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Resting-state functional connectivity studies in schizophrenia evaluating average con-
nectivity over the entire experiment have reported aberrant network integration, but 
findings are variable. Examining time-varying (dynamic) functional connectivity may 
help explain some inconsistencies. We assessed dynamic network connectivity using 
resting-state functional MRI in patients with schizophrenia, while unmedicated (n = 34), 
after 1 week (n = 29) and 6 weeks of treatment with risperidone (n = 24), as well as 
matched controls at baseline (n = 35) and after 6 weeks (n = 19). After identifying 41 
independent components (ICs) comprising resting-state networks, sliding window anal-
ysis was performed on IC timecourses using an optimal window size validated with linear 
support vector machines. Windowed correlation matrices were then clustered into three 
discrete connectivity states (a relatively sparsely connected state, a relatively abundantly 
connected state, and an intermediately connected state). In unmedicated patients, static 
connectivity was increased between five pairs of ICs and decreased between two pairs 
of ICs when compared to controls, dynamic connectivity showed increased connectiv-
ity between the thalamus and somatomotor network in one of the three states. State 
statistics indicated that, in comparison to controls, unmedicated patients had shorter 
mean dwell times and fraction of time spent in the sparsely connected state, and longer 
dwell times and fraction of time spent in the intermediately connected state. Risperidone 
appeared to normalize mean dwell times after 6 weeks, but not fraction of time. Results 
suggest that static connectivity abnormalities in schizophrenia may partly be related to 
altered brain network temporal dynamics rather than consistent dysconnectivity within 
and between functional networks and demonstrate the importance of implementing 
complementary data analysis techniques.

Keywords: functional connectivity, dynamics, resting state, schizophrenia, antipsychotic medication

inTrODUcTiOn

Schizophrenia is often described as a disorder of brain connectivity characterized by abnormal 
structural and functional network integration between cortical areas and likely related to clinical 
symptoms (1–3). A common approach to examining functional networks is through resting-state 
functional connectivity—the measure of temporal coherence of low frequency blood oxygenation 
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level dependent (BOLD) signal fluctuations between spatially 
separate regions of the brain in the absence of a task being per-
formed (1, 4, 5).

Traditionally, functional connectivity is evaluated over the 
length of the scan. In schizophrenia, a number of intrinsic 
network connectivity aberrations have been reported, albeit with 
widespread inconsistencies among studies (5–12). Importantly, 
this “static” approach to connectivity analysis disregards the 
dynamic nature of brain activity by assuming constant con-
nectivity patterns over time (12, 13). Recent reports attribute 
inconsistencies across studies to the oversimplification of data 
in static functional connectivity analyses (12, 14–18). The recent 
emergence of dynamic functional connectivity analysis aims to 
address this data averaging issue by calculating transient patterns 
of functional connectivity through windowed time course sam-
pling (12, 17, 19–24). Clustering of these patterns results in con-
nectivity states that are believed to be representative of discrete 
mental states of connectivity that subjects pass through during 
the scan (12, 13, 25, 26). In capturing the fluctuations in network 
interactions over time, and ultimately more descriptively char-
acterizing network integration, the progress toward identifying 
imaging biomarkers may be enhanced. However, the obstacle of 
determining the correct window size for sliding window analysis 
still remains. While some studies have indicated a window size 
between 30 and 60 s robustly estimates functional connectivity 
(24, 27), others have explored window sizes ranging from 30 to 
240 s (12, 17, 19, 21, 23, 24, 28).

Prior resting-state functional connectivity studies reporting 
dysconnectivity in schizophrenia have been overwhelmingly 
obtained in medicated subjects. Because antipsychotic medica-
tions are known to affect brain activation (29–32), it is unclear 
to what extent prior findings are related to antipsychotic medica-
tion effects. In addition to examination of unmedicated patients 
with schizophrenia, functional connectivity studies of first 
episode schizophrenia patients and subjects at ultra-high risk 
of psychosis (33–35) allow for not only examination of earlier 
stages of psychosis but also non-confounded (i.e., antipsychotic 
medication exposure) functional connectivity abnormalities. 
More specifically Anticevic et al. and Cannon et al. (33, 35), found 
that subjects at ultra-high risk who converted to psychosis more 
prominently exhibited thalamocortical dysconnectivity, whereas 
Yoon and colleagues found that first episode and ultra-high risk 
subjects demonstrated frontotemporal dysconnectivity (34).

The purpose of this study was to evaluate dynamic functional 
network connectivity (dFNC) in unmedicated patients with 
schizophrenia and to test if, and how, antipsychotic medications 
change brain network dynamics after 1 and 6 weeks of treatment 
in an effort to disentangle medication effects form intrinsic illness 
characteristics. The corresponding description of dynamic con-
nectivity patterns that may remain unaffected by antipsychotics 
could in turn contribute to the discovery of biomarkers for the 
development of new therapeutic interventions targeted at the 
other symptom domains (i.e., negative and cognitive symptoms) 
that are not alleviated by traditional antipsychotics (36). We 
hypothesized that static and dynamic analyses would provide 
complementary connectivity results. In accordance with previous 
studies examining temporal dynamics in schizophrenia (17), we 

also hypothesized that connectivity abnormalities would not be 
observed in all connectivity states; in addition, based on previous 
studies, we hypothesized that connectivity state abnormalities 
exhibited would be observed between thalamus and sensory 
network [i.e., auditory (AUD), visual (VIS), and somatomotor 
(SM)] connections (37, 38).

