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Abstract
Geographic	genetic	differentiation	measures	are	used	for	purposes	such	as	assessing	
genetic	diversity	and	connectivity,	and	searching	for	signals	of	selection.	Confirmation	
by	unrelated	measures	can	minimize	false	positives.	A	popular	differentiation	meas-
ure,	 Bray-	Curtis,	 has	 been	 used	 increasingly	 in	 molecular	 ecology,	 renamed	 AFD	
(hereafter	called	BCAFD).	Critically,	BCAFD	 is	expected	 to	be	partially	 independent	
of	the	commonly	used	Hill	“Q-	profile”	measures.	BCAFD	needs	scrutiny	for	potential	
biases,	by	examining	limits	on	its	value,	and	comparing	simulations	against	expecta-
tions. BCAFD	has	two	dependencies	on	within-	population	(alpha)	variation,	undesir-
able	for	a	between-	population	(beta)	measure.	The	first	dependency	is	derived	from	
similarity	 to	GST and FST.	 The	 second	 dependency	 is	 that	BCAFD	 cannot	 be	 larger	
than	 the	highest	allele	proportion	 in	either	 location	 (alpha	variation),	which	can	be	
overcome	by	data-	filtering	or	by	a	modified	statistic	AA	or	“Adjusted	AFD”.	The	first	
dependency	does	not	forestall	applications	such	as	assessing	connectivity	or	selec-
tion,	if	we	know	the	measure's	null	behavior	under	selective	neutrality	with	specified	
conditions—	which	is	shown	in	this	article	for	AA,	for	equilibrium,	and	nonequilibrium,	
for	the	commonly	used	data	type	of	single-	nucleotide-	polymorphisms	(SNPs)	in	two	
locations.	Thus,	AA	can	be	used	in	tandem	with	mathematically	contrasting	differen-
tiation	measures,	with	 the	aim	of	 reducing	 false	 inferences.	For	detecting	adaptive	
loci,	the	relative	performance	of	AA	and	other	measures	was	evaluated,	showing	that	
it	is	best	to	use	two	mathematically	different	measures	simultaneously,	and	that	AA 
is	in	one	of	the	best	such	pairwise	criteria.	For	any	application,	using	AA, rather than 
BCAFD,	 avoids	 the	counterintuitive	 limitation	by	maximum	allele	proportion	within	
localities.
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1  |  INTRODUC TION

Comparisons	of	biodiversity	between	regions	are	important	aspects	
of	 understanding	 both	 ecological	 and	 genetic	 systems.	 There	 are	
many	geographic	differentiation	measures,	used	for	purposes	such	
as	assessing	genetic	diversity	and	connectivity	(Gruber	et	al.,	2018; 
Guillot	 et	 al.,	 2005; Manni et al., 2004;	Meirmans,	2020;	 Sherwin	
et al., 2017, 2021)	 and	 searching	 for	 signals	 of	 different	 selective	
regimes	geographically,	which	is	expected	to	have	high	false-	positive	
rates	 (Bierne	 et	 al.,	 2013;	 Lotterhos	 &	Whitlock,	 2014;	 Narum	 &	
Hess,	2011;	Schneider	et	al.,	2021;	Xiang-	Yu	et	al.,	2016).	Because	
of	 the	anticipated	high	 false-	positive	 rates,	 it	 is	 important	 to	 con-
firm	findings	using	a	wide	range	of	mathematically	unrelated	mea-
sures.	Often	 these	measures	 are	 chosen	 from	 the	Hill	 “Q-	profile,”	
which	includes:	counts	or	sharing	of	allelic	types	(Q	=	0	measures);	
Shannon	information	and	differentiation	(Q	=	1);	and	heterozygos-
ity,	nucleotide	diversity,	Gini-	Simpson,	GST, FST,	Morisita-	Horn,	DEST 
(Q	= 2) (Chao et al., 2014; Gaggiotti et al., 2018;	 Jost,	2008;	 Jost	
et al., 2010;	Sherwin	et	al.,	2017, 2021).	However,	despite	their	dif-
ferent	sensitivity	to	some	matters,	such	as	rare	and	common	alleles,	
the	members	of	the	Q-	profile	are	all	mathematically	related	(Sherwin	
et al., 2017, 2021).

Notably,	one	recent	addition	to	the	range	of	measures	in	molec-
ular	ecology	 is	outside	the	Hill	Q-	profile:	 the	Bray–	Curtis	 index	of	
dissimilarity,	a	method	of	assessing	differentiation	that	is	extremely	
popular	in	its	original	use,	to	assess	differentiation	between	species	
assemblages	(Bray	&	Curtis,	1957).	During	2021	alone,	Bray-	Curtis	
was	mentioned	 over	 10,000	 times	 in	 Google	 Scholar.	 Bray-	Curtis	
can	be	expressed	 in	 a	way	 that	 facilitates	 comparison	with	differ-
entiation	 measures	 derived	 from	 Hill	 numbers;	 the	 mathematical	
equivalence	to	other	formulations	of	Bray-	Curtis	is	documented	in	
(Chao	&	Chiu,	2016;	Jost	et	al.,	2010; Ricotta et al., 2021;	Ricotta	&	
Pavoine,	2022;	Ricotta	&	Podani,	2017).

where a1j and a2j	are	the	abundances	(counts	or	frequencies	0 ≤ a ≤ ∞ )	
in	each	of	two	locations	(1,2),	for	variant	j (1 ≤ j ≤ S) and S is the total 
number	of	species.	This	measure	satisfies	many	of	the	requirements	
of	a	good	measurement	of	differentiation	between	assemblages	(Chao	
&	Chiu,	2016;	Magurran,	2004;	Ricotta	&	Podani,	2017). This index is 
also	used	for	analysis	of	operational	taxonomic	units	in	metagenomics	
(Peng	et	al.,	2020).

Unification	of	ecological	and	genetic	approaches	is	desirable,	be-
cause	of	 their	 interaction	as	parts	of	 the	same	biological	 systems,	
and	because	of	their	underlying	mathematical	similarities	(Rosindell	
et al., 2015;	 Sherwin,	2018),	 so	 it	 is	 good	 to	 see	 that	 a	 simplified	

version	of	Bray-	Curtis	has	been	proposed	as	a	measure	of	differen-
tiation	 in	molecular	 ecology	 and	 evolution	 (Berner,	2019a, 2019b; 
Shriver	et	al.,	1997),	echoing	a	similar	measure	in	community	ecol-
ogy	(Whittaker,	1975)	(p	118).	It	was	renamed	“allele	frequency	dif-
ference”	AFD,	 but	 I	will	 call	 it	BCAFD,	 in	 deference	 to	 its	 original	
proponents,	and	because	it	is	a	difference	of	proportions	(0 ≤ p ≤ 1) 
rather	than	frequencies	(0 ≤ a ≤ ∞).	In	the	two-	variant	two-	location	
case,	Bray-	Curtis	simplifies	to	the	unsigned	difference	between	lo-
cations	1	and	2	of	proportions	of	either	of	the	two	allelic	variants	
(Berner,	2019a, 2019b).

where p1 = a1 ∕
(
a1 + a2

)
 and q1 = 1 − p1,	 and	similarly	 for	 the	other	

 location p2 and q2.	When	there	are	multiple	alleles,	it	is	suggested	to	
use	the	sum	of	the	absolute	allele	proportion	differences	divided	by	
two	 ([Berner,	 2019a],	 Table	 S1),	 which	 actually	 is	 equivalent	 to	 the	
more	general	Equation (1).	However,	unless	otherwise	stated	this	ar-
ticle	will	deal	with	the	biallelic	case	which	is	very	common	in	current	
molecular	ecology—	SNPs	or	single-	nucleotide	polymorphisms.

In	the	molecular	ecology	literature,	BCAFD	has	been	used	or	men-
tioned	many	times	since	Berner's	publications	(Berner,	2019a, 2019b), 
including	 for	 assessment	 of	 population	 differentiation	 in	 time	 or	
space,	with	implications	for	likely	genetic	connectivity	(Amos,	2021; 
Lou	 et	 al.,	2021;	 Popovic	 et	 al.,	2021;	 Subramanian,	2021;	 Taylor	
et al., 2021;	Weldekidan	et	al.,	2022;	Wolf	et	al.,	2021), as well as 
identifying	 candidate	 adaptive	 loci	 by	 their	 strong	 differentiation	
relative	to	other	presumably	neutral	loci	(Bharti	et	al.,	2021;	Boyle	
et al., 2021;	Haenel,	Guerard,	et	al.,	2021;	Haenel,	Oke,	et	al.,	2021; 
Price	et	al.,	2020;	Yin	et	al.,	2021;	Zhou	et	al.,	2021).

For	applications	including	selection	detection	and	assessment	of	
connectivity	between	locations,	it	is	critical	to	know	the	measure's	
null	behavior,	that	is,	in	the	absence	of	selection	(“neutrality”),	with	
specified	 conditions	 such	 as	 population	 size,	 dispersal,	 and	muta-
tion	 (Bierne	 et	 al.,	2013;	 Gruber	 et	 al.,	2018;	 Guillot	 et	 al.,	 2005; 
Lotterhos	&	Whitlock,	2014; Manni et al., 2004;	Meirmans,	2020; 
Narum	&	Hess,	2011;	Schneider	et	al.,	2021;	Sherwin	et	al.,	2017, 
2021;	 Xiang-	Yu	 et	 al.,	2016).	Despite	 not	 belonging	 to	 the	Hill	Q-	
profile,	BCAFD	appears	to	have	some	mathematical	relationship	to	
two	of	the	Hill	measures:	GST and FST (Appendix 1).	Therefore,	based	
on	forecasts	for	those	two	measures,	it	will	be	shown	that	it	is	pos-
sible	to	develop	forecasts	for	BCAFD	for	two-	location,	two-	variant	
systems	such	as	single-	nucleotide	polymorphisms	(SNPs).

