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ABSTRACT In this cross-sectional study, we describe the composition and diversity
of the gut microbiota among undernourished children living in urban slums of
Mumbai, India, and determine how nutritional status, including anthropometric mea-
surements, dietary intakes from complementary foods, feeding practices, and micro-
nutrient concentrations, is associated with their gut microbiota. We collected rectal
swabs from children aged 10 to 18 months living in urban slums of