MaTerials anD MeThODs

Participants
Thirty-four unmedicated patients with schizophrenia seeking 
treatment at the University of Alabama at Birmingham (UAB) 
were recruited from the emergency room, inpatient units, and 
various outpatient clinics. Additionally, 35 healthy controls 
matched on age, gender, smoking status, and socioeconomic 
status (SES) were recruited using flyers and advertisements in 
the university newspaper. This study was approved by the UAB 
Institutional Review Board and written informed consent for par-
ticipation was obtained after participants were found competent 
to provide informed consent (39).

Diagnoses were established with review of medical records 
and evaluation by two board certified psychiatrists (Nina V. 
Kraguljac and Adrienne C. Lahti) and confirmed using the 
Diagnostic Interview for Genetic Studies (40). Patients included 
in the study had been off antipsychotic medication for at least 
10  days; medication was not stopped to meet this criterion. 
Exclusion criteria were major medical conditions, neurological 
disorders, history of head trauma with loss of consciousness, 
substance abuse within 6 months of imaging (with the exception 
of nicotine), use of medication affecting brain function, preg-
nancy, and MRI contraindications. Healthy control exclusion 
criteria also included a history of Axis I disorders personally or 
in first-degree relatives.

Subjects who were either medication naïve or had been off 
antipsychotic medications were enrolled in a 6-week trial with 
risperidone using a flexible dosing regimen. Dose determinations 
were based on therapeutic and side effects. Starting doses were 
1 mg; titration was done in 1–2 mg increments. Compliance was 
monitored by pill counts at each visit. Concomitant antidepres-
sant or mood stabilizing medication was allowed to be used as 
indicated.

study Design
Participants completed a resting-state fMRI scan of at least 5 min 
(150 volumes) in length. For data length consistency across par-
ticipants, additional volumes over 5 min were discarded (24). All 
participants were scanned at baseline. Patients were then scanned 
after 1 and 6 weeks of treatment to allow adequate time for clinical 
response (41, 42). Dropout and scanner intolerability are potential 
issues when working with a patient population. Therefore, of the 
34 patients with schizophrenia enrolled, three subjects dropped 
out of the study prior to the week 1 scan and three more subjects 
dropped prior to the week 6 scan. One subject was excluded from 
baseline analysis due to an insufficient number of scan volumes. 
In addition, no resting-state scans were obtained for two subjects 
at week 1 and four subjects at week 6, leaving imaging data for 
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33 patients at baseline, 29 patients at week 1, and 24 patients at 
week 6 in the final analysis. Additionally, 19 of the 35 recruited 
controls were scanned for a second time 6 weeks after the baseline 
scan. Resting-state data from some subjects have been included 
in earlier reports (42–44). The Brief Psychiatric Rating Scale 
(BPRS) (45) was used to assess symptom severity weekly due to 
its briefer time to administer as time is critical when collecting 
data from unmedicated patients with schizophrenia. Cognitive 
function was assessed for both groups at baseline using the 
Repeatable Battery for the Assessment of Neuropsychological 
Status (RBANS) (46).

scanning Parameters
All scans were performed with a 3  T head-only scanner 
(Magnetom Allegra, Siemens Medical Solutions, Erlangen, 
Germany), with a circularly polarized transmit/receive head 
coil. High-resolution structural scans were acquired for 
anatomical reference using the 3-dimensional T1-weighted 
magnetization-prepared rapid acquisition gradient-echo 
sequence [repetition time/echo time/inversion time (TR/
TE/TI)  =  2300/3.93/1100  ms, flip angle  =  12°, 256  ×  256 
matrix, 1-mm isotropic voxels]. Resting-state fMRI scans 
were acquired using a gradient recalled echo-planar imag-
ing sequence (TR/TE = 2000/30 ms, flip angle = 70°, field of 
view = 192 mm × 192 mm, 64 × 64 matrix, 6 mm slice thickness, 
1 mm gap, 30 axial slices). Participants were instructed to keep 
eyes open and stare passively ahead during the scan.