All	 diversity	 measures	 must	 be	 scrutinized	 for	 their	 particu-
lar	 properties	 (Leinster	&	Cobbold,	2012; Leinster, 2021;	 Sherwin	
et al., 2017;	Sherwin	et	al.,	2021).	An	important	property	of	differ-
entiation	measures	is	independence	between	alpha	(within	location)	
variation,	beta	(between	location)	differentiation,	and	total	(gamma)	

(1)Bray − Curtis =

∑S

j=1

���a1j − a2j
���

∑S

j=1

�
a1j + a2j

�

(2	and	A1.1)BCAFD = ∣ p1 − p2 ∣
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variation (Chao et al., 2014; Gaggiotti et al., 2018;	Jost,	2008;	Jost	
et al., 2010; Leinster, 2021;	Sherwin	et	al.,	2017;	Sherwin	et	al.,	2021). 
Critically,	GST and FST	are	well-	known	to	have	the	serious	limitation	of	
being	heavily	influenced	by	within-	location	variation	(alpha),	some-
thing	that	 is	not	desirable	in	a	between-	location	(beta)	differentia-
tion	measure.	Although	FST	was	explicitly	proposed	as	a	measure	of	
between-	subgroup	differentiation	(Wright,	1943)	and	has	been	used	
for	 that	 extensively,	 unlike	 some	 other	 Hill-	profile	 measures,	 FST 
shows	strong	dependence	on	alpha	within-	locality	diversity,	as	does	
the	 related	measure	GST	 (Jost,	 2008;	 Meirmans	 &	 Hedrick,	 2010; 
Nei,	1977, 1973).	Because	of	its	relationship	to	GST and FST,	it	is	likely	
that	there	will	be	dependency	of	BCAFD on alpha variation.

Another	dependency	of	BCAFD	on	alpha	variation	is	that	it	is	ob-
vious	from	Equation (2) that BCAFD	can	never	be	 larger	 than	pmax, 
the	higher	of	the	two	allele	proportions,	p1 and p2. In other words, 
if	either	p1 or p2	is	zero,	then	the	value	of	Bray-	Curtis	will	be	equal	
to	 the	other,	more	abundant,	proportion.	Of	course,	 the	values	p1 
and p2	are	within-	location	proportions	of	one	of	the	two	alleles—	a	
within-	population	(alpha)	measure.	This	is	an	extremely	counterintu-
itive	limitation	on	a	between-	location	(beta)	differentiation	measure,	
and	is	expected	to	result	in	biased	values.	This	might	be	particularly	
important	when	using	the	measure	to	search	for	loci	that	experience	
different	directions	of	selection	in	different	locations,	because	this	
difference	of	 selective	 regime	will	 obviously	 give	 a	 signal	 of	 large	
differentiation	 values	 between	 locations,	 relative	 to	 other	 neutral	
loci.	As	a	result,	the	truncation	of	large	values	of	BCAFD	due	to	pmax 
might	be	expected	to	reduce	the	ability	to	distinguish	such	adaptive	
loci	from	neutral	loci.

The	 confounds	with	 alpha	 variation	due	 to	 relationship	 to	GST, 
and	restriction	by	maximal	allele	proportion	pmax,	 require	examina-
tion	 in	 this	 article;	 however	 another	 possible	 confound	 does	 not	
appear	 to	be	of	concern.	As	well	 as	 the	proportions	of	variants,	 a	
between	location	(beta)	differentiation	measure	can	be	confounded	
by	 the	number	of	variant	 types.	This	confound	can	be	avoided	by	
restriction	to	two-	variant	systems	such	as	SNPs,	as	 is	done	 in	this	
article.	Also,	it	does	not	appear	to	be	a	problem	for	the	multiallelic	
version	of	BCAFD (Equation (1),	also	[Berner,	2019a]	Table	S1).	When	
there	 is	maximal	differentiation,	that	 is,	no	alleles	shared	between	
locations,	one	expects	to	always	get	the	maximal	value	for	the	ge-
netic	differentiation	statistic.	This	in	fact	does	happen.	For	example,	
if	there	are	four	alleles	w, x, y, and z, with w and x in location 1, and 
the other two in location 2, so that p1w = p1x = p2y = p2z = 0.5, and 
other	proportions	are	equal	to	zero,	then	the	multiallelic	statistic	is	
equal	to	BCAFD =	1.0.	Also,	if	location	1	only	has	allele	w, and the 
other three alleles are in location 2, with p1w = 1; p2x = p2y = p2z =

1

3
 ,	

then	the	multiallelic	statistic	remains	BCAFD =	1.0,	as	expected	for	
the	same	situation	of	maximal	differentiation	(no	shared	alleles).

Irrespective	 of	 these	 confounds,	 it	 should	 be	 noted	 that	 the	
alpha-	dependency	of	GST ∕FST	does	not	forestall	all	use	of	these	mea-
sures,	provided	that	we	know	their	behavior	under	selective	neutral-
ity	with	specified	conditions	such	as	population	size,	dispersal,	and	
mutation	(Bierne	et	al.,	2013;	Gruber	et	al.,	2018;	Guillot	et	al.,	2005; 
Lotterhos	&	Whitlock,	2014; Manni et al., 2004;	Meirmans,	2020; 

Narum	&	Hess,	2011;	Schneider	et	al.,	2021;	Sherwin	et	al.,	2017, 
2021;	Xiang-	Yu	et	al.,	2016).	With	this	in	mind,	and	responding	to	the	
increased	use	of	BCAFD	in	molecular	ecology	described	above,	this	
paper	carries	out	the	following	tasks:

•	 It	 creates	 a	 modified	 version	 of	 BCAFD	 termed	 AA	 (“Adjusted	
AFD”)	that	is	corrected	for	the	limitation	by	pmax.

•	 Forecasts	are	made	and	tested,	for	Bray-	Curtis	(BCAFD) and AA, 
for	 selectively	neutral	biallelic	SNPs—	a	very	common	data	 type	
at	present—	under	various	scenarios	of	population	size,	mutation,	
and dispersal. This will allow BCAFD,	and	especially	AA,	to	be	used	
for	evaluating	competing	models	of	population	connectivity,	mak-
ing	projections	for	the	future,	or	identifying	outlier	loci	whose	dif-
ferentiation	 level	departs	 from	neutral	expectations,	and	so	are	
candidate adaptive loci.

•	 Simulations	are	performed	to	investigate	how	the	AA correction 
for	 bias	 performs	 in	 detecting	 loci	 under	 directional	 selection,	
in	comparison	to	competing	measures,	or	 in	consort	with	 those	
measures.

2  |  MATERIAL S AND METHODS

Forecasting	equations	for	Bray-	Curtis	were	developed	for	the	com-
mon	and	simple	case	of	a	single	neutral	biallelic	SNP	locus,	with	two	
locations	(1,2);	the	measure	can	be	averaged	over	multiple	loci,	and	
can	be	applied	to	haploids,	or	to	diploids	in	Hardy–	Weinberg	equi-
librium	(i.e.,	no	population-	wide	correlation	between	the	two	alleles	
within	 diploid	 genotypes).	When	 there	 are	 only	 two	 variants,	 the	
Bray-	Curtis	 equation	 is:	BCAFD = ||p1 − p2

||	 (Berner,	 2019a, 2019b) 
(Equation 2,	above)	where	p1 and p2	are	proportions	of	one	of	the	
two alleles at each location (q1 = 1 − p1; q2 = 1 − p2).

The	quantity	 in	Equation (2)	 is	 a	 transform	of	 two	well-	known	
differentiation	measures	(Halliburton,	2004;	Wright,	1943):

where �2
p
	 is	 the	 variance	 of	 p	 between	 locations,	H	 is	 the	 Hardy–	

Weinberg	 (Binomial)	 expected	 heterozygosity,	 for	 example,	
HT = 1 − p2 − q2;H1 = 1 − p2

1
− q2

1
; and p is the average p over the two 

locations (1,2); q = 1 − p.	The	measures	GST and FST in Equation (3) are 
identical	in	the	two-	allele,	two	location	case	([Halliburton,	2004]	Box	
9.5).	Appendix 1 shows that

Because	 of	 its	 close	 relationship	 to	G ST or F ST, BCAFD	 fore-
casts	 can	 be	 based	 on	 well-	known	 forecasts	 for	 those	 measures	
(Appendix 1).	The	expectation	for	diploid	BCAFD	at	drift-	dispersal-	
mutation	equilibrium	is:

(3	and	A1.2)GST =
[
HT − H1,H2

]
∕HT ≈ FST = �

2
p
∕pq

(4	and	A1.4)BCAFD2
= 4pqGST = 2HTGST

(5	and	A1.7)BCAFD =

√
2 2D − 2

2D(1 + 8N(2m + �))
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where m	is	symmetrical	dispersal	between	the	two	locations	(0 ≤ m ≤ 1);	
μ	is	the	rate	of	mutation	(0 ≤ μ ≤ 1);	N	is	the	effective	population	size	at	
each location (identical); and 2D	 is	the	second	order	Hill	diversity,	or	
effective	number	of	alleles	2D = 1∕

(
1 − HT

)
.

The	equivalent	equation	for	the	haploid	SNPs	simulated	in	this	
article is:

The	performance	of	these	equations	was	assessed	by	simulation	
of	 biallelic	 neutral	 single-	nucleotide	 polymorphisms	 (SNPs)	 in	 two	
haploid	 subpopulations,	 for	 a	wide	 range	 of	 scenarios	 covering	 all	
possible	combinations	of	three	symmetric	dispersal	rates	(m = 0.01, 
0.03,	0.1)	and	three	subpopulation	effective	sizes	(N = 1000, 10,000, 
100,000).	 Starting	 allele	proportions	 in	 each	 subpopulation	 (p val-
ues)	were	randomized	in	each	replicate.	Simulations	used	the	typical	
SNP	mutation	rate	(μ = 10−9),	but	essentially	 identical	results	were	
obtained	 with	 rates	 between	 μ = 10−6 and 10−12.	 The	 simulation	
was	programmed	in	MATLAB,	and	full	details	are	in	Appendix 2, and 
Dewar et al. (2011).	 There	were	 1000	 replicate	 iterations	 of	 each	
scenario,	which	could	also	be	considered	as	1000	independently	in-
herited	 loci	 (i.e.,	 in	 linkage	equilibrium).	 Each	 iteration	was	 run	 for	
200	generations,	and	each	generation	included	stochastic	binomial	
sampling	 of	 the	 parents'	 alleles	 to	 establish	 the	 allele	 proportions	
for	 the	 offspring,	 followed	 by	 symmetrical	 dispersal	 to	 create	 the	
parent	populations	 for	 the	next	generation.	Because	 the	 forecasts	
are	for	drift-	dispersal-	mutation	equilibrium,	it	is	important	to	know	
whether	the	simulations	had	reached	equilibrium.	The	adequacy	of	
the	run-	time	of	200	generations	was	confirmed	 in	 three	ways,	de-
tailed in Appendix 2:	200	generations	was	several	times	longer	than	
the	expected	time	to	half-	equilibrium	values;	inspection	ensured	an	
asymptote	to	a	stable	value	for	BCAFD;	and	the	variance	of	BCAFD 
between-	generations	was	much	lower	than	variance	between	repli-
cate	iterations	(typically	one	tenth	or	less).	The	performance	of	the	
simulation	 was	 checked	 by	 comparison	 with	 results	 of	 EASYPOP	
(Balloux,	2001)	and	with	known	predictions	for	GST (see Appendix 2 
for	details).

