that is not linearly dependent on 
three other differentiation measures: GST, DEST, I, as previously sug-
gested by an investigation of BCAFD (Berner, 2019a). AA is therefore 
complementary to GST, DEST, I, and other measures (discussed below), 

and so it is a useful addition to our range of genetic differentiation 
measures, able to provide at least partly independent validation of 
results.

The forecasts in Equations (8) and (9) for AA can now be added 
to the armory of null expectations in assessment of connectivity and 
searches for loci under selection, because the forecasts for AA are 
very accurate in simulation results for the common data type of neu-
tral biallelic SNPs, over a wide range of dispersal rates and effective 
population sizes (Figure 1b,c). If researchers do wish to use BCAFD 
and still achieve this accuracy, the researchers need to filter so that 
they use only those loci with maximum allele proportion (in either 
of the two locations) in the range 0.8 to unity, thus losing much of 
their dataset.

It is worth noting that AA (and BCAFD) are still dependent upon 
other aspects of within-locality alpha-variation, because of their 
relationship to GST and FST. It was not possible to remove this de-
pendence by basing the expectations for AA upon G"ST (Meirmans & 
Hedrick, 2010) (Equation A1.14); moreover, such a correction would 
considerably complicate the derivation of theoretical expectations 
for AA or BCAFD, such as Equations (8) and (9). However, the alpha-
dependence is not fatal; despite their alpha-dependence, GST and FST 
are frequently used in various ways, including assessing connectiv-
ity and searching for loci under geographically variable selection. 
Moreover, under some conditions GST and FST have performance 
comparable or better than other measures (Schneider et al., 2021). 
Nevertheless, like all such methods, there are expected to be many 
false-positives, so that corroboration with semi-independent assess-
ments is needed (Bierne et al., 2013; Lotterhos & Whitlock, 2014; 
Narum & Hess, 2011; Schneider et al., 2021; Xiang-Yu et al., 2016), 
which is where AA might be used.

The neutral forecasts for AA can be used either to make biological-
inventories of differentiation between locations (or times), or to be 
compared to observations in order to assess biological processes that 
underlie all biology, and are the processes which some conservation 
initiatives aim to conserve (Anonymous, 1988). Processes to be in-
vestigated include population size, mutation, and dispersal in natural 
or managed systems, or searches for outlier loci that depart from 
neutral expectations, and are thus candidate adaptive loci, which of 
course are very important in evolution and conservation (Teixeira & 
Huber, 2021). Candidate adaptive loci are identified because they 
depart from neutral forecasts, as is commonly done with GST, FST, and 

TA B L E  1 The effect of pmax on forecasts for BCAFD

Central 
pmax R2

P for 
significance Intercept

Slope 
coefficient 
(95% CL)

0.05 .465 1.0 × 10−131 +0.0008 0.630258 
(0.59–0.67)

0.15 .444 1.7 × 10−111 +0.0020 0.673769 
(0.62–0.72)

0.25 .420 2.3 × 10−104 +0.0022 0.713834 
(0.66–0.77)

0.35 .456 8.2 × 10−118 +0.0007 0.79615 
(0.74–0.85)

0.45 .414 2.2 × 10−106 +0.0024 0.766259 
(0.71–0.83)

0.55 .482 4.5 × 10−126 +0.0001 0.849727 
(0.79–0.91)

0.65 .569 7.4 × 10−158 −0.0015 0.900086 
(0.85–0.95)

0.75 .482 2.8 × 10−128 −0.0008 0.824037 
(0.77–0.88)

0.85 .538 1.6 × 10−151 −0.0020 0.947642 
(0.89–1.01)

0.95 .586 2.1 × 10−201 −0.0023 1.042645 
(0.99–1.10)

Note: The 9000 data points from Figure 1a, sorted by pmax in the final 
generation. In the first column, “Central pmax = 0.05” identifies the 
points with 0 ≤ pmax ≤ 0.099, etc. The remaining columns show the 
results of regression analysis of (Simulated-BCAFD) against (Predicted-
BCAFD from Equation 6) for the subset of the datapoints identified in 
the left column. All regressions showed an intercept very close to zero, 
as expected. Large numbers of significant digits are retained in the 
slope coefficients because of their subsequent use in the analysis in 
Figure 2, where the coefficients are plotted against central pmax values.