Preprocessing
Data preprocessing was performed with SPM8 (Wellcome Trust 
Centre for Neuroimaging, London, UK1). Resting-state fMRI data 
were slice-timing corrected, realigned, normalized to Montreal 
Neurological Institute (MNI) space (47), resampled to 1.5 mm3, 
and smoothed with a Gaussian kernel to 6-mm full width at 
half maximum. Prior to group independent component analysis 
(ICA), data were variance normalized to facilitate decomposition 
of subcortical (SC) and cortical networks (17).

group ica
Group-level spatial ICA was performed via the Group ICA of 
fMRI Toolbox (GIFT2) (48). Subject-specific principal com-
ponent analysis (PCA) was implemented in the GIFT toolbox 
by reducing the data to 120 principal components, which were 
subsequently decomposed into 100 components via group data 
reduction (24). The expectation maximization algorithm was 
used to carry out PCA in a memory-efficient manner (24, 49). 
The Infomax algorithm (24, 50) was then applied to the PCA 
reduced data to generate 100 spatially independent components 
(ICs). Component stability/quality was measured by repeat-
ing the Infomax algorithm 20 times in ICASSO and the most 
representative run was used in subsequent steps (17, 24, 51). 
Subject-specific spatial maps and time courses were generated via 

1 http://www.fil.ion.ucl.ac.uk/spm/.
2 http://mialab.mrn.org/software/gift.

GICA back-reconstruction (52). Scanning data for patients after 
1 week of medication (n = 29) was also included in the group ICA 
and clustering analysis. Following back-reconstruction, subject 
spatial maps and time courses were scaled to z-scores.

Postprocessing
Similar to procedures carried out in previous studies (17, 24, 53), 
three reviewers (Kristin K. Lottman, Nina V. Kraguljac, David 
M. White) collectively classified ICs as resting-state networks 
(RSNs)—as opposed to artifact—based on criteria-dependent 
visual inspection of group-level component spatial maps and 
evaluation of power spectra data. Group-level component spa-
tial maps were inspected and classified as RSNs based on the 
criteria that peak activation clusters should occur primarily in 
gray matter, correspond anatomically to brain networks, and 
meet additional RSN expectations presented in (17, 24, 53). To 
facilitate component classification as RSNs, component power 
spectra data were evaluated using the fractional amplitude 
of low-frequency fluctuations (fALFFs) (53, 54) in order to 
validate that component time courses were characterized by 
predominantly low-frequency fluctuations (24, 55, 56). Based 
on reviewer consensus, the three reviewers collectively identi-
fied 41 group-level RSNs from the 100 extracted components, 
as illustrated in Figure 1. RSN labels were identified based on 
results from brain atlas toolboxes utilized in SPM8—xjView3 
and WFU_PickAtlas4. Additionally, RSN labels were determined 
based on correspondence to the 50 components presented in 
(24), as well as label consensus among all three reviewers (see 
Table S1 in Supplementary Material for RSN peak activations). 
Labeled RSNs were then organized into seven different networks 
including SC, AUD, SM, VIS, cognitive control (CC), default 
mode (DM), and cerebellar (CB) (24).

Following RSN identification, framewise displacement was 
regressed from the subject-specific RSN time courses prior to 
static and dynamic connectivity analyses. Framewise displace-
ment was computed as the absolute frame-to-frame displace-
ment of the brain from the six realignment parameters using 
a radius of 50 mm to convert angle rotations to displacements 
(42, 57). Ultimately, this resulted in individual displacement 
values for each volume of the time course (i.e., 150 frame-to-
frame displacement values—with an initial displacement value 
of 0—were used as regression covariates for each subject). While 
controls and unmedicated patients (baseline) exhibited differ-
ences in mean framewise displacement (F = 6.867, p = 0.011) 
as expected, patients did not demonstrate significant differences 
in mean framewise displacement from baseline to week 6 
(F = 0.200, p = 0.659) or week 1 to week 6 (F = 3.517, p = 0.075). 
However, mean framewise displacement was found to be signifi-
cantly different between baseline and week 1 patients (F = 4.325, 
p = 0.047) Subsequently, subject-specific RSN time courses were 
detrended, despiked, and band-pass filtered (0.01–0.15 Hz) using 
a fifth order Butterworth filter in accordance with previous stud-
ies (17, 24).

3 http://www.alivelearn.net/xjview8/.
4 http://www.nitrc.org/projects/wfu_pickatlas/.
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FigUre 1 | composite maps of the 41 independent components comprising resting-state networks extracted from the data via group independent 
component analysis and categorized into subcortical, auditory, somatomotor, visual, cognitive control, default mode, and cerebellar networks. Each 
color in the composite map represents a different component and the number of components grouped in each category is indicated next to the category name. 
Peak activations of individual components can be seen in Table S1 in Supplementary Material.
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static Functional network  
connectivity analysis
Static functional network connectivity was estimated for each 
subject as the pairwise Pearson correlation between whole RSN 
component time courses, resulting in a 41-by-41-component 
z-scored correlation matrix for each subject. Correlation 
matrices for subjects in a group were then averaged together 
resulting in a group-level connectivity matrix (Figures 2A–E). 
Subsequently, within and between-group differences in static 
functional network connectivity matrices were evaluated on 
subject-level matrices via respective paired and two-sample 
univariate t-tests with a significance value of pFalse Discovery Rate 

(FDR) < 0.05 (Figures 2F,G).

dFnc analysis
A sliding window technique was used to estimate dFNC where 
windowed segments of the component time courses were used 
to compute transient functional network connectivity patterns 
(Figure  3). Sliding window analysis was iteratively performed 
with window sizes of 30, 40, 44, 50, and 60 s. Window sizes were 
selected based on previous studies indicating functional con-
nectivity can be robustly estimated using a window size between 
30 and 60  s (24, 27), as well as previous implementation of a 
44  s window in a dataset of patients with schizophrenia (17). 