To	assess	whether	the	expectation	from	Equation (6) was an ad-
equate	forecast	of	BCAFD, BCAFD	was	calculated	at	the	final	gener-
ation,	then	linear	regression	was	used	(in	EXCEL).	If	the	expectation	
from	Equation (6)	is	accurate,	it	is	expected	that	a	regression	of	the	
simulated	BCAFD against the expected BCAFD	should	have	a	slope	
of	 unity	 and	 an	 intercept	 of	 zero.	 Additionally,	 alpha-	dependence	
was	assessed,	and	possible	corrections	suggested,	including	an	ad-
justed	measure	AA	that	has	no	limitation	by	pmax.

In	 other	 investigations,	 I	 examined	 the	 relationship	 between	
BCAFD	 and	 three	 other	 differentiation	 measures:	 GST, DEST, and 
mutual	 information,	 I	 (Sherwin	et	al.,	2017, 2021).	 I	 also	examined	
whether	 the	 forecasts	 could	 be	made	 completely	 independent	 of	
within-	location	 variation.	 Finally,	 I	 produced	 nonequilibrium	 fore-
casts,	 suitable	 for	 situations	 where	 there	 has	 been	 recent	 distur-
bance	to	connectivity,	for	example.

Simulations	were	used	to	investigate	the	effect	of	the	adjusted	
measure	 AA	 on	 detectability	 of	 loci	 under	 different	 directional	
selection	in	each	population.	These	simulations	were	identical	to	
the	 ones	 described	 above,	with	 two	 alterations.	 First,	 the	 simu-
lations	were	restricted	to	large	population	size	and	low	dispersal	
(N = 100,000, m =	 0.01).	 Second,	 selection	was	 simulated	 each	
generation	 by,	 in	 one	 location,	 increasing	 the	 number	 of	 surviv-
ing	progeny	of	one	genotype	by	multiplying	by	a	factor	of	1 + s/2, 
and	decreasing	the	same	genotype	by	1 − s/2 in the other location 
(s =	 0.001,	 0.003,	 0.005,	 0.05).	 The	 highest	 selection	 strength	
(s =	 0.05)	would	 be	 expected	 to	 result	 in	 very	 high	 differentia-
tion	 after	 the	 200	 generation	 simulation	 period.	 At	 the	 final	
generation,	 the	 program	 calculated	 the	 genetic	 differentiation	
measures:	AA; BCAFD; GST; DEST	 (Jost,	2008);	and	mutual	 informa-
tion I 	(Sherwin	et	al.,	2017, 2021).	For	each	measure,	I	tallied	the	
percentage	of	loci	(out	of	1000	simulated)	that	would	be	identified	
as	outliers	(i.e.,	potentially	under	selection)	using	the	“univariate”	
criterion	that	their	genetic	differentiation	values	were	in	the	top	
1%	of	the	1000	loci	simulated	without	selection	in	a	parallel	neu-
tral	simulation,	separately	for	each	one	of	the	five	differentiation	
measures.	As	well	 as	 those	univariate	criteria,	 the	 same	analysis	
was	repeated	using	a	series	of	more	restrictive	“bivariate”	criteria,	
that	is,	that	for	a	locus	in	the	selection	simulation	to	be	identified	
as	an	outlier,	it	was	required	to	have	differentiation	in	the	top	1%	
of	neutral	 loci	 for	each	of	a	pair	of	 the	differentiation	measures	
listed	above.	For	each	of	these	diagnoses	(univariate	or	bivariate),	
the	true	positive	(TP)	was	the	number	of	loci	known	to	be	under	
selection	 that	were	 actually	 identified	 as	 being	 under	 selection,	
out	 of	 the	 total	 of	 1000	 independent	 loci	 simulated	with	 selec-
tion.	The	 false	positive	 (FP)	was	 the	number	of	 loci	 identified	as	
being	under	 selection	 in	 the	parallel	neutral	 simulation,	 again	of	
1000	loci;	with	the	univariate	criteria	this	of	course	must	be	1%of	
1000 =	10	loci,	but	the	bivariate	criteria	are	expected	to	be	more	
restrictive,	giving	lower	FP.	Then	I	calculated	a	performance	value	
separately	for	each	strength	of	selection.	The	performance	value	
is	the	percentage	of	loci	that	are	true	positive,	out	of	all	loci	that	
were	 identified	 as	 outliers	 potentially	 under	 selection	 (TP + FP);	
in	 the	 case	 that	1%	of	 all	 loci	were	under	 that	 selective	 regime,	
and	all	other	loci	were	neutral,	the	calculation	is	100 × (TP × 0.01)/
[(TP × 0.01) + (FP × 0.99)].	 Of	 course,	 the	 proportions	 of	 neutral	
and	selected	loci	would	not	be	known	beforehand,	but	given	that	
the	analysis	 is	standardized	to	a	constant	univariate	FD	rate,	the	
performance	values	can	be	used	to	compare	the	performance	of	
the	different	criteria.

3  |  RESULTS

Trials	 of	 Equation (6)	 used	 the	 data	 from	 the	 haploid	 simula-
tion	 program	described	 above.	 Figure 1a	 shows	 simulated	BCAFD 
(Equation 2),	calculated	for	all	9000	datapoints	(nine	scenarios × 1000	
replicates)	 regressed	 against	 algebraic	 predictions	 (Equation 6)	 of	
BCAFD	for	each	replicate	in	each	scenario	(again	9000	points).	The	

(6	and	A1.8)BCAFD =

√
2 2D − 2

2D (1 + 4N(2m + �))
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predictions	have	to	be	made	separately	for	each	replicate	because	
the	stochastic	nature	of	the	simulations	results	in	each	replicate	hav-
ing	a	different	final	value	for	2D,	which	 is	used	 in	Equation 6.	Five	
things are apparent in Figure 1a:

•	 there	 are	 distinct	 clumps	 of	 points,	 which	 identify	 limits	 when	
p = q = 0.5 so that 2D = 2,	which	gives	maximum	expected	BCAFD 
values	 of	 0.035	 when	 Nem ≥ 100,	 0.064	 when	 Nem = 30, and 
0.111 when Nem = 10 (Equation 6).

•	 there	 appears	 to	 be	 an	 oblique	 upper	 bound	 to	 the	 scatter	 of	
points	from	the	1000	replicates	of	each	scenario;	this	will	be	dis-
cussed	later.

•	 Despite	the	scatter	of	replicates,	there	is	an	extremely	good	re-
gression	of	simulated	BCAFD on predicted BCAFD	(significance	P 
was	extremely	low—	assigned	to	zero	by	the	program,	see	caption	
of	Figure 1a).	Note	that	the	scatter	is	not	unexpected	given	that	
the	initial	allele	proportions	were	randomized.

•	 the	intercept	is	extremely	close	to	zero,	as	expected
•	 however,	 the	 slope	 is	 slightly	 below	 the	 expected	 45-	degree	
line	 for	perfect	prediction,	with	 a	 slope	of	0.83,	 see	 caption	of	
Figure 1a;	 the	95%	confidence	 limits	for	the	slope	were	0.81	to	
0.85,	so	that	the	limits	did	not	include	the	expected	unity.

In	the	introduction	it	was	pointed	out	that	the	value	of	BCAFD is 
restricted	by	the	maximum	p	value	pmax	in	either	of	the	two	locations,	
at the generation where BCAFD	is	calculated.	This	is	a	potential	rea-
son	for	the	oblique	upper	bound	for	the	observations	in	Figure 1a. 
To	Investigate	this,	the	regression	of	simulated	BCAFD on expected 
BCAFD	was	repeated	on	ten	subsets	of	the	9000	datapoints,	subdi-
vided	by	the	final	value	of	pmax,	the	maximum	p	in	either	of	the	two	
locations.	Results	in	Table 1	show	that	the	departure	from	a	1:1	slope	
is	indeed	due	to	the	restriction	by	pmax.	The	bottom	two	rows	of	this	
table	 are	where	 there	 is	 the	 least	 constraint	 on	 simulated	BCAFD 
values	(0.8 ≤ pmax ≤ 0.899 and 0.9 ≤ pmax ≤ 1), and in these two cases 
the	slope	of	the	regression	of	simulated	BCAFD on expected BCAFD 
is	indeed	unity	as	expected.	The	slope	of	this	regression	decreases	
linearly	when	it	is	more	constrained,	that	is,	with	lower	pmax	values	
(Table 1 and Figure 2).

There	are	two	possible	corrections	for	this	dependency	on	maxi-
mum	p	value.	First,	the	data	could	be	filtered	to	only	include	loci	with	
very	high	maximum	p	values	(0.8 ≤ pmax ≤ 1, Table 1, Figure 2),	but	of	
course	this	would	greatly	reduce	the	usable	data.	Second,	because	
the regression in Figure 2	is	very	linear,	one	can	correct	the	expecta-
tions	for	the	effect	seen	in	that	figure,	where

(coefficient of simulated BCAFD on expected BCAFD)  =	0.6152	+	
0.3985 × pmax,	so	that	we	create	a	modified	version	of	BCAFD, called 
“AA”	which	is	free	of	dependence	upon	pmax : 

We	then	find	that	the	forecasts	are	general	for	all	values	of	pmax ,	
for	haploid:

or	the	same	for	diploid	loci	in	Hardy–	Weinberg	equilibrium,	replacing	
4N with 8N:

Figure 1b	shows	the	plot	of	AA (i.e., BCAFD	adjusted	to	compen-
sate	 for	 limitation	 by	 pmax)	 plotted	 against	 the	 expectations	 from	
(Equation 8).	This	regression	shows	the	expected	slope	of	unity	and	
intercept	 of	 zero,	 demonstrating	 that	 the	 simulation	 confirms	 the	
haploid	prediction	for	AA in Equation (8),	including	for	each	individ-
ual	scenario	(Figure 1c).

There	are	nonlinear	relationships	between	AA	and	three	other	dif-
ferentiation	measures:	GST, DEST,	and	mutual	information,	I,	as	was	sug-
gested	by	a	previous	 investigation	of	BCAFD	 (Berner,	2019a, 2019b) 
(Figure 3). This shows that AA	provides	information	that	is	not	linearly	
dependent	on	these	other	measures,	which	is	 important	when	using	
multiple	measures	 for	confirmation	of	 results	such	as	assessment	of	
connectivity,	and	searches	for	loci	potentially	under	selection.