F I G U R E  1 (a) Comparison of simulation results with algebraic predictions for BCAFD; 9000 points from the 1000 replicates of each 
of nine neutral scenarios (effective size N = 1000, 10,000, 100,000, dispersal rate m = 0.01, 0.03, 0.10) and with regression equation 
(Simulated-BCAFD) = 0.83 × (Predicted-BCAFD from Equation 6) (significance P <<0, R2 = .50, intercept negligibly different from zero: 
−7.6 × 10−5). The black line is the regression line; the red line is the expected 1:1 relationship. (b) The same data again, using the correction for 
the limitation by maximum p, that is a plot of AA = |p1 –p2|/(0.6152 + 0.3985 × pmax) against the expectation shown in Equations (6) and (8). In 
this case, the expected 45-degree plot is achieved exactly, with the expected slope of unity (slope coefficient = 1.00, 95% confidence limits 
0.98 to 1.02, significance P <<0, R2 = 0.50, intercept negligibly different from zero: 0.0004). The red line for 1:1 slope is exactly coincident 
with the regression line. (c) The nine scenarios from (b) plotted individually—comparison of simulation results with algebraic predictions, 
using AA, the correction for the limitation by maximum p. Each panel shows 1000 points from the 1000 replicates of one scenario, whose 
dispersal rate m and effective size N is shown in the panel's headline. The slopes of regression lines are shown on the panels, with 95% 
confidence intervals, which included unity in all except two marginal cases, and are therefore each concordant with the overall result shown 
in (b) and the relationship in Equation (8). In all cases, the intercept was negligibly different from zero, and P for significance was <10−18.
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other measures (Bierne et al., 2013; Lotterhos & Whitlock,  2014; 
Narum & Hess, 2011; Schneider et al., 2021; Xiang-Yu et al., 2016). 
Similar searches for adaptive loci are now using BCAFD (Bharti 
et al., 2021; Boyle et al., 2021; Haenel, Guerard, et al., 2021; Haenel, 
Oke, et al., 2021; Price et al., 2020; Yin et al., 2021; Zhou et al., 2021). 
These searches are expected to benefit from using AA instead of 
BCAFD, because as shown in the results above, the pmax limitation 
of BCAFD truncates the high values of differentiation, which are the 
very values used to identify the potentially adaptive loci.

Table 2 shows the performance of various criteria for identifying 
candidate adaptive loci under selection, due to their being outliers 
whose geographic genetic differentiation is in the top 1% of values 
for neutral loci for either a single measure (univariate criterion), or 
two measures (bivariate criterion). Of course, the more restrictive 
bivariate criterion eliminated more neutral loci, so the bivariate mea-
sures showed the best performance, measured as the percent of all 
outlier loci that were truly under selection (right column in Table 2). 
Table 2 indicates that there is no perfect measure for detecting se-
lection, because when we are searching for loci under selection, we 

cannot know in advance the proportion of loci that are experiencing 
each selection strength. Nevertheless, it is reassuring to see that the 
rank order of the average performance over all selection strengths, 
is similar to the rank order within each selection strength. Of the 
univariate criteria, the three best performers were AA, I , and GST. The 
bivariate criteria generally performed much better, showing the ad-
vantage of using more that one differentiation measure as the cutoff 
in searches for candidate adaptive loci. Of the bivariate criteria, the 
three best performers were “DEST & I ,” tied with “DEST & GST,” followed 
by “AA & GST.” The differences in performance were small, but even 
small improvements are very important given that this commonly 
used approach can only identify outlier loci that are putatively under 
selection, then each of these “candidate” loci must be confirmed by 
separate extensive investigations, such as “evolve and resequence” 
experiments in one or more standard environmental conditions 
(Schlötterer et al., 2015).

There could be further research into which complementary 
measures are best to use with AA. This will depend upon the aim 
of the investigation and the different sensitivities of each measure, 
but some generalizations are possible. There has been considerable 
investigation of the properties of the Hill diversity measures, with 
many having good predictions from underlying factors such as pop-
ulation size, speciation/mutation, and dispersal, as well as showing 
independence of alpha, beta, and gamma (total) diversity (Sherwin 
et al.,  2017, 2021). In particular, Shannon Mutual Information I/
Shannon Differentiation and Morisita-Horn/DEST are differentiation 
measures that have available forecasts under neutrality that can be 
used as null models. These measures also avoid the dependency on 
within-location (alpha) variation seen with GST, and FST; moreover, the 
Shannon measures avoid the heavy emphasis of effects of common 
variants, such as is seen with Morisita-Horn and DEST (Jost, 2008; 
Magurran, 2004; Sherwin et al., 2017; Sherwin et al., 2021). If the 
primary purpose of assessing differentiation is for identification of 
loci under selection, another good measure to contrast with identifi-
cations by AA would be BGD, which can be used at any level of the Hill-
family “Q,” and has a good sensitivity to selection, and is particularly 
appropriate for multi-SNP haplotypes, which are not considered in 
the current work (Schneider et al., 2021).