A Gaussian (σ = 3 TRs) window of the respective size was slid 
through the time course in steps of one TR in order to obtain 
windowed correlation matrices for each subject (Figure  3A). 
Due to potential effects of noise on covariance estimation from 
sampling short time windows, windowed correlation matrices 
were generated by estimating the covariance of the L1 regular-
ized inverse covariance matrix, which was carried out utilizing 
a graphical LASSO framework in the GIFT Toolbox (17, 24, 
58–60).

Window size classification
A 44 s window was chosen based on implementation in previous 
studies in a similar subset of subjects. Subsequently, similar to a 
previous study (61), the optimal window size of 44 s for dynamic 
analyses was validated by the accuracy of a linear support vector 
machine (SVM) classifier in predicting group (i.e., controls and 
unmedicated patients) based on the amplitude of low-frequency 
fluctuation of functional connectivity (ALFF-FC) for each subject 
and respective window sizes. ALFF-FC is utilized in order to 
demonstrate the variability in network connections over time 
(61). In order to calculate the ALFF-FC, the fast fourier transform 
(FFT) was applied to the windowed correlation values for each 
subject (61). Subsequently, the FFT values divided by the largest 
frequency value (i.e., 0.5 Hz) that fell within the frequency band 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


FigUre 2 | static functional network connectivity. Group-level mean static functional network connectivity for (a) 35 controls at baseline (HCb), (B) 19 controls 
after 6 weeks (HC6), (c) 33 unmedicated patients with schizophrenia (SZb), (D) 29 patients after 1 week of medication (SZ1), and (e) 24 patients after 6 weeks of 
medication (SZ6). Group differences are shown between (F) controls and unmedicated patients (HCb-SZb) and (g) unmedicated patients and week 6 patients 
(SZb-SZ6). Significant group differences outlined with a small black box are indicated if pFDR < 0.05. No significant differences were observed when week 1 patients 
were compared to baseline and week 6 patients.
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of 0.01–0.08 Hz were summed to obtain ALFF-FC maps for each 
subject (61).

A linear SVM classifier was utilized to discriminate between 
controls and unmedicated patients. A leave-one-out cross 
validation (LOOCV) method was applied to determine the 
average accuracy values of the SVM classifier. For each itera-
tion of LOOCV, one sample is designated as a test sample and 
the remaining samples are designated as the training set. A 
two-sample t-test between the ALFF-FC values of controls and 
unmedicated patients in the training set was performed at each 
LOOCV fold (61). In order to reduce the number of features, as 
well as the possibility of overfitting, only the significant result-
ant values (p  <  0.05) were selected as predictor features (61). 
Therefore, the number of predictor features varied from fold-to-
fold of the LOOCV. Additionally, SVM classification was only 
performed to discriminate between controls and unmedicated 
patients; thus, only 68-folds of the LOOCV were carried out. 
SVM classifier analysis was performed on dynamic data from 
implementation of the five different window sizes (30, 40, 44, 
50, and 60 s). The optimal window size was determined as the 
window size with the best accuracy in differentiating control and 
patient ALFF-FC using the SVM classifier. This SVM classifica-
tion was performed using the Statistics and Machine Learning 
Toolbox in MATLAB (62).

clustering
In order to characterize reoccurring patterns of connectivity 
across groups and time, k-means clustering was performed on 
the windowed correlation matrices for all subjects (Figure 3B). 
Clustering of a sub-sampled number of windows (i.e., windows 
with relative maxima of variance) for all groups and time points 
was carried out in order to estimate initial cluster centroids 

(cluster medians) (17, 24). The sum of absolute differences or 
L1 distance method was used with a maximum of 150 iterations 
for k-means cluster computation. The optimal number of cluster 
states was determined to be three based on evaluation of the 
elbow criterion of the ratio of within cluster sum of squares 
distance to between cluster sum of squares distance (17, 63). 
More specifically, the number of clusters is determined as the 
point or “elbow” in the plot (i.e., ratio by cluster number) fol-
lowed by a flattening of the plot where increasing number of k 
clusters provides marginal information (64). Resultant centroid 
states from the clustering of sub-sampled data were subsequently 
used as initial clustering positions for clustering of all subject 
and group data.