As	well	as	the	equilibrium	forecasts	just	described,	it	is	important	
to	have	nonequilibrium	forecasts	for	AA,	which	will	often	be	relevant	
in	many	 situations,	 including	 recently	 disturbed	 populations;	 non-
equilibrium	forecasts	are	shown	in	Equation (A1.11b).

It	 was	 also	 investigated	 whether	 the	 dependence	 of	 BCAFD 
on	 within	 location	 (alpha)	 variation	 could	 be	 fixed	 by	 basing	 the	
expectations	 for	 BCAFD not on GST,	 but	 upon	 G"ST	 (Meirmans	
&	 Hedrick,	 2010).	 Unlike	GST, G"ST	 is	 free	 of	 influence	 of	 within-	
population	variation.	In	Equation (A1.14),	it	can	be	seen	that	this	new	
formulation	of	BCAFD	is	still	heavily	dependent	upon	heterozygosity	
H,	including	the	within	population	(alpha)	measures	H1 and H2.

With	the	false	detection	of	selection	held	constant	at	1%,	the	im-
portant	matter	is	the	performance	value:	what	percentage	of	loci	that	
are	classified	as	outliers,	due	to	their	differentiation	value	surpassing	
the	univariate	or	bivariate	criterion,	are	actually	under	selection—	the	
true	positives	(TP).	For	a	wide	range	of	selection	strengths,	Table 2 
shows	 the	performance	values	 for	each	univariate	criterion	 (a	 sin-
gle	 differentiation	 measure),	 and	 each	 bivariate	 criterion	 (i.e.,	 an	
outlier	 locus	must	 surpass	 the	cutoff	value	 for	 two	differentiation	
measures).	Of	course,	with	the	strongest	selection	(s =	0.05),	all	cri-
teria	performed	well,	but	with	very	weak	selection	(s = 0.001), there 
was	 poor	 performance.	 The	 right-	hand	 column	 of	 Table 2 shows 
the	performance	 averaged	over	 all	 selection	 strengths,	which	had	
similar	rankings	for	the	performance	of	the	criteria.	The	univariate	
criteria	did	not	perform	as	well	as	the	bivariates,	with	no	overlap	of	
mean	performance	±1 × SE.	Within	the	univariates,	there	was	simi-
lar	performance	for	all	criteria,	but	when	averaged	over	all	selection	
strengths,	the	three	best	performers	were	AA, I , and GST.	Within	the	
bivariate	criteria	again	there	was	similar	performance	for	all	criteria.	
Nevertheless	consistently	the	three	best	performers	were	“DEST	&	I  ,”	
tied	with	“DEST	&	GST,”	followed	by	“

AA	&	GST.”

(7)AA =
BCAFD(

0.6152 + 0.3985 × pmax
) =

||p1 − p2
||(

0.6152 + 0.3985 × pmax
)

(8)AA=
||p1−p2

||(
0.6152+0.3985×pmax

) =

√
2 2D−2

2D(1+4N(2m+�))

(9)AA=
||p1−p2

||(
0.6152+0.3985×pmax

) =

√
2 2D−2

2D(1+8N(2m+�))
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4  |  DISCUSSION

Science	 progresses	 by	 making	 forecasts	 under	 given	 conditions,	
then	 testing	 to	 see	 whether	 these	 conditions	 are	 confirmed	 by	
the	data.	 Examples	 include	 assessing	 levels	 of	 dispersal	 by	 identi-
fying	 whether	 neutral	 loci	 depart	 from	 expectations	 for	 isolation	

or	 panmixia,	 and	 testing	 for	 loci	 that	 may	 be	 responding	 to	 geo-
graphically	 variable	 selection,	 by	 identifying	 whether	 genetic	 dif-
ferentiation	is	higher	than	neutral	expectation	(“outlier	loci,”	(Bierne	
et al., 2013;	 Lotterhos	 &	 Whitlock,	 2014;	 Narum	 &	 Hess,	 2011; 
Schneider	et	al.,	2021;	Xiang-	Yu	et	al.,	2016)).	Unfortunately,	there	
are	expected	to	be	many	false	results	 in	such	molecular	ecological	
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methods	 (Bierne	et	 al.,	2013;	 Lotterhos	&	Whitlock,	2014;	Narum	
&	Hess,	2011;	Schneider	et	al.,	2021;	Whitlock	&	McCauley,	1999; 
Xiang-	Yu	et	al.,	2016).	Therefore,	 it	 is	advisable	to	confirm	conclu-
sions	by	methods	 that	are	mathematically	 independent	or	at	 least	
partially	 independent.	 Figure 3 shows that AA = 

||p1 − p2
||(

0.6152 + 0.3985 × pmax
) 

(Equation 7)	provides	information	that	is	not	linearly	dependent	on	
three	other	differentiation	measures:	GST, DEST, I,	as	previously	sug-
gested	by	an	investigation	of	BCAFD	(Berner,	2019a). AA	is	therefore	
complementary	to	GST, DEST, I,	and	other	measures	(discussed	below),	

and	so	it	is	a	useful	addition	to	our	range	of	genetic	differentiation	
measures,	able	to	provide	at	least	partly	independent	validation	of	
results.

The	forecasts	in	Equations (8) and (9)	for	AA	can	now	be	added	
to	the	armory	of	null	expectations	in	assessment	of	connectivity	and	
searches	for	 loci	under	selection,	because	the	forecasts	for	AA are 
very	accurate	in	simulation	results	for	the	common	data	type	of	neu-
tral	biallelic	SNPs,	over	a	wide	range	of	dispersal	rates	and	effective	
population	sizes	(Figure 1b,c).	If	researchers	do	wish	to	use	BCAFD 
and	still	achieve	this	accuracy,	the	researchers	need	to	filter	so	that	
they	use	only	those	 loci	with	maximum	allele	proportion	 (in	either	
of	the	two	locations)	in	the	range	0.8	to	unity,	thus	losing	much	of	
their dataset.

It is worth noting that AA (and BCAFD)	are	still	dependent	upon	
other	 aspects	 of	 within-	locality	 alpha-	variation,	 because	 of	 their	
relationship to GST and FST.	 It	was	not	 possible	 to	 remove	 this	 de-
pendence	by	basing	the	expectations	for	AA	upon	G"ST	(Meirmans	&	
Hedrick,	2010) (Equation A1.14);	moreover,	such	a	correction	would	
considerably	complicate	the	derivation	of	 theoretical	expectations	
for	AA or BCAFD,	such	as	Equations (8) and (9).	However,	the	alpha-	
dependence	is	not	fatal;	despite	their	alpha-	dependence,	GST and FST 
are	frequently	used	in	various	ways,	including	assessing	connectiv-
ity	 and	 searching	 for	 loci	 under	 geographically	 variable	 selection.	
Moreover,	 under	 some	 conditions	GST and FST	 have	 performance	
comparable	or	better	than	other	measures	(Schneider	et	al.,	2021). 
Nevertheless,	like	all	such	methods,	there	are	expected	to	be	many	
false-	positives,	so	that	corroboration	with	semi-	independent	assess-
ments	 is	needed	 (Bierne	et	al.,	2013;	Lotterhos	&	Whitlock,	2014; 
Narum	&	Hess,	2011;	Schneider	et	al.,	2021;	Xiang-	Yu	et	al.,	2016), 
which is where AA	might	be	used.

The	neutral	forecasts	for	AA	can	be	used	either	to	make	biological-	
inventories	of	differentiation	between	locations	(or	times),	or	to	be	
compared	to	observations	in	order	to	assess	biological	processes	that	
underlie	all	biology,	and	are	the	processes	which	some	conservation	
initiatives	aim	to	conserve	(Anonymous,	1988).	Processes	to	be	in-
vestigated	include	population	size,	mutation,	and	dispersal	in	natural	
or	managed	 systems,	or	 searches	 for	outlier	 loci	 that	depart	 from	
neutral	expectations,	and	are	thus	candidate	adaptive	loci,	which	of	
course	are	very	important	in	evolution	and	conservation	(Teixeira	&	
Huber,	2021).	Candidate	 adaptive	 loci	 are	 identified	because	 they	
depart	from	neutral	forecasts,	as	is	commonly	done	with	GST, FST, and 

TA B L E  1 The	effect	of	pmax	on	forecasts	for	BCAFD

Central 
pmax R2

P for 
significance Intercept

Slope 
coefficient 
(95% CL)

0.05 .465 1.0 × 10−131 +0.0008 0.630258	
(0.59–	0.67)

0.15 .444 1.7 × 10−111 +0.0020 0.673769 
(0.62–	0.72)

0.25 .420 2.3 × 10−104 +0.0022 0.713834	
(0.66–	0.77)

0.35 .456 8.2 × 10−118 +0.0007 0.79615	
(0.74–	0.85)

0.45 .414 2.2 × 10−106 +0.0024 0.766259	
(0.71–	0.83)

0.55 .482 4.5 × 10−126 +0.0001 0.849727	
(0.79–	0.91)

0.65 .569 7.4 × 10−158 −0.0015 0.900086 
(0.85–	0.95)

0.75 .482 2.8 × 10−128 −0.0008 0.824037	
(0.77–	0.88)

0.85 .538 1.6 × 10−151 −0.0020 0.947642	
(0.89–	1.01)

0.95 .586 2.1 × 10−201 −0.0023 1.042645	
(0.99–	1.10)

Note:	The	9000	data	points	from	Figure 1a,	sorted	by	pmax	in	the	final	
generation.	In	the	first	column,	“Central	pmax = 0.05”	identifies	the	
points with 0 ≤ pmax ≤ 0.099,	etc.	The	remaining	columns	show	the	
results	of	regression	analysis	of	(Simulated-	BCAFD)	against	(Predicted-	
BCAFD	from	Equation 6)	for	the	subset	of	the	datapoints	identified	in	
the	left	column.	All	regressions	showed	an	intercept	very	close	to	zero,	
as	expected.	Large	numbers	of	significant	digits	are	retained	in	the	
slope	coefficients	because	of	their	subsequent	use	in	the	analysis	in	
Figure 2,	where	the	coefficients	are	plotted	against	central	pmax	values.