Of course, any use of theory relies upon adherence to assump-
tions, and this initial theory for AA has assumptions like any theory. 
The equations for GST, upon which the 

AA forecasts are based, rely 
on a number of assumptions (Neigel, 2002; Ochoa & Storey, 2021; 
Semenov et al., 2019; Whitlock & McCauley, 1999) and each of these 
needs to be investigated if it is proposed to apply Equations (8) or (9) 
to any particular case. First, it was assumed that there are only two 
locations, of approximately equal effective size, which may be the 
case especially in some conservation applications, but other possibil-
ities would require further theory. Second, it was assumed that there 
is symmetric dispersal m, the same for both locations, so that ad-
dressing a source-sink situation would require further theory based 
on the continent–island model. Third, it should be noted that unlike 
the Hill-family of diversity measures, AA (or BCAFD) cannot currently 
be corrected for absence or under-representation of rare alleles, due 
to incomplete sampling of individuals, by the Good-Turing correction 

F I G U R E  3 DEST,GST, and I (mutual information) plotted against 
AA (i.e., BCAFD corrected for maximum-value dependency). DEST 
is shown as squares, GST as discs, I  as triangles. All measures were 
from the same simulated dataset that was used in Figure 1.

F I G U R E  2 The effect of maximum p-value pmax on the regression 
slope coefficient of (simulated BCAFD) on (expected BCAFD 
from Equation 6). This plot itself has a regression equation: 
(coefficient of simulated BCAFD on expected BCAFD) = 0.6152 + 0.3985 × pmax , 
with R2 = .90, and P = .000025. The values upon which the plot is 
based are taken from Table 1.
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TA B L E  2 Detection of loci under directional selection

Criteria  
{Differentiation 
measure(s)}

Known selection strength (s)