group Differences in dFnc
Following k-means clustering of data from all subjects mean 
group-level connectivity centroid states were calculated from 
the group’s subject medians of windows assigned to each respec-
tive state (17). Subsequently, respective paired and two-sample 
univariate t-tests were performed on the subject-level connec-
tivity states to evaluate group differences. Group differences of 
pFDR < 0.05 were considered significant. It is important to note that 
implementation of L1 regularization using the graphical LASSO 
framework for dynamic windowing resulted in small variations 
in windowed correlations from run to run. Therefore, in order to 
account for potential fluctuations in significant group differences 
from iteration to iteration, as well as determine connectivity reli-
ability, bootstrap resampling (i.e., resampling with replacement) 
was conducted on clustered windowed correlation values with a 
resampling rate of 10,000. Group differences (pFDR < 0.05) that 
occurred in at least 95% of the 10,000 bootstrap resamples were 
considered significant.
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FigUre 3 | schematic depicting dynamic functional network connectivity (dFnc) analyses. (a) dFNC analysis computes functional network connectivity on 
windows of the independent component time courses and hence windowed correlation matrices are generated for each subject. (B) Concatenation of dFNC 
windows for all subjects and subsequent k-means clustering of the windows results in cluster centroids or connectivity states. (c) dFNC cluster centroids for 44 s 
window.
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Exploratory post  hoc analyses examining group differences 
in state statistics including dwell times (i.e., average amount of 
time spent occupying a state before switching to another) and 
overall amount of time spent in a state were implemented using 
two-sample and paired univariate t-tests, where appropriate. 
Transition matrix differences for each group were also evaluated 
via chi-square methods (65–67). More specifically, transition 
matrices represent the probability of transitioning from one state 
to another (e.g., state 1 to state 2, etc.) (24). Additionally, the rela-
tionship between clinical improvement and state statistics were 
examined via correlation analysis of mean dwell time/fraction of 
time spent in a state and treatment response. Treatment response 
was defined as the percent change in positive BPRS scores from 

baseline to week 6. In order to demonstrate the complemen-
tary nature of connectivity analyses, the effectiveness of static, 
dynamic, and both static and dynamic connectivity analyses in 
classifying controls and patients was evaluated via group classifi-
cation using a linear SVM and LOOCV. Significant connectivity 
values, fraction of time spent in a state, and mean dwell time were 
used as predictor variables. More specifically, the effectiveness of 
static connectivity analyses was evaluated with seven connectiv-
ity predictor variables. The effectiveness of dynamic connectivity 
analyses was evaluated with fraction of time spent in a state and 
mean dwell time values (i.e., six predictor variables). Both static 
and dynamic connectivity analysis accuracy was evaluated with all 
aforementioned predictor variables (i.e., 13 predictor variables).
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TaBle 1 | Demographics and clinical assessmentsa.

hc (n = 35) sZ (n = 34) t/χ2 p-Value

age (years) 32.00 ± 8.90 32.38 ± 10.43  −0.164 0.87
Gender (male/female) 25/10 23/11 0.116 0.733
Parental SESb 5.80 ± 4.21 7.26 ± 6.39 23.17 0.058
Smoking status (Y/N) 22/13 26/8 1.51 0.219
Smoking (packs per day) 0.61 ± 0.61 0.59 ± 0.53 0.168 0.867

Diagnosis
Schizophrenia – 31
Schizoaffective disorder – 3

illness characteristics
Illness duration (years) – 9.59 ± 9.94
First episode – 12

Prior antipsychotic treatment
Antipsychotic naïve – 17
Antipsychotic-free interval (months) – 23.08 ± 44.42

Baseline BPrsc (n = 34)
Total score – 48.29 ± 9.38
Positive symptom subscale – 9.53 ± 3.04
Negative symptom subscale – 6.79 ± 2.51

Week 6 BPrs (n = 28)
Total score – 30.57 ± 8.47
Positive symptom subscale – 4.86 ± 2.38
Negative symptom subscale – 5.39 ± 2.42

rBans
Total index 93.74 ± 14.33 70.21 ± 13.76 6.96 <0.001
Immediate memory 95.74 ± 12.73 74.68 ± 16.86 5.87 <0.001
Visuospatial 87.26 ± 19.35 71.41 ± 15.48 3.75 <0.001
Language 100.2 ± 14.04 84.71 ± 12.85 4.78 <0.001
Attention 100.34 ± 19.33 79.03 ± 20.32 4.47 <0.001
Delayed memory 93.06 ± 11.83 72.53 ± 19.10 5.35 <0.001

HC, healthy control; SZ, schizophrenia; SES, socioeconomic status; Y, yes; N, no; BPRS, Brief Psychiatric Rating Scale; RBANS, Repeated Battery for the Assessment of 
Neuropsychological Status.
aMean ± SD unless otherwise indicated.
bSES ranks reported from Diagnostic Interview for Genetic Studies scale (1–18); high rank (lower numerical value) corresponds to high SES status. Data unavailable for seven 
participants (one HC, six SZ).
cBPRS reported on 1–7 scale; positive (conceptual disorganization, hallucinatory behavior, and unusual thought content); negative (emotional withdrawal, motor retardation, and 
blunted affect).
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resUlTs

Demographics
No significant differences in age, gender, parental SES, smoking 
status, or daily cigarette use were observed between controls 
and patients. Patients exhibited a decrease in total BPRS scores 
from 48.29 ±  9.38 at baseline to 30.57 ±  8.47 after 6  weeks of 
medication. Average dose of risperidone was 4.36  ±  1.45  mg 
at the week 6 scan. Twelve subjects were concomitantly treated 
with benztropine, two with trazodone, one each was prescribed 
mirtazapine, amitriptyline, and valproic acid. In comparison to 
healthy controls, patients scored significantly lower on RBANS 
(Table 1).

rsn identification
The 41 maximally ICs identified as RSNs are depicted in Figure 1. 
Labeled RSNs were then organized into seven different networks 
including SC (3 RSNs), AUD (3 RSNs), VIS (9 RSNs), SM (8 
RSNs), CC (10 RSNs), DM (5 RSNs), and CB (3 RSNs; Table S1 
in Supplementary Material).