F I G U R E  1 (a)	Comparison	of	simulation	results	with	algebraic	predictions	for	BCAFD;	9000	points	from	the	1000	replicates	of	each	
of	nine	neutral	scenarios	(effective	size	N = 1000, 10,000, 100,000, dispersal rate m =	0.01,	0.03,	0.10)	and	with	regression	equation	
(Simulated-	BCAFD) =	0.83 × (Predicted-	BCAFD	from	Equation 6)	(significance	P <<0, R2 =	.50,	intercept	negligibly	different	from	zero:	
−7.6 × 10−5).	The	black	line	is	the	regression	line;	the	red	line	is	the	expected	1:1	relationship.	(b)	The	same	data	again,	using	the	correction	for	
the	limitation	by	maximum	p,	that	is	a	plot	of	AA = |p1	–	p2|/(0.6152 + 0.3985 × pmax) against the expectation shown in Equations (6) and (8). In 
this	case,	the	expected	45-	degree	plot	is	achieved	exactly,	with	the	expected	slope	of	unity	(slope	coefficient	=	1.00,	95%	confidence	limits	
0.98	to	1.02,	significance	P <<0, R2 =	0.50,	intercept	negligibly	different	from	zero:	0.0004).	The	red	line	for	1:1	slope	is	exactly	coincident	
with	the	regression	line.	(c)	The	nine	scenarios	from	(b)	plotted	individually—	comparison	of	simulation	results	with	algebraic	predictions,	
using	AA,	the	correction	for	the	limitation	by	maximum	p.	Each	panel	shows	1000	points	from	the	1000	replicates	of	one	scenario,	whose	
dispersal rate m	and	effective	size	N	is	shown	in	the	panel's	headline.	The	slopes	of	regression	lines	are	shown	on	the	panels,	with	95%	
confidence	intervals,	which	included	unity	in	all	except	two	marginal	cases,	and	are	therefore	each	concordant	with	the	overall	result	shown	
in	(b)	and	the	relationship	in	Equation (8).	In	all	cases,	the	intercept	was	negligibly	different	from	zero,	and	P	for	significance	was	<10−18.
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other	measures	 (Bierne	 et	 al.,	2013;	 Lotterhos	&	Whitlock,	 2014; 
Narum	&	Hess,	2011;	Schneider	et	al.,	2021;	Xiang-	Yu	et	al.,	2016). 
Similar	 searches	 for	 adaptive	 loci	 are	 now	 using	 BCAFD	 (Bharti	
et al., 2021;	Boyle	et	al.,	2021;	Haenel,	Guerard,	et	al.,	2021;	Haenel,	
Oke, et al., 2021;	Price	et	al.,	2020;	Yin	et	al.,	2021;	Zhou	et	al.,	2021). 
These	 searches	 are	 expected	 to	 benefit	 from	 using	 AA	 instead	 of	
BCAFD,	because	as	shown	 in	 the	 results	above,	 the	pmax	 limitation	
of	BCAFD	truncates	the	high	values	of	differentiation,	which	are	the	
very	values	used	to	identify	the	potentially	adaptive	loci.

Table 2	shows	the	performance	of	various	criteria	for	identifying	
candidate	adaptive	loci	under	selection,	due	to	their	being	outliers	
whose	geographic	genetic	differentiation	is	in	the	top	1%	of	values	
for	neutral	 loci	for	either	a	single	measure	(univariate	criterion),	or	
two	measures	 (bivariate	 criterion).	Of	 course,	 the	more	 restrictive	
bivariate	criterion	eliminated	more	neutral	loci,	so	the	bivariate	mea-
sures	showed	the	best	performance,	measured	as	the	percent	of	all	
outlier	loci	that	were	truly	under	selection	(right	column	in	Table 2). 
Table 2	indicates	that	there	is	no	perfect	measure	for	detecting	se-
lection,	because	when	we	are	searching	for	loci	under	selection,	we	

cannot	know	in	advance	the	proportion	of	loci	that	are	experiencing	
each	selection	strength.	Nevertheless,	it	is	reassuring	to	see	that	the	
rank	order	of	the	average	performance	over	all	selection	strengths,	
is	 similar	 to	 the	 rank	order	within	each	 selection	 strength.	Of	 the	
univariate	criteria,	the	three	best	performers	were	AA, I , and GST. The 
bivariate	criteria	generally	performed	much	better,	showing	the	ad-
vantage	of	using	more	that	one	differentiation	measure	as	the	cutoff	
in	searches	for	candidate	adaptive	loci.	Of	the	bivariate	criteria,	the	
three	best	performers	were	“DEST	&	I ,”	tied	with	“DEST	&	GST,”	followed	
by	“AA	&	GST.”	The	differences	in	performance	were	small,	but	even	
small	 improvements	 are	 very	 important	 given	 that	 this	 commonly	
used	approach	can	only	identify	outlier	loci	that	are	putatively	under	
selection,	then	each	of	these	“candidate”	loci	must	be	confirmed	by	
separate	extensive	investigations,	such	as	“evolve	and	resequence”	
experiments	 in	 one	 or	 more	 standard	 environmental	 conditions	
(Schlötterer	et	al.,	2015).

There	 could	 be	 further	 research	 into	 which	 complementary	
measures	 are	best	 to	 use	with	 AA.	 This	will	 depend	upon	 the	 aim	
of	the	investigation	and	the	different	sensitivities	of	each	measure,	
but	some	generalizations	are	possible.	There	has	been	considerable	
investigation	of	 the	properties	of	 the	Hill	diversity	measures,	with	
many	having	good	predictions	from	underlying	factors	such	as	pop-
ulation	size,	speciation/mutation,	and	dispersal,	as	well	as	showing	
independence	of	alpha,	beta,	and	gamma	(total)	diversity	 (Sherwin	
et al., 2017, 2021).	 In	 particular,	 Shannon	 Mutual	 Information	 I/
Shannon	Differentiation	and	Morisita-	Horn/DEST	are	differentiation	
measures	that	have	available	forecasts	under	neutrality	that	can	be	
used	as	null	models.	These	measures	also	avoid	the	dependency	on	
within-	location	(alpha)	variation	seen	with	GST, and FST;	moreover,	the	
Shannon	measures	avoid	the	heavy	emphasis	of	effects	of	common	
variants,	 such	as	 is	 seen	with	Morisita-	Horn	and	DEST	 (Jost,	2008; 
Magurran,	2004;	Sherwin	et	al.,	2017;	Sherwin	et	al.,	2021).	 If	 the	
primary	purpose	of	assessing	differentiation	is	for	 identification	of	
loci	under	selection,	another	good	measure	to	contrast	with	identifi-
cations	by	AA	would	be	BGD,	which	can	be	used	at	any	level	of	the	Hill-	
family	“Q,”	and	has	a	good	sensitivity	to	selection,	and	is	particularly	
appropriate	for	multi-	SNP	haplotypes,	which	are	not	considered	in	
the	current	work	(Schneider	et	al.,	2021).

Of	course,	any	use	of	theory	relies	upon	adherence	to	assump-
tions,	and	this	initial	theory	for	AA	has	assumptions	like	any	theory.	
The	equations	for	GST,	upon	which	the	

AA	forecasts	are	based,	rely	
on	a	number	of	assumptions	(Neigel,	2002;	Ochoa	&	Storey,	2021; 
Semenov	et	al.,	2019;	Whitlock	&	McCauley,	1999)	and	each	of	these	
needs	to	be	investigated	if	it	is	proposed	to	apply	Equations (8) or (9) 
to	any	particular	case.	First,	it	was	assumed	that	there	are	only	two	
locations,	of	approximately	equal	effective	size,	which	may	be	the	
case	especially	in	some	conservation	applications,	but	other	possibil-
ities	would	require	further	theory.	Second,	it	was	assumed	that	there	
is	 symmetric	dispersal	m,	 the	 same	 for	both	 locations,	 so	 that	 ad-
dressing	a	source-	sink	situation	would	require	further	theory	based	
on	the	continent–	island	model.	Third,	it	should	be	noted	that	unlike	
the	Hill-	family	of	diversity	measures,	AA (or BCAFD)	cannot	currently	
be	corrected	for	absence	or	under-	representation	of	rare	alleles,	due	
to	incomplete	sampling	of	individuals,	by	the	Good-	Turing	correction	

F I G U R E  3 DEST,GST, and I	(mutual	information)	plotted	against	
AA (i.e., BCAFD	corrected	for	maximum-	value	dependency).	DEST 
is	shown	as	squares,	GST as discs, I 	as	triangles.	All	measures	were	
from	the	same	simulated	dataset	that	was	used	in	Figure 1.

F I G U R E  2 The	effect	of	maximum	p-	value	pmax on the regression 
slope	coefficient	of	(simulated	BCAFD) on (expected BCAFD 
from	Equation 6).	This	plot	itself	has	a	regression	equation:	
(coefficient of simulated BCAFD on expected BCAFD) = 0.6152 + 0.3985 × pmax ,	
with R2 = .90, and P =	.000025.	The	values	upon	which	the	plot	is	
based	are	taken	from	Table 1.
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TA B L E  2 Detection	of	loci	under	directional	selection

Criteria  
{Differentiation 
measure(s)}

Known selection strength (s)