0.001 0.003 0.005 0.05
Mean 
performance

AA 488.18 ± 5.90
10 ± 0
33.03

851.18 ± 4.20
10 ± 0
46.23

911 ± 2.57
10 ± 0
47.92

999 ± 0.30
10 ± 0
50.23

44.35 ± 3.86

BCAFD 485.36 ± 6.15
10 ± 0
32.9

820.45 ± 4.69
10 ± 0
45.32

891 ± 3.16
10 ± 0
47.37

998.73 ± 0.38
10 ± 0
50.22

43.95 ± 3.82

GST 459.91 ± 5.46
10 ± 0
31.72

857.55 ± 3.75
10 ± 0
46.42

938.09 ± 2.27
10 ± 0
48.65

999.82 ± 0.12
10 ± 0
50.25

44.26 ± 4.25

DEST 488.36 ± 6.57
10 ± 0
33.03

804.82 ± 4.54
10 ± 0
44.84

874.73 ± 3.73
10 ± 0
46.91

998.18 ± 0.40
10 ± 0
50.21

43.75 ± 3.74

I 458.27 ± 5.35
10 ± 0
31.64

857 ± 3.71
10 ± 0
46.4

938 ± 2.27
10 ± 0
48.65

999.82 ± 0.12
10 ± 0
50.25

44.24 ± 4.27

AA, BCAFD 468.91 ± 5.52
7.45 ± 0.25
38.87

820.45 ± 4.69
7.45 ± 0.25
52.66

891 ± 3.16
7.45 ± 0.25
54.71

998.73 ± 0.38
7.45 ± 0.25
57.52

50.94 ± 4.15

AA, GST 443.64 ± 5.09
5.64 ± 0.24
44.28

843.82 ± 4.32
5.64 ± 0.24
60.18

910.73 ± 2.57
5.64 ± 0.24
61.99

999 ± 0.30
5.64 ± 0.24
64.15

57.65 ± 4.53

AA, DEST 470.18 ± 5.87
7.18 ± 0.26
39.81

804.82 ± 4.54
7.18 ± 0.26
53.1

874.3 ± 3.73
7.18 ± 0.26
55.16

998.18 ± 0.40
7.18 ± 0.26
58.41

51.62 ± 4.08

AA, I 442.18 ± 5.01
5.64 ± 0.24
44.19

843.36 ± 4.26
5.64 ± 0.24
60.17

910.73 ± 2.57
5.64 ± 0.24
61.99

999 ± 0.30
5.64 ± 0.24
64.15

57.63 ± 4.55

BCAFD, GST 450.45 ± 5.67
5.64 ± 0.34
44.65

819.67 ± 4.77
5.64 ± 0.34
59.48

891 ± 3.16
5.64 ± 0.34
61.48

998.73 ± 0.38
5.64 ± 0.34
64.14

57.44 ± 4.37

BCAFD, DEST 475.55 ± 6.22
8.91 ± 0.16
35.03

804.82 ± 4.54
8.91 ± 0.16
47.71

874.73 ± 3.73
8.91 ± 0.16
49.79

998.18 ± 0.40
8.91 ± 0.16
53.09

46.40 ± 3.95

BCAFD, I 449 ± 5.56
6.18 ± 0.44
42.33

819.55 ± 4.71
6.18 ± 0.44
57.26

891 ± 3.16
6.18 ± 0.44
59.29

998.73 ± 0.38
6.18 ± 0.44
62.01

55.22 ± 4.41

GST, DEST 441.36 ± 5.67
4.91 ± 0.31
47.59

804.09 ± 4.62
4.91 ± 0.31
62.32

874.73 ± 3.73
4.91 ± 0.31
64.28

998.18 ± 0.40
4.91 ± 0.31
67.25

60.36 ± 4.38

GST, I 458.27 ± 5.35
10 ± 0
31.64

857 ± 3.71
10 ± 0
46.4

938 ± 2.26
10 ± 0
48.65

999.82 ± 0.12
10 ± 0
50.25

44.24 ± 4.27

DEST, I 439.91 ± 5.59
4.91 ± 0.31
47.51

804.09 ± 4.62
4.91 ± 0.31
62.32

874.73 ± 3.73
4.91 ± 0.31
64.28

998.18 ± 0.40
4.91 ± 0.31
67.25

60.34 ± 4.40

Note: The table shows the number of loci (±SE) from selection simulations of 1000 loci, which were identified as being under selection by criteria 
based on differentiation values from neutral simulations of 1000 loci: either a “univariate” criterion of being in the top 1% of neutral values for one 
differentiation measure, or a “bivariate” criterion of being simultaneously in the top 1% for two differentiation measures. In each of columns 2–5, the 
top value in each cell is the number of loci identified as being under selection (true positive, TP), in the selection simulation with the known value 
of selection shown at the top of the column, out of the total of 1000 independent loci simulated. The second value in each cell is the number of loci 
identified as being under selection (False positive, FP), in the parallel neutral simulation; of course with univariate criteria and the cutoff being the top 
1%, the FP value is always 10 (1% of 1000 loci). The third value in each cell is the “performance” value—the percentage of loci that are true positive, 
out of all loci identified as outliers by that criterion (TP & FP). The performance value shown is for the case where 1% of all loci were under that 
selective regime, and all other loci were neutral; the calculation is 100 × (TP × 0.01)/[(TP × 0.01) + (FP × 0.99)]. Of course, the proportions of neutral 
and selected loci would not be known beforehand in a study designed to detect loci under selection, but given that it is standardized to a constant 
univariate FD rate, the performance values can be used to compare the criteria. The right column shows the performance averaged over all four 
selection strengths. Within each of the univariate criteria and the bivariate criteria, the three criteria with the best average performance are bolded. 
Note that the rank order of performance values is similar for most selection strengths, except the weakest selection (s = 0.001).
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(Chao & Jost, 2015) (A. Chao pers. comm.); however, this correction 
method is also inapplicable to any measure based on a two-variant 
system such as SNPs. Finally, Figure 1b shows a wide scatter, but 
the regression analysis shows that if there are multiple independent 
replicates such as hundreds, or a thousand, neutral SNP loci in link-
age equilibrium, the neutral forecast is very accurate. This number of 
statistically unlinked SNP loci is easily achievable with current meth-
ods for genotyping-by-sequencing (e.g., www.diver​sitya​rrays.com).

Irrespective of whether one wishes to use theoretical expecta-
tions, it is advisable to use AA rather than BCAFD, because the lat-
ter's dependence on pmax limits its comparability to other studies, 
even within the same species, if the population pairs analyzed are 
in parts of the range that have different pmax, due to a strong cline.

Several further possible developments are obvious. First, 
Appendix 1 principally shows equilibrium forecasts; Tables A2.1 and 
2.2 show that there is often a wide range of generation times for 
which equilibrium is a reasonable assumption. However, there are 
populations that are known to have had recent changes such as se-
vere reductions in connectivity, and for these the Equation (A1.11b) 
can be used. For other changes such as reduction of population size, 
further nonequilibrium forecasts could be derived in later research. 
Second, the initial neutral theory of AA in this article gives a good 
null model for use in searches for outlier loci that may be under di-
rectional selection, but could form the basis of further theory that 
is specific to particular modes of selection, including more compli-
cated geographical patterns of directional selection, or balancing or 
disruptive selection. Third, at present the theory is limited to cases 
where there are only two alleles, as is often the case for SNPs, but 
not for haplotypes encompassing many nucleotides. In future, all the 
theory in this paper might be extended to cases with multiple al-
leles, broadening it to encompass the multiallele version of BCAFD 
((Berner, 2019a) Supplement). Fourth, the theory could be extended 
to multiple locations. Fifth, the haploid Equation  (8) might also be 
developed to deal with species variants in two local communities, 
if the speciation rate is negligible relative to the dispersal rate; this 
is of course the original use of Bray-Curtis (Bray & Curtis,  1957), 
which would require development of multivariant theory plus sim-
ulations tailored to species assemblages, including investigation of 
the wide scatter seen in Figure 1, for which species analyses could 
not be overcome by using hundreds or more replicate loci—instead, 
hundreds or more replicate pairs of communities would be needed, 
which is probably unattainable.