Window size classification
The 44-s window size is in accordance with the window size imple-
mented in previous studies examining dynamic connectivity in 
controls (24) and in patients with schizophrenia (17). The optimal 
window size was validated to be 44 s since classifier accuracy was 
highest (i.e., 77.94%) at this window size. A 10,000-iteration per-
mutation test indicated the probability of obtaining this accuracy 
value with a 44 s window was not by chance (p < 0.05) (61).

group Differences in static Functional 
network connectivity
Between Group Differences
Mean static functional network connectivity matrices for baseline 
controls, week 6 controls, unmedicated patients, week 1, and 
week 6 patients are illustrated in Figures 2A–E. In comparison to 
controls, unmedicated patients demonstrated increased connec-
tivity within the CC network and between the SC-SM, VIS-CC, 
and SM-CC network connections, but decreased connectivity 
between the SC-CC and AUD-CC networks (Figure 2F).

http://www.frontiersin.org/Psychiatry/
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FigUre 4 | connectivity state statistics. Exploratory post hoc analysis of mean dwell time (a) and fraction of time (B) subjects spend in each state at each 
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mean. Significant group differences (p < 0.05) obtained via respective two-sample and paired t-tests are indicated with asterisks.
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Connectivity Changes over Time
No significant differences (pFDR  >  0.05) in connectivity were 
exhibited when comparing unmedicated and week 6 medicated 
patients (Figure  2G), as well as baseline and week 6 controls. 
Additionally, week 1 patients demonstrated no significant con-
nectivity differences (pFDR > 0.05) when compared to baseline and 
week 6 patients.

group Differences in dFnc
Between Group Differences
Cluster centroids for all subjects and time points are shown in 
Figure 3C. Three discrete connectivity states, a relatively sparsely 
connected state (State 1), a relatively abundantly connected state 
(State 2), and an intermediately connected state (State 3) were 
identified. No significant differences (pFDR > 0.05) in connectiv-
ity were exhibited when comparing controls to unmedicated 
patients, week 1 patients, and week 6 patients. While bootstrap 
resampling of windowed correlations was implemented to deter-
mine connectivity stability/reliability, analyses resulted in no sig-
nificant connectivity differences in more than 95% of the 10,000 

resamples. It is important to note that, in comparison to controls, 
unmedicated patients exhibited some instances of hypercon-
nectivity (pFDR  <  0.05) between SC (i.e., IC 45 (thalamus) and 
SM network connections in the sparsely connected state (State 1) 
among the 10,000 resamples.

Connectivity Changes over Time
Evaluation of significant state connectivity differences across time 
in patients with schizophrenia indicates no significant change 
in connectivity (i.e., hyper- or hypo-connectivity—between 
baseline and week 1, baseline and week 6, and week 1 and week 6 
over time (pFDR < 0.05)). In addition, no significant connectivity 
differences (pFDR  <  0.05) were exhibited between baseline and 
week 6 in controls.

Connectivity State Statistics
Exploratory post hoc analyses reveal no significant group differ-
ences in transition probabilities between states across groups. 
Comparison of mean dwell times indicates that unmedicated 
patients tend to dwell in the sparsely connected state 1 for 

http://www.frontiersin.org/Psychiatry/
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significantly less time (p  =  0.0334) and the intermediate 
state 3 for significantly more time (p = 0.0055) than controls 
(Figure 4). After 6 weeks of risperidone treatment, state 1 dwell 
times significantly increased in patients (p = 0.0115), but state 
3 dwell times remain unchanged (p = 0.1718) in comparison 
to unmedicated patients (Figure 4). Additionally, comparison 
of the fraction of time groups occupy in individual states 
indicate that unmedicated patients occupy state 1 significantly 
less (p = 0.0105) and state 3 significantly more than controls 
(p = 0.0029), but this was not affected by treatment (p > 0.05). 
Comparison of healthy controls over time indicates no signifi-
cant differences in mean dwell time (p > 0.05) and fraction of 
time spent in a state (p > 0.05) for all three states (intraclass 
correlation coefficients for controls over time presented in 
Table S2 in Supplementary Material). Patients after 1 week of 
medication demonstrated no significant differences in mean 
dwell time (p  >  0.05) and fraction of time spent in a state 
(p  >  0.05) for all three states when compared to patients at 
baseline and week 6. See Table S3 in Supplementary Material 
for all post hoc connectivity state statistics.