0.001 0.003 0.005 0.05
Mean 
performance

AA 488.18	± 5.90
10 ± 0
33.03

851.18	± 4.20
10 ± 0
46.23

911 ± 2.57
10 ± 0
47.92

999 ± 0.30
10 ± 0
50.23

44.35 ± 3.86

BCAFD 485.36	± 6.15
10 ± 0
32.9

820.45	± 4.69
10 ± 0
45.32

891 ± 3.16
10 ± 0
47.37

998.73 ± 0.38
10 ± 0
50.22

43.95	± 3.82

GST 459.91	± 5.46
10 ± 0
31.72

857.55	± 3.75
10 ± 0
46.42

938.09 ± 2.27
10 ± 0
48.65

999.82 ± 0.12
10 ± 0
50.25

44.26 ± 4.25

DEST 488.36	± 6.57
10 ± 0
33.03

804.82	± 4.54
10 ± 0
44.84

874.73	± 3.73
10 ± 0
46.91

998.18 ± 0.40
10 ± 0
50.21

43.75	± 3.74

I 458.27	± 5.35
10 ± 0
31.64

857	± 3.71
10 ± 0
46.4

938 ± 2.27
10 ± 0
48.65

999.82 ± 0.12
10 ± 0
50.25

44.24 ± 4.27

AA, BCAFD 468.91	± 5.52
7.45 ± 0.25
38.87

820.45	± 4.69
7.45 ± 0.25
52.66

891 ± 3.16
7.45 ± 0.25
54.71

998.73 ± 0.38
7.45 ± 0.25
57.52

50.94	± 4.15

AA, GST 443.64	± 5.09
5.64 ± 0.24
44.28

843.82	± 4.32
5.64 ± 0.24
60.18

910.73 ± 2.57
5.64 ± 0.24
61.99

999 ± 0.30
5.64 ± 0.24
64.15

57.65 ± 4.53

AA, DEST 470.18	± 5.87
7.18 ± 0.26
39.81

804.82	± 4.54
7.18 ± 0.26
53.1

874.3	± 3.73
7.18 ± 0.26
55.16

998.18 ± 0.40
7.18 ± 0.26
58.41

51.62	± 4.08

AA, I 442.18	± 5.01
5.64 ± 0.24
44.19

843.36	± 4.26
5.64 ± 0.24
60.17

910.73 ± 2.57
5.64 ± 0.24
61.99

999 ± 0.30
5.64 ± 0.24
64.15

57.63	± 4.55

BCAFD, GST 450.45	± 5.67
5.64 ± 0.34
44.65

819.67 ± 4.77
5.64 ± 0.34
59.48

891 ± 3.16
5.64 ± 0.34
61.48

998.73 ± 0.38
5.64 ± 0.34
64.14

57.44	± 4.37

BCAFD, DEST 475.55	± 6.22
8.91 ± 0.16
35.03

804.82	± 4.54
8.91 ± 0.16
47.71

874.73	± 3.73
8.91 ± 0.16
49.79

998.18 ± 0.40
8.91 ± 0.16
53.09

46.40	± 3.95

BCAFD, I 449	± 5.56
6.18 ± 0.44
42.33

819.55	± 4.71
6.18 ± 0.44
57.26

891 ± 3.16
6.18 ± 0.44
59.29

998.73 ± 0.38
6.18 ± 0.44
62.01

55.22	± 4.41

GST, DEST 441.36	± 5.67
4.91 ± 0.31
47.59

804.09	± 4.62
4.91 ± 0.31
62.32

874.73	± 3.73
4.91 ± 0.31
64.28

998.18 ± 0.40
4.91 ± 0.31
67.25

60.36 ± 4.38

GST, I 458.27	± 5.35
10 ± 0
31.64

857	± 3.71
10 ± 0
46.4

938 ± 2.26
10 ± 0
48.65

999.82 ± 0.12
10 ± 0
50.25

44.24	± 4.27

DEST, I 439.91	± 5.59
4.91 ± 0.31
47.51

804.09	± 4.62
4.91 ± 0.31
62.32

874.73	± 3.73
4.91 ± 0.31
64.28

998.18 ± 0.40
4.91 ± 0.31
67.25

60.34 ± 4.40

Note:	The	table	shows	the	number	of	loci	(±SE)	from	selection	simulations	of	1000	loci,	which	were	identified	as	being	under	selection	by	criteria	
based	on	differentiation	values	from	neutral	simulations	of	1000	loci:	either	a	“univariate”	criterion	of	being	in	the	top	1%	of	neutral	values	for	one	
differentiation	measure,	or	a	“bivariate”	criterion	of	being	simultaneously	in	the	top	1%	for	two	differentiation	measures.	In	each	of	columns	2–	5,	the	
top	value	in	each	cell	is	the	number	of	loci	identified	as	being	under	selection	(true	positive,	TP),	in	the	selection	simulation	with	the	known	value	
of	selection	shown	at	the	top	of	the	column,	out	of	the	total	of	1000	independent	loci	simulated.	The	second	value	in	each	cell	is	the	number	of	loci	
identified	as	being	under	selection	(False	positive,	FP),	in	the	parallel	neutral	simulation;	of	course	with	univariate	criteria	and	the	cutoff	being	the	top	
1%,	the	FP	value	is	always	10	(1%	of	1000	loci).	The	third	value	in	each	cell	is	the	“performance”	value—	the	percentage	of	loci	that	are	true	positive,	
out	of	all	loci	identified	as	outliers	by	that	criterion	(TP	&	FP).	The	performance	value	shown	is	for	the	case	where	1%	of	all	loci	were	under	that	
selective	regime,	and	all	other	loci	were	neutral;	the	calculation	is	100 × (TP × 0.01)/[(TP × 0.01) + (FP × 0.99)].	Of	course,	the	proportions	of	neutral	
and	selected	loci	would	not	be	known	beforehand	in	a	study	designed	to	detect	loci	under	selection,	but	given	that	it	is	standardized	to	a	constant	
univariate	FD	rate,	the	performance	values	can	be	used	to	compare	the	criteria.	The	right	column	shows	the	performance	averaged	over	all	four	
selection	strengths.	Within	each	of	the	univariate	criteria	and	the	bivariate	criteria,	the	three	criteria	with	the	best	average	performance	are	bolded.	
Note	that	the	rank	order	of	performance	values	is	similar	for	most	selection	strengths,	except	the	weakest	selection	(s = 0.001).
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(Chao	&	Jost,	2015)	(A.	Chao	pers.	comm.);	however,	this	correction	
method	is	also	inapplicable	to	any	measure	based	on	a	two-	variant	
system	such	as	SNPs.	Finally,	Figure 1b	shows	a	wide	scatter,	but	
the	regression	analysis	shows	that	if	there	are	multiple	independent	
replicates	such	as	hundreds,	or	a	thousand,	neutral	SNP	loci	in	link-
age	equilibrium,	the	neutral	forecast	is	very	accurate.	This	number	of	
statistically	unlinked	SNP	loci	is	easily	achievable	with	current	meth-
ods	for	genotyping-	by-	sequencing	(e.g.,	www.diver	sitya	rrays.com).

Irrespective	of	whether	one	wishes	to	use	theoretical	expecta-
tions,	it	 is	advisable	to	use	AA rather than BCAFD,	because	the	lat-
ter's	 dependence	on	pmax	 limits	 its	 comparability	 to	 other	 studies,	
even	within	the	same	species,	 if	 the	population	pairs	analyzed	are	
in	parts	of	the	range	that	have	different	pmax,	due	to	a	strong	cline.

Several	 further	 possible	 developments	 are	 obvious.	 First,	
Appendix 1	principally	shows	equilibrium	forecasts;	Tables	A2.1	and	
2.2	 show	that	 there	 is	often	a	wide	 range	of	generation	 times	 for	
which	equilibrium	 is	 a	 reasonable	assumption.	However,	 there	are	
populations	that	are	known	to	have	had	recent	changes	such	as	se-
vere	reductions	in	connectivity,	and	for	these	the	Equation (A1.11b) 
can	be	used.	For	other	changes	such	as	reduction	of	population	size,	
further	nonequilibrium	forecasts	could	be	derived	in	later	research.	
Second,	 the	 initial	neutral	 theory	of	AA in this article gives a good 
null	model	for	use	in	searches	for	outlier	loci	that	may	be	under	di-
rectional	selection,	but	could	form	the	basis	of	further	theory	that	
is	specific	to	particular	modes	of	selection,	 including	more	compli-
cated	geographical	patterns	of	directional	selection,	or	balancing	or	
disruptive	selection.	Third,	at	present	the	theory	is	limited	to	cases	
where	there	are	only	two	alleles,	as	is	often	the	case	for	SNPs,	but	
not	for	haplotypes	encompassing	many	nucleotides.	In	future,	all	the	
theory	 in	 this	 paper	might	 be	 extended	 to	 cases	with	multiple	 al-
leles,	broadening	it	to	encompass	the	multiallele	version	of	BCAFD 
((Berner,	2019a)	Supplement).	Fourth,	the	theory	could	be	extended	
to	multiple	 locations.	Fifth,	 the	haploid	Equation (8)	might	also	be	
developed	 to	deal	with	species	variants	 in	 two	 local	 communities,	
if	the	speciation	rate	is	negligible	relative	to	the	dispersal	rate;	this	
is	 of	 course	 the	 original	 use	 of	 Bray-	Curtis	 (Bray	&	Curtis,	 1957), 
which	would	require	development	of	multivariant	theory	plus	sim-
ulations	tailored	to	species	assemblages,	 including	 investigation	of	
the wide scatter seen in Figure 1,	for	which	species	analyses	could	
not	be	overcome	by	using	hundreds	or	more	replicate	loci—	instead,	
hundreds	or	more	replicate	pairs	of	communities	would	be	needed,	
which	is	probably	unattainable.

In	conclusion:

• The new AA	measure	 (Equation 7)	provides	a	semi-	independent	
means	 for	 assessing	 connectivity,	 selection,	 etc.	 based	 on	 geo-
graphic	 genetic	 differentiation,	 that	 can	 be	 used	 in	 combina-
tion	with	other	 such	measures	 to	minimize	 errors	 such	 as	 false	
positives.

• The AA	measure	avoids	counterintuitive	truncation	of	high	values	
of	beta-	differentiation	by	alpha	within-	population	variation	(pmax),

•	 Avoiding	 this	 truncation	means	 that	 that	 studies	with	 different	
pmax	can	now	be	compared	realistically,	either	between	species,	or	

even	within	the	same	species,	if	the	population	pairs	analyzed	are	
in	parts	of	the	range	that	have	different	pmax,	due	to	a	strong	cline.

•	 Avoiding	this	truncation	is	especially	important	if	the	high	values	
of	 differentiation	 are	 to	be	used	 to	 identify	 candidate	 adaptive	
loci,	 because	 the	 truncation	would	 pull	 the	 truly	 high	 values	 in	
amongst	 the	not-	quite-	so-	high,	 leading	 to	 increased	 false	nega-
tives and positives.

•	 As	predicted,	the	best	performance	at	identifying	outlier	loci	that	
are	potentially	under	selection	comes	from	using	two	geographic	
genetic	differentiation	measures	simultaneously,	to	make	bivari-
ate	criteria;	the	three	best	performers	were	“DEST	&	 I ,”	tied	with	
“DEST	 &	GST,”	 followed	 by	 “

AA	 &	GST.”	 The	 differences	 in	 perfor-
mance	are	very	important	given	that	each	of	the	identified	“candi-
date”	loci	must	be	confirmed	by	separate	extensive	investigations

•	 As	well	 as	 simply	presenting	patterns	 in	 the	data,	 if	 researchers	
consider	that	their	system	conforms	to	the	assumptions	herein,	the	
neutral	forecasts	for	AA	can	be	used	as	a	rigorous	basis	for	investi-
gations	such	as	tests	for	selection	and	assessment	of	connectivity.

•	 There	are	equilibrium	and	nonequilibrium	versions	of	the	theory	
for	AA (Equations 8, 9, A1.11b).