In conclusion:

•	 The new AA measure (Equation 7) provides a semi-independent 
means for assessing connectivity, selection, etc. based on geo-
graphic genetic differentiation, that can be used in combina-
tion with other such measures to minimize errors such as false 
positives.

•	 The AA measure avoids counterintuitive truncation of high values 
of beta-differentiation by alpha within-population variation (pmax),

•	 Avoiding this truncation means that that studies with different 
pmax can now be compared realistically, either between species, or 

even within the same species, if the population pairs analyzed are 
in parts of the range that have different pmax, due to a strong cline.

•	 Avoiding this truncation is especially important if the high values 
of differentiation are to be used to identify candidate adaptive 
loci, because the truncation would pull the truly high values in 
amongst the not-quite-so-high, leading to increased false nega-
tives and positives.

•	 As predicted, the best performance at identifying outlier loci that 
are potentially under selection comes from using two geographic 
genetic differentiation measures simultaneously, to make bivari-
ate criteria; the three best performers were “DEST & I ,” tied with 
“DEST & GST,” followed by “

AA & GST.” The differences in perfor-
mance are very important given that each of the identified “candi-
date” loci must be confirmed by separate extensive investigations

•	 As well as simply presenting patterns in the data, if researchers 
consider that their system conforms to the assumptions herein, the 
neutral forecasts for AA can be used as a rigorous basis for investi-
gations such as tests for selection and assessment of connectivity.

•	 There are equilibrium and nonequilibrium versions of the theory 
for AA (Equations 8, 9, A1.11b).

•	 Irrespective of whether the theory in this paper is used, BCAFD 
cannot be free of the limit of maximum within-population allele 
proportion pmax, so it is best if reported differentiation values 
should be based upon AA, not BCAFD.
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APPENDIX 1

Forecasting equilibrium Bray-Curtis with mutation, dispersal, and 
drift due to small population size, for two locations, with a single 
neutral biallelic SNP locus
There are two locations with indices i = 1,2. Where there is no index, 
or the index is T, it is the value calculated for the pooled locations 
(metapopulation), for example, pooled allele proportion, overall 
heterozygosity.

AA—“Adjusted-AFD,” i.e., Bray-Curtis between locations “1” and 
“2”, adjusted to compensate for the limitation that BCAFD cannot be 
greater than pmax the maximum allele proportion in either of the two 
locations: AA = 

||p1 − p2
||(

0.6152 + 0.3985 × pmax
)

BCAFD—Bray-Curtis between locations “1” and “2”, the unsigned 
difference of proportions, that is, BCAFD = ||p1 − p2

|| (Berner, 2019a, 
2019b) (Equation  2 in main article). (This is also called AFD—
Difference of Allele “Frequency” i.e., proportion). The algebra below 
deals with a single locus, but BCAFD can be averaged over loci.

2
D—Second order Hill diversity, or effective number of alleles 

2
D = 1∕(1 − H) or H = 1 − 1∕ 2

D =
2D − 1

2D

FST—Wright's measure of differentiation for biallelic SNPs
GST = FST = �

2
p
∕pq =

[
HT − H1,H2

]
∕HT ([Halliburton,  2004] Box 

9.5)
GST—See FST; these are equivalent in the 2-allele, 2-location case.
H—Binomial (Hardy–Weinberg) expected heterozygosity, for ex-

ample, HT = 1 − p2 − q2; H1 = 1 − p2
1
− q2

1

i = 1,2,—indices for the two members of a pair of locations. Where 
there is no index, or the index is T, it is the value calculated for the 
pooled locations (metapopulation), for example, pooled allele pro-
portion, overall heterozygosity.

k —number of localities (always two unless stated otherwise)
m—dispersal per generation between the two populations, sym-

metrical (0 ≤ m ≤ 1)
N—effective population size at each location (identical)
p1 p2—proportions of the chosen allele at each location “i” 

(0 ≤ pi ≤ 1) at generation t; for the other allele, q i = 1 − pi.
p—average p over the two locations at beginning of generation t: 

p =
(
p1 + p2

)
∕2; q = 1 − p

p′—proportions partway through generation t.
p″—proportions one generation after time t (at time t″).

https://doi.org/10.1002/ece3.9176
https://doi.org/10.1002/ece3.9176
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t—generation index (t″ after one full generation).
T—is the index for the pooled locations (metapopulation), for ex-

ample, overall heterozygosity.
μ—mutation rate per generation (0 ≤ � ≤ 1)
�
2
p
—Variance of p between locations 1 and 2: �2

p
= p2

i
−
(
pi
)2

I restricted analysis to cases where there are two locations:

•	 with identical effective population size,
•	 reproduction with stochastic drift in each population is followed 
by dispersal

•	 deterministic symmetric dispersal between the two locations
•	 two alleles per locus (e.g., conventionally filtered SNP data)

These are shown schematically in Table A1.1, for a single generation.