Additional exploratory post hoc analyses of clinical symptoms 
revealed no significant correlation between dwell times/fraction 
of time spent in a state and treatment response. Group classifica-
tion using linear SVMs demonstrated a higher effectiveness (i.e., 
classification accuracy) of 83.8% (sensitivity: 91.4%; specificity: 
75.8%) when incorporating both static and dynamic data as pre-
dictor variables, compared to the utilization of individual static 
(accuracy: 73.5%; sensitivity: 80%; specificity: 67%) and dynamic 
(accuracy: 58.8%; sensitivity: 74.3%; specificity: 42.4%) predictor 
variables.

DiscUssiOn

To our knowledge, this is the first resting-state functional con-
nectivity study examining brain network temporal dynamics 
in unmedicated patients with schizophrenia and the effects of 
antipsychotic medication. We describe widespread static connec-
tivity abnormalities, both hyper- and hypo-connectivity, between 
controls and unmedicated patients with schizophrenia. Dynamic 
analyses suggest three discrete connectivity states, a relatively 
sparsely connected state, a relatively abundantly connected state, 
and an intermediate state. Significantly increased connectivity 
was present only between the thalamus and SM network in one 
state in unmedicated patients compared to controls, but we found 
no evidence of decreased connectivity in any states. Exploratory 
analyses of state statistics indicate that, in comparison to controls, 
unmedicated patients have shorter mean dwell times and fraction 
of time spent in the sparsely connected state, and longer dwell 
times and fraction of time spent in the intermediately connected 
state. Risperidone appears to normalize mean dwell times, but 
not fraction of time spent.

In unmedicated patients, our static functional network con-
nectivity results reveal altered patterns of functional connectiv-
ity within the CC network and between the SM-SC, CC-VIS, 
AUD-CC, SM-CC, and CC-SC networks. These results are in line 
with recent studies in medicated patients demonstrating altered 

systems-level brain network dysfunction that suggest impaired 
integration within and between bottom-up and top-down net-
works (38, 68). Similar to studies that use a seed-based (37, 69) 
or static and dynamic (17) functional connectivity approaches in 
medicated patients, we observed increased SC-SM static connec-
tivity in unmedicated patients compared to controls. Likewise, 
previous studies in subjects at ultra-high risk of psychosis 
demonstrated thalamocortical (33, 35) and frontotemporal 
(34) dysconnectivity. Interestingly, risperidone did not appear 
to change this SC-SM dysconnectivity pattern, despite several 
recent reports that suggest that antipsychotic medications may 
affect functional connectivity (31, 44, 70–72). However, it is 
important to note that although a similar sample was utilized in 
(44), disparate findings may be attributable to varying analysis 
techniques.

Although widespread dysconnectivity in schizophrenia is 
reported throughout the literature [see Pettersson-Yeo et al. (73), 
for review], a large portion of the literature reports decreased 
functional connectivity strength in patients with schizophrenia 
compared to controls, as well as the involvement of prefrontal 
brain region connections (3, 32, 73, 74). In comparison, our static 
connectivity results (with the exception of a CC-SC and AUD-CC 
connection) demonstrate increased connectivity in patients 
compared to controls. While differences in our dysconnectivity 
results may be attributable to the inclusion of an unmedicated 
population, as well as variable experimental design and analysis, 
the heterogeneity of the disorder and inconsistencies in the 
underlying neural mechanisms may also impact the functional 
outcome (73–76).

Dynamic connectivity analyses only replicate thalamus-SM 
hyperconnectivity found in static analyses in one of the three 
connectivity states, but do not demonstrate evidence of dyscon-
nectivity within or between any other RSNs in any state. While 
the exact etiology of the connectivity states presented in this 
work is unknown, recent studies have reported that connectiv-
ity states may correspond to stages of consciousness (13, 26). 
Therefore, these characteristic state-dependent connectivity 
patterns exhibited in dynamic analysis are promising for future 
identification of potential imaging biomarkers representative of 
the disorder of schizophrenia (13). The limited evidence of con-
nectivity abnormalities in dynamic analyses may very well be a 
more comprehensive illustration of connectivity abnormalities in 
comparison to analyses that “oversimplify” the data with static 
time course assumptions (12, 13).

Exploratory post hoc analyses of state statistics revealed that 
controls spend the majority of time in a sparsely connected 
state, while unmedicated patients with schizophrenia do so 
less. In accordance with these results, mean dwell time analysis 
demonstrated that controls tend to dwell for a significantly longer 
time in the sparsely connected state compared to unmedicated 
patients; however, patient dwell time in the sparsely connected 
state normalizes after 6  weeks of risperidone treatment. It is 
tempting to speculate that dwell time abnormalities may be 
related to disorganized patterns of neuronal activity, potentially 
secondary to glutamatergic hyperactivity (77) thought to be 
present in unmedicated patients with schizophrenia (78–80). 
Conceivably, this disorganized firing pattern could result in 
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patients being unable to reside in a sparsely connected state for 
extended periods of time leading to an impaired ability to filter 
out irrelevant information. Alternatively, dopaminergic hyper-
activity attenuated by antipsychotic medication may also explain 
findings. Pharmacological animal models of schizophrenia 
have demonstrated restoration of cortical synchronization with 
antipsychotic medications (81, 82), which could in turn result in 
dwell time normalization to control levels following risperidone 
treatment.