•	 Irrespective	of	whether	the	theory	in	this	paper	is	used,	BCAFD 
cannot	be	free	of	the	 limit	of	maximum	within-	population	allele	
proportion pmax,	 so	 it	 is	 best	 if	 reported	 differentiation	 values	
should	be	based	upon	AA,	not	BCAFD.
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APPENDIX 1

Forecasting equilibrium Bray- Curtis with mutation, dispersal, and 
drift due to small population size, for two locations, with a single 
neutral biallelic SNP locus
There are two locations with indices i =	1,2.	Where	there	is	no	index,	
or the index is T,	 it	 is	the	value	calculated	for	the	pooled	locations	
(metapopulation),	 for	 example,	 pooled	 allele	 proportion,	 overall	
heterozygosity.

AA— “Adjusted-	AFD,”	 i.e.,	 Bray-	Curtis	 between	 locations	 “1”	 and	
“2”,	adjusted	to	compensate	for	the	limitation	that	BCAFD	cannot	be	
greater than pmax	the	maximum	allele	proportion	in	either	of	the	two	
locations: AA  = 

||p1 − p2
||(

0.6152 + 0.3985 × pmax
)

BCAFD— Bray-	Curtis	between	locations	“1”	and	“2”,	the	unsigned	
difference	of	proportions,	that	is,	BCAFD = ||p1 − p2

||	(Berner,	2019a, 
2019b) (Equation 2	 in	 main	 article).	 (This	 is	 also	 called	 AFD— 
Difference	of	Allele	“Frequency”	i.e.,	proportion).	The	algebra	below	
deals	with	a	single	locus,	but	BCAFD	can	be	averaged	over	loci.

2
D—	Second	 order	 Hill	 diversity,	 or	 effective	 number	 of	 alleles	

2
D = 1∕(1 − H) or H = 1 − 1∕ 2

D =
2D − 1

2D

FST—	Wright's	measure	of	differentiation	for	biallelic	SNPs
GST = FST = �

2
p
∕pq =

[
HT − H1,H2

]
∕HT	 ([Halliburton,	 2004]	 Box	

9.5)
GST—	See	FST;	these	are	equivalent	in	the	2-	allele,	2-	location	case.
H—	Binomial	 (Hardy–	Weinberg)	expected	heterozygosity,	 for	ex-

ample,	HT = 1 − p2 − q2; H1 = 1 − p2
1
− q2

1

i =	1,2,—	indices	for	the	two	members	of	a	pair	of	locations.	Where	
there is no index, or the index is T,	it	is	the	value	calculated	for	the	
pooled	 locations	 (metapopulation),	 for	 example,	pooled	allele	pro-
portion,	overall	heterozygosity.

k	—	number	of	localities	(always	two	unless	stated	otherwise)
m—	dispersal	per	generation	between	the	two	populations,	sym-

metrical	(0 ≤ m ≤ 1)
N—	effective	population	size	at	each	location	(identical)
p1 p2—	proportions	 of	 the	 chosen	 allele	 at	 each	 location	 “i”	

(0 ≤ pi ≤ 1) at generation t;	for	the	other	allele,	q i =	1 − pi.
p— average p	over	the	two	locations	at	beginning	of	generation	t: 

p =
(
p1 + p2

)
∕2; q = 1 − p

p′—	proportions	partway	through	generation	t.
p″—	proportions	one	generation	after	time	t	(at	time	t″).

https://doi.org/10.1002/ece3.9176
https://doi.org/10.1002/ece3.9176
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t— generation index (t″	after	one	full	generation).
T—	is	the	index	for	the	pooled	locations	(metapopulation),	for	ex-

ample,	overall	heterozygosity.
μ—	mutation	rate	per	generation	(0 ≤ � ≤ 1)
�
2
p
—	Variance	of	p	between	locations	1	and	2:	�2

p
= p2

i
−
(
pi
)2

I	restricted	analysis	to	cases	where	there	are	two	locations:

•	 with	identical	effective	population	size,
•	 reproduction	with	stochastic	drift	in	each	population	is	followed	
by	dispersal

•	 deterministic	symmetric	dispersal	between	the	two	locations
•	 two	alleles	per	locus	(e.g.,	conventionally	filtered	SNP	data)

These	are	shown	schematically	in	Table A1.1,	for	a	single	generation.

A.1.1 | BRAY- CURTIS/AFD “BCAFD” AT DRIFT- DISPERSAL 
EQUILIBRIUM
BCAFD	between	locations	“1”	and	“2,”	is	(Berner,	2019a, 2019b)

At	any	time,	for	2	localities	with	2	alleles	per	locus,

where �
2
p
= p2

i
−
(
pi
)2	 ((Halliburton,	 2004)	 Box	 9.5	 (Falconer	 &	

Mackay,	1996)	equation	3.4)

So	GST = FST = BCAFD2 ∕4pq

Or

Now	 with	 diploid	 individuals	 at	 dispersal-	drift-	mutation	 equi-
librium	 for	 k	 localities,	 it	 is	 expected	 that	 (equations	 8	 and	 20	 in	
[Takahata, 1983])

so	with	one	pair	of	localities,	k = 2, then

So	inserting	Equation (A1.5b) into Equation (A1.4),	at	equilibrium,

We	get	for	diploid:

And	for	haploid:

A.1.2 | DYNAMIC (NONEQUILIBRIUM) AA OVER TIME AFTER 
DISPERSAL IS REDUCED TO ZERO
The	 equilibrium	 calculations	 presented	 above	 are	 appropriate	 in	
many	cases,	with	Tables A2.1 and A2.2	below	showing	that	there	is	
usually	a	wide	window	of	generation	times	for	which	equilibrium	is	a	
reasonable	assumption.	However,	in	both	natural	and	modified	habi-
tats,	often	there	is	a	nonequilibrium	situation	such	as	a	sudden	reduc-
tion	in	connectivity,	for	example,	due	to	new	human	infrastructure.	
Therefore,	dynamic	(nonequilibrium)	equations	are	also	needed,	and	
one	 such	equation	 is	derived	below	 to	give	Equation (A1.11b),	 for	
time	t	generations	after	a	complete	cessation	of	dispersal	between	
two locations.
At	 time	 t	 after	a	diploid	population	 is	 split	 into	 two	subpopula-

tions	with	zero	dispersal	between	them	((Falconer	&	Mackay,	1996) 
equation	3.2):

where pinit and qinit	are	the	average	allele	proportions	immediately	be-
fore	the	split
From	Equation (A1.3)	above,

Note	the	use	of	AA rather than BCAFD	in	these	dynamic	equations,	
because	 they	 are	modeling	 complete	 isolation,	which	will	 result	 in	
approach	to	high	differentiation,	which	the	main	article	shows	is	best	
forecast	for	AA, not BCAFD.	If	we	are	averaging	over	many	loci,	it	is	
reasonable	to	assume	that	average	allele	proportions	for	the	metap-
opulation	(pinit and qinit)	do	not	change	over	time.	Then	at	time	t	after	
dispersal	is	reduced	to	zero,	combine	Equations (A1.9) and (A1.10):

(2	and	A1.1)BCAFD = ∣ p1 − p2 ∣

(A1.2)GST = FST =
[
HT − H1,H2

]
∕HT = �

2
p
∕pq

(A1.3)IE �
2
p
=
��
p2
1
+ p2

2

�
∕2

�
−

⎡
⎢
⎢⎣

��
p1+p2

�

2

�2⎤
⎥
⎥⎦
=
�
p1−p2

�2
∕4 = BCAFD

2 ∕4

(A1.4)BCAFD2
= 4pqGST = 2HTGST

(A1.5a)GST = 1∕

(
1 +

4k

k − 1

(
N� +

kNm

k − 1

))

(A1.5b)GST = 1∕(1 + 8N(2m + �))

(A1.6)BCAFD2=2HT∕(1+8N(2m+�))=
2 2D−2

2D(1+8N(2m+�))

(A1.7)BCAFD =

√
2 2D − 2

2D(1 + 8N(2m + �))

(A1.8)BCAFD =

√
2 2D − 2

2D(1 + 4N(2m + �))

(A1.9)�
2

p
(at time t) = pinit qinit

[
1 − (1−1∕2N)t

]

(A1.10)�
2
p
= AA2 ∕4 or AA =

√
4 �2

p

(A1.11a)AA (at time t) =

√
4pinit qinit

[
1 − (1−1∕2N)t

]

TA B L E  A 1 . 1 Scheme	for	the	simulation,	for	each	generation,	
using	terms	defined	in	text	of	Appendix 1

Location 1 Location 2

Generation t,	initially p1, q1 p2, q2

After	drift p′
1
, q′

1
p′
2
, q′

2

After	dispersal p��
1
=p�

1
−mp�

1
+mp�

2

q��
1
=1−p��

1

p��
2
=p�

2
−mp�

2
+mp�

1

q��
2
=1−p��

2
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i.e.,:

In Equation (A1.11a), (A1.11b),	for	haploids,	2 N	is	replaced	by	N.

A.1.3 | CAN WE CORRECT FOR DEPENDENCE ON ALPHA AND 
GAMMA?
Note	that	due	to	the	dependence	of	GST	on	(alpha)	heterozygosity,	
BCAFD,	and	derived	measures	such	as	AA,	are	also	expected	to	be	
dependent	upon	(alpha)	heterozygosity,	and	such	dependence	is	not	
a	 desirable	 property	 for	 a	measure	 of	 between-	locality	 (beta)	 dif-
ferentiation.	This	is	additional	to	the	dependence	of	BCAFD	on	maxi-
mum	allele	proportion,	for	which	a	correction	is	applied	in	the	main	
article (AA).	However,	there	is	a	correction	for	the	unwanted	depend-
ency	of	GST	on	(alpha)	heterozygosity	(Meirmans	&	Hedrick,	2010), so 
it	is	interesting	to	ask	whether	using	this	correction	would	remove	
unwanted	dependency	for	BCAFD	and	thus	AA.	For	a	pair	of	 loca-
tions, the corrected GST is:

Combining	Equations (A1.2) and (A1.12),

Combining	Equations (A1.4) and (A1.13)

Although	G′′
ST
	is	free	of	alpha-	dependency,	nevertheless	this	new	

formulation	of	AA	is	clearly	still	heavily	dependent	upon	heterozygo-
sity	(HT ,H1,H2),	which	are	gamma	and	alpha	measures,	which	would	
ideally	not	affect	a	(beta)	differentiation	measure.	Additionally,	using	
this	formulation	in	Equation (A1.14)	for	BCAFD	would	considerably	
complicate	the	derivation	of	theoretical	expectations	comparable	to	
Equations (A1.7) and (A1.8).