A.1.1 | BRAY-CURTIS/AFD “BCAFD” AT DRIFT-DISPERSAL 
EQUILIBRIUM
BCAFD between locations “1” and “2,” is (Berner, 2019a, 2019b)

At any time, for 2 localities with 2 alleles per locus,

where �
2
p
= p2

i
−
(
pi
)2 ((Halliburton,  2004) Box 9.5 (Falconer & 

Mackay, 1996) equation 3.4)

So GST = FST = BCAFD2 ∕4pq

Or

Now with diploid individuals at dispersal-drift-mutation equi-
librium for k localities, it is expected that (equations 8 and 20 in 
[Takahata, 1983])

so with one pair of localities, k = 2, then

So inserting Equation (A1.5b) into Equation (A1.4), at equilibrium,

We get for diploid:

And for haploid:

A.1.2 | DYNAMIC (NONEQUILIBRIUM) AA OVER TIME AFTER 
DISPERSAL IS REDUCED TO ZERO
The equilibrium calculations presented above are appropriate in 
many cases, with Tables A2.1 and A2.2 below showing that there is 
usually a wide window of generation times for which equilibrium is a 
reasonable assumption. However, in both natural and modified habi-
tats, often there is a nonequilibrium situation such as a sudden reduc-
tion in connectivity, for example, due to new human infrastructure. 
Therefore, dynamic (nonequilibrium) equations are also needed, and 
one such equation is derived below to give Equation  (A1.11b), for 
time t generations after a complete cessation of dispersal between 
two locations.
At time t after a diploid population is split into two subpopula-

tions with zero dispersal between them ((Falconer & Mackay, 1996) 
equation 3.2):

where pinit and qinit are the average allele proportions immediately be-
fore the split
From Equation (A1.3) above,

Note the use of AA rather than BCAFD in these dynamic equations, 
because they are modeling complete isolation, which will result in 
approach to high differentiation, which the main article shows is best 
forecast for AA, not BCAFD. If we are averaging over many loci, it is 
reasonable to assume that average allele proportions for the metap-
opulation (pinit and qinit) do not change over time. Then at time t after 
dispersal is reduced to zero, combine Equations (A1.9) and (A1.10):

(2 and A1.1)BCAFD = ∣ p1 − p2 ∣

(A1.2)GST = FST =
[
HT − H1,H2

]
∕HT = �

2
p
∕pq

(A1.3)IE �
2
p
=
��
p2
1
+ p2

2

�
∕2

�
−

⎡
⎢
⎢⎣

��
p1+p2

�

2

�2⎤
⎥
⎥⎦
=
�
p1−p2

�2
∕4 = BCAFD

2 ∕4

(A1.4)BCAFD2
= 4pqGST = 2HTGST

(A1.5a)GST = 1∕

(
1 +

4k

k − 1

(
N� +

kNm

k − 1

))

(A1.5b)GST = 1∕(1 + 8N(2m + �))

(A1.6)BCAFD2=2HT∕(1+8N(2m+�))=
2 2D−2

2D(1+8N(2m+�))

(A1.7)BCAFD =

√
2 2D − 2

2D(1 + 8N(2m + �))

(A1.8)BCAFD =

√
2 2D − 2

2D(1 + 4N(2m + �))

(A1.9)�
2

p
(at time t) = pinit qinit

[
1 − (1−1∕2N)t

]

(A1.10)�
2
p
= AA2 ∕4 or AA =

√
4 �2

p

(A1.11a)AA (at time t) =

√
4pinit qinit

[
1 − (1−1∕2N)t

]

TA B L E  A 1 . 1 Scheme for the simulation, for each generation, 
using terms defined in text of Appendix 1

Location 1 Location 2

Generation t, initially p1, q1 p2, q2

After drift p′
1
, q′

1
p′
2
, q′

2

After dispersal p��
1
=p�

1
−mp�

1
+mp�

2

q��
1
=1−p��

1

p��
2
=p�

2
−mp�

2
+mp�

1

q��
2
=1−p��

2
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i.e.,:

In Equation (A1.11a), (A1.11b), for haploids, 2 N is replaced by N.