The lack of connectivity abnormalities before and after antip-
sychotic medication in the presence of medication-dependent 
dwell time abnormalities further substantiate the non-specific 
impact of antipysychotic medications on functional connectivity 
illustrated by Lui and colleagues (31). Additionally, these results 
are not discernible in static analyses, therefore, indicating the 
value of assessing functional connectivity dynamically in order 
to more accurately distinguish patient populations (13).

The differences in connectivity demonstrated in static 
analyses, as well as dwell time and fraction of time abnormali-
ties in dynamic analyses, not only reiterate the advantage of the 
dynamic approach to examining functional connectivity but may 
also suggest the complementary nature of static and dynamic 
functional connectivity analyses (13, 83). Additionally, post hoc 
classification analyses support this complementary relationship. 
Based on this information, future studies would benefit from uti-
lizing both static and dynamic analyses for assessing functional 
connectivity (13).

Several strengths and limitations have to be considered in 
the interpretation of our findings. To avoid the confounding 
effects of medication on functional connectivity, we only 
enrolled subjects free of exposure to antipsychotic medications 
for at least 10 days preceding the baseline scan. To minimize 
variance in the data, we carefully matched groups on several 
factors including parental SES and smoking, did rigorous 
preprocessing, and used a longitudinal design with a single 
antipsychotic medication to evaluate whether baseline dys-
connectivity patterns normalized with treatment. In addition, 
we controlled for the effect of time on functional connectiv-
ity by scanning a group of matched controls 6  weeks apart. 
A sliding window analysis was implemented with a window 
size of 22 TRs (44 s) in order to estimate connectivity dynam-
ics. Previous studies have indicated a window size between 
30 and 60  s robustly estimates functional connectivity (24, 
27). In addition, Telesford and colleagues demonstrated that 
smaller window sizes are more sensitive to detecting individual 
differences, whereas group-level differences can be better 
estimated at larger window sizes (84); however, a standard 
window size has yet to be established. While we are confident 
in our machine learning approach to validating the optimal 
window size, future work exploring potential data-driven 
window size determination methods would be welcomed. 
Similarly, time-frequency approaches may also be useful as 
such approaches do not require windowing (85). Furthermore, 
physiological artifacts such as heart rate and breathing were 
not directly controlled for during acquisition. Although image 
preprocessing and ICA indirectly controls for these, results 
may be impacted by physiological and motion artifacts. While 

the complementary nature of static and dynamic analyses of 
resting-state fMRI was demonstrated via utilization of a linear 
SVM (i.e., 83.8% classification accuracy), future studies utiliz-
ing multimodal data may further increase this classification 
accuracy (86). Although the sample size used in this study is 
sufficient for robustly estimating static functional connectiv-
ity, state connectivity patterns and group differences may be 
impacted from an inadequate number of subjects exhibiting 
certain states. Additionally, due to the complex nature of 
dynamic connectivity patterns, development of multifaceted 
statistics to capture these complexities would be advantageous. 
For example, current analyses restrict subjects to exhibiting a 
single connectivity state at a specific time when there may in 
fact be an overlap in connectivity state manifestation. The abil-
ity to capture potentially overlapping connectivity states (13, 
87–90) may provide critical information to ultimately under-
standing the intricacies of brain function. It is also important 
to note that the choice of the frequency band utilized when 
filtering data may impact functional connectivity (91), as well 
as the classification accuracy in differentiating patients and 
controls (92). Due to the lack of a placebo group in this study, 
changes in functional connectivity cannot definitively be 
characterized as medication effects. In addition, schizophrenia 
is a highly heterogeneous disorder in which there are likely 
multiple pathological mechanisms causing patients to react 
differentially to antipsychotic medications. Therefore, until 
the underlying pathological mechanisms and ultimately the 
heterogeneity of the disorder are identified, analysis results 
may continue to remain variable as no one specific analysis 
technique can be distinguished as optimal.

Our results suggest that static connectivity abnormalities in 
schizophrenia may partly be related to altered brain network 
temporal dynamics rather than dysconnectivity of within and 
between functional networks alone. Medications appear to 
partially attenuate, but not fully reverse, brain network dynamic 
alterations, suggesting that dynamic connectivity could be 
leveraged as biomarker for the development of novel treatments 
targeted toward symptom dimensions that are unaffected by 
antipsychotic medications. Ultimately, our study highlights the 
importance of implementing complementary data analysis tech-
niques; the additional information provided by dynamic analyses 
may be used in the advancement toward identification of imaging 
biomarkers.

clinical Trials regisTraTiOn

Registry Name: Treatment Response in Schizophrenia: Bridging 
Imaging and Postmortem Studies. URL: https://clinicaltrials.
gov/ct2/show/NCT00937716?term=NCT00937716&rank=1. 
Registration Number: NCT00937716.
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