APPENDIX 2

The MATLAB simulation program
This	MATLAB	program	was	modified	 from	 the	one	previously	de-
scribed	(Dewar	et	al.,	2011),	to	include	calculation	of	the	Bray-	Curtis/
AFD	Index	BCAFD and AA (Equations 2, 7, A1.1), as well as the previ-
ously	calculated	GST (Equation A1.2), DEST, and I	(mutual	information).
The	simulation	deals	with	two	biallelic	haploid	subpopulations,	for	

scenarios	with	every	possible	 combination	of	 levels	of	 three	 sym-
metric	dispersal	rates	(m =	0.01,	0.03,	0.1)	and	three	effective	sub-
population	sizes	(N =	1000,	10,	000,	100,	000),	giving	a	total	of	nine	
scenarios.	Mutation	rate	between	the	two	alleles	per	SNP	locus	per	
generation was held at μ = 10−9,	a	likely	rate	for	SNP	alleles,	but	pre-
liminary	simulations	showed	virtually	identical	results	with	the	much	

higher	and	lower	rates	of	μ = 10−6 and 10−12.	Indeed,	inspection	of	
Equations (A1.7) and A1.8	show	that	mutation	rate	will	be	largely	ir-
relevant	unless	the	locations	are	completely	isolated	(m =	0	exactly).	
Starting	allele	proportions	 in	each	subpopulation	 (p1, p2) were ran-
domized	for	each	subpopulation	in	each	replicate	of	each	scenario	
(0 ≤ p ≤ 1).	 Each	 generation	 included	 stochastic	 binomial	 sampling	
of	the	available	parent	alleles	to	establish	the	allele	proportions	for	
the	 offspring,	 followed	 by	 deterministic	 symmetrical	 dispersal	 to	
create	the	parent	populations	for	the	next	generation.	For	each	sce-
nario	(combination	of	m, N), there were 1000 independent replicate 
iterations,	which	could	be	regarded	either	as	1000	different	pairs	of	
populations,	or	one	pair	of	populations	with	1000	SNP	loci	showing	
independent	segregation	(i.e.,	in	linkage	equilibrium);	such	data	are	
now	commonplace.	Note	that	researchers	using	SNP	data	typically	
search	for	linkage	disequilibrium	between	pairs	of	loci,	and	remove	
one	of	each	pair.	If	researchers	obtain	less	than	1000	SNP	loci	that	
are	unlinked	(Waples	et	al.,	2022),	this	will	reduce	the	precision	of	
any	differentiation	measure,	including	GST or AA.	Note	that	if	there	
is	 moderate	 to	 high	 recombination,	 the	 number	 of	 chromosomes	
does	not	directly	limit	the	number	of	statistically	unlinked	loci.	Each	
iteration	was	run	for	200	generations.	Because	the	calculations	 in	
Appendix 1	are	for	equilibrium	given	values	of	m, μ, and N,	it	was	im-
portant	to	ensure	that	this	number	of	generations	was	long	enough	
to	allow	a	close	approach	to	equilibrium.	This	was	ensured	in	three	
ways.	First,	results	were	inspected	to	ensure	that	each	scenario	had	
asymptoted	to	a	stable	value	for	BCAFD,	well	before	the	final	gen-
eration.	Second,	iterations	were	each	also	inspected	to	ensure	that	
the	variance	of	BCAFD	between-	generations	was	much	lower	than	
variance	 between	 replicate	 iterations	 (typically	 one	 tenth	 or	 less).	
Finally,	200	generations	was	much	greater	than	the	expected	time	
for	FST	 to	 reach	half	drift-	dispersal	 equilibrium	 (t1∕2 eq generations), 
which	for	diploids	is	(Crow	&	Aoki,	1984;	Whitlock,	1992):

and	for	haploids	is

where	 symbols	 are	 as	 in	 Appendix 1.	 Maximum	 time	 to	 half-	
equilibrium	 is	34	generations	 for	 the	 scenarios	 trialed	 in	 the	main	
paper (Table A2.1). Given that BCAFD	 is	a	function	of	FST or GST, is 
seems	reasonable	to	assume	that	this	will	also	approximate	the	time	
to	half-	equilibrium	for	BCAFD and AA.	The	simulations	should	be	run	
for	 several	 times	 this	 t1∕2 eq.	 For	 all	 simulated	 scenarios,	 a	 time	 of	
200	generations	was	chosen,	which	is	well	in	excess	of	the	expected	
times	to	half-	equilibrium	in	Table A2.1.
There	is	a	second,	opposing,	constraint	on	the	number	of	genera-

tions.	As	well	as	the	need	to	ensure	close	approach	to	equilibrium,	
the	calculations	in	Appendix 1	assume	no	fixation	(i.e.,	loss	of	all	al-
leles	except	one),	so	that	it	was	important	to	run	the	simulations	for	

(A1.11b)AA (at time t) =

√
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[
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]
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times	that	are	short	enough	to	avoid	fixation.	This	is	also	important	
because	most	researchers,	or	the	companies	that	do	their	genotyp-
ing,	will	 filter	out	 invariant	 (fixed)	SNPs	 from	the	data.	Table A2.2 
shows	that	 it	 is	possible	 to	choose	simulation	generation	numbers	
that	 are	 short	 enough	 to	 give	 minimum	 fixation,	 but	 sufficiently	
large	 to	 give	 approximate	 equilibrium	 (Table A2.1).	 In	 the	 case	 of	
two	equal-	sized	 subpopulations	making	up	 a	metapopulation	with	
dispersal, N	 for	 metapopulation	 ≈2 × N-	subpopulation;	 for	 haploid	
we	use	4 N(metapop)	instead	8 N	in	the	equation	of	expected	time	to	
fixation,	and	then	we	find	that	tfix	generations	is	given	by	([Kimura	&	
Ohta, 1969,	Maruyama,	1970,	Crow	&	Kimura,	1970]	equation	8.9.4	
p	431):

where	symbols	are	as	in	Appendix 1.	Times	to	fixation	in	generations,	
for	the	scenarios	trialed	in	main	paper,	are	shown	in	Table A2.2. This 
table	shows	that	even	for	the	smallest	effective	population	size	of	
1000,	fixation	in	about	200	generations	would	require	a	mean	initial	
p	of	0.01	or	less,	for	example,	initial	p1 = p2 = 0.01.	With	random	as-
signment	of	initial	p	values	in	each	of	the	two	locations,	such	a	situa-
tion	would	arise	in	only	0.01 × 0.01 × 100%	=	0.01%	of	replicates.	In	
an	extreme	case	where	N	for	the	metapopulation	was	equal	to	the	N 
for	either	subpopulation,	the	fixation	times	would	be	halved,	and	yet	
most	of	the	fixation	times	would	still	be	orders	of	magnitude	larger	
than	the	200	generations	simulated.
In	case	any	fixation	did	occur,	the	program	included	a	trap	for	fixa-

tion,	and	it	was	designed	so	that	if	fixation	occurred	in	any	iteration,	
then	the	iteration	would	be	replaced	by	restarting	from	generation	
zero,	in	line	with	the	filtering	normally	applied	to	such	data.	Because	
of	the	relatively	short	number	of	generations	(200),	there	were	virtu-
ally	no	restarts	for	fixation.
The	 simulations	used	a	binomial	mechanism	 for	 transmission	of	

alleles	between	generations,	because	of	the	initial	focus	on	2-	allele	

SNPs.	However	other	mechanisms	such	as	Poisson	or	negative	bi-
nomial	might	give	different	 results	 (Warton	&	Hui,	2017), and this 
might	be	appropriate	in	other	cases	outside	the	scope	of	this	paper,	
including	where	 the	underlying	biological	 process	 for	 transmitting	
variants	is	different,	or	not	adequately	understood	at	present.
The	accuracy	of	the	simulations	was	tested	in	two	ways:

•	 By	limited	comparison	with	results	of	EASYPOP	(Balloux,	2001), 
in	which	the	starting	proportions	could	be	set	to	be	approximately	
p1 = p2 = 0.5.	These	showed	almost	identical	results	for	GST when 
the	MATLAB	simulation	was	run	with	initial	p1 = p2 = 0.5 exactly.

•	 By	 checking	GST	 results	 from	 the	 simulation	 against	 the	 well-	
known	forecasts	from	Equation (A1.5b).	The	results	of	the	simula-
tion	showed	very	good	fit	to	these	forecasts	over	the	wide	range	
of	conditions	in	the	simulation.	(Figure A2.1)

(A2.2)tfix = −
4Npln(p)

1 − p

TA B L E  A 2 . 1 Time	in	generations	to	half-	equilibrium	t1∕2 eq	for	
the	scenario	conditions	simulated

N m t1∕2 eq

1000 0.01 32.8488

1000 0.03 11.1944

1000 0.10 3.27386

10,000 0.01 34.3131

10,000 0.03 11.3596

10,000 0.10 3.28785

100,000 0.01 34.4666

100,000 0.03 11.3764

100,000 0.10 3.28925

Note:	See	Appendix 1	for	definitions	of	other	symbols.

TA B L E  A 2 . 2 Expected	time	in	generations	to	fixation	for	the	
scenario	conditions	simulated

Initial p N Fixation time

0.5 100,000 277258.9

0.1 100,000 102337.1

0.01 100,000 18606.7

0.5 10,000 27725.9

0.1 10,000 10233.7

0.01 10,000 1860.7

0.5 1000 2772.6

0.1 1000 1023.4

0.01 1000 186.1

Note:	See	Appendix 1	for	definitions	of	symbols.

FI G U R E A 2 .1 Comparison	of	simulation	results	with	
algebraic	predictions	for	GST,	with	regression	equation	
(Simulated-	GST )	=	0.97 × (Predicted-	GST) + 0.00005;	P =	4.2 × 10−12; 
R2 =	.99.	Predicted	GST	is	from	Equation (A1.5b) (Takahata, 1983), 
using	4 N	in	place	of	8 N	for	the	haploid	loci	simulated.	The	intercept	
is	very	close	to	zero	as	expected.	The	slope	coefficient	(0.97)	has	
95%	confidence	limits	0.95	to	1.00.	The	red	line	is	the	expected	1:1	
relationship,	indistinguishable	from	the	actual	regression	line.	Note	that	
for	each	scenario,	the	coefficient	of	variation	for	simulated	GST was 
always	larger	than	the	coefficient	of	variation	for	AA	(sometimes	double).
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