A.1.3 | CAN WE CORRECT FOR DEPENDENCE ON ALPHA AND 
GAMMA?
Note that due to the dependence of GST on (alpha) heterozygosity, 
BCAFD, and derived measures such as AA, are also expected to be 
dependent upon (alpha) heterozygosity, and such dependence is not 
a desirable property for a measure of between-locality (beta) dif-
ferentiation. This is additional to the dependence of BCAFD on maxi-
mum allele proportion, for which a correction is applied in the main 
article (AA). However, there is a correction for the unwanted depend-
ency of GST on (alpha) heterozygosity (Meirmans & Hedrick, 2010), so 
it is interesting to ask whether using this correction would remove 
unwanted dependency for BCAFD and thus AA. For a pair of loca-
tions, the corrected GST is:

Combining Equations (A1.2) and (A1.12),

Combining Equations (A1.4) and (A1.13)

Although G′′
ST
 is free of alpha-dependency, nevertheless this new 

formulation of AA is clearly still heavily dependent upon heterozygo-
sity (HT ,H1,H2), which are gamma and alpha measures, which would 
ideally not affect a (beta) differentiation measure. Additionally, using 
this formulation in Equation (A1.14) for BCAFD would considerably 
complicate the derivation of theoretical expectations comparable to 
Equations (A1.7) and (A1.8).

APPENDIX 2

The MATLAB simulation program
This MATLAB program was modified from the one previously de-
scribed (Dewar et al., 2011), to include calculation of the Bray-Curtis/
AFD Index BCAFD and AA (Equations 2, 7, A1.1), as well as the previ-
ously calculated GST (Equation A1.2), DEST, and I (mutual information).
The simulation deals with two biallelic haploid subpopulations, for 

scenarios with every possible combination of levels of three sym-
metric dispersal rates (m = 0.01, 0.03, 0.1) and three effective sub-
population sizes (N = 1000, 10, 000, 100, 000), giving a total of nine 
scenarios. Mutation rate between the two alleles per SNP locus per 
generation was held at μ = 10−9, a likely rate for SNP alleles, but pre-
liminary simulations showed virtually identical results with the much 

higher and lower rates of μ = 10−6 and 10−12. Indeed, inspection of 
Equations (A1.7) and A1.8 show that mutation rate will be largely ir-
relevant unless the locations are completely isolated (m = 0 exactly). 
Starting allele proportions in each subpopulation (p1, p2) were ran-
domized for each subpopulation in each replicate of each scenario 
(0 ≤ p ≤ 1). Each generation included stochastic binomial sampling 
of the available parent alleles to establish the allele proportions for 
the offspring, followed by deterministic symmetrical dispersal to 
create the parent populations for the next generation. For each sce-
nario (combination of m, N), there were 1000 independent replicate 
iterations, which could be regarded either as 1000 different pairs of 
populations, or one pair of populations with 1000 SNP loci showing 
independent segregation (i.e., in linkage equilibrium); such data are 
now commonplace. Note that researchers using SNP data typically 
search for linkage disequilibrium between pairs of loci, and remove 
one of each pair. If researchers obtain less than 1000 SNP loci that 
are unlinked (Waples et al., 2022), this will reduce the precision of 
any differentiation measure, including GST or AA. Note that if there 
is moderate to high recombination, the number of chromosomes 
does not directly limit the number of statistically unlinked loci. Each 
iteration was run for 200 generations. Because the calculations in 
Appendix 1 are for equilibrium given values of m, μ, and N, it was im-
portant to ensure that this number of generations was long enough 
to allow a close approach to equilibrium. This was ensured in three 
ways. First, results were inspected to ensure that each scenario had 
asymptoted to a stable value for BCAFD, well before the final gen-
eration. Second, iterations were each also inspected to ensure that 
the variance of BCAFD between-generations was much lower than 
variance between replicate iterations (typically one tenth or less). 
Finally, 200 generations was much greater than the expected time 
for FST to reach half drift-dispersal equilibrium (t1∕2 eq generations), 
which for diploids is (Crow & Aoki, 1984; Whitlock, 1992):

and for haploids is

where symbols are as in Appendix  1. Maximum time to half-
equilibrium is 34 generations for the scenarios trialed in the main 
paper (Table A2.1). Given that BCAFD is a function of FST or GST, is 
seems reasonable to assume that this will also approximate the time 
to half-equilibrium for BCAFD and AA. The simulations should be run 
for several times this t1∕2 eq. For all simulated scenarios, a time of 
200 generations was chosen, which is well in excess of the expected 
times to half-equilibrium in Table A2.1.
There is a second, opposing, constraint on the number of genera-

tions. As well as the need to ensure close approach to equilibrium, 
the calculations in Appendix 1 assume no fixation (i.e., loss of all al-
leles except one), so that it was important to run the simulations for 

(A1.11b)AA (at time t) =

√
2HT (init)

[
1 − (1−1∕2N)t

]

(A1.12)G��
ST

=
2
(
HT − H1,H2

)

(
2HT − H1,H2

)(
1 − H1,H2

)

(A1.13)GST =

(
2HT − H1,H2

)(
1 − H1,H2

)

2HT

G��
ST

(A1.14)A
A =

√(
2HT − H1,H2

)(
1 − H1,H2

)
G��
ST

(A2.1a)t1∕2 eq =
ln0.5

ln
[
(1−m)2

(
1 −

1

2N

)]

(A2.1b)
t1∕2 eq =

ln0.5

ln
[
(1−m)2

(
1 −

1

N

)]
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times that are short enough to avoid fixation. This is also important 
because most researchers, or the companies that do their genotyp-
ing, will filter out invariant (fixed) SNPs from the data. Table A2.2 
shows that it is possible to choose simulation generation numbers 
that are short enough to give minimum fixation, but sufficiently 
large to give approximate equilibrium (Table A2.1). In the case of 
two equal-sized subpopulations making up a metapopulation with 
dispersal, N for metapopulation ≈2 × N-subpopulation; for haploid 
we use 4 N(metapop) instead 8 N in the equation of expected time to 
fixation, and then we find that tfix generations is given by ([Kimura & 
Ohta, 1969, Maruyama, 1970, Crow & Kimura, 1970] equation 8.9.4 
p 431):

where symbols are as in Appendix 1. Times to fixation in generations, 
for the scenarios trialed in main paper, are shown in Table A2.2. This 
table shows that even for the smallest effective population size of 
1000, fixation in about 200 generations would require a mean initial 
p of 0.01 or less, for example, initial p1 = p2 = 0.01. With random as-
signment of initial p values in each of the two locations, such a situa-
tion would arise in only 0.01 × 0.01 × 100% = 0.01% of replicates. In 
an extreme case where N for the metapopulation was equal to the N 
for either subpopulation, the fixation times would be halved, and yet 
most of the fixation times would still be orders of magnitude larger 
than the 200 generations simulated.
In case any fixation did occur, the program included a trap for fixa-

tion, and it was designed so that if fixation occurred in any iteration, 
then the iteration would be replaced by restarting from generation 
zero, in line with the filtering normally applied to such data. Because 
of the relatively short number of generations (200), there were virtu-
ally no restarts for fixation.
The simulations used a binomial mechanism for transmission of 

alleles between generations, because of the initial focus on 2-allele 

SNPs. However other mechanisms such as Poisson or negative bi-
nomial might give different results (Warton & Hui, 2017), and this 
might be appropriate in other cases outside the scope of this paper, 
including where the underlying biological process for transmitting 
variants is different, or not adequately understood at present.
The accuracy of the simulations was tested in two ways:

•	 By limited comparison with results of EASYPOP (Balloux, 2001), 
in which the starting proportions could be set to be approximately 
p1 = p2 = 0.5. These showed almost identical results for GST when 
the MATLAB simulation was run with initial p1 = p2 = 0.5 exactly.

•	 By checking GST results from the simulation against the well-
known forecasts from Equation (A1.5b). The results of the simula-
tion showed very good fit to these forecasts over the wide range 
of conditions in the simulation. (Figure A2.1)

(A2.2)tfix = −
4Npln(p)

1 − p

TA B L E  A 2 . 1 Time in generations to half-equilibrium t1∕2 eq for 
the scenario conditions simulated

N m t1∕2 eq

1000 0.01 32.8488

1000 0.03 11.1944

1000 0.10 3.27386

10,000 0.01 34.3131

10,000 0.03 11.3596

10,000 0.10 3.28785

100,000 0.01 34.4666

100,000 0.03 11.3764

100,000 0.10 3.28925

Note: See Appendix 1 for definitions of other symbols.

TA B L E  A 2 . 2 Expected time in generations to fixation for the 
scenario conditions simulated

Initial p N Fixation time

0.5 100,000 277258.9

0.1 100,000 102337.1

0.01 100,000 18606.7

0.5 10,000 27725.9

0.1 10,000 10233.7

0.01 10,000 1860.7

0.5 1000 2772.6

0.1 1000 1023.4

0.01 1000 186.1

Note: See Appendix 1 for definitions of symbols.

FI G U R E A 2 .1 Comparison of simulation results with 
algebraic predictions for GST, with regression equation 
(Simulated-GST ) = 0.97 × (Predicted-GST) + 0.00005; P = 4.2 × 10−12; 
R2 = .99. Predicted GST is from Equation (A1.5b) (Takahata, 1983), 
using 4 N in place of 8 N for the haploid loci simulated. The intercept 
is very close to zero as expected. The slope coefficient (0.97) has 
95% confidence limits 0.95 to 1.00. The red line is the expected 1:1 
relationship, indistinguishable from the actual regression line. Note that 
for each scenario, the coefficient of variation for simulated GST was 
always larger than the coefficient of variation for AA (sometimes double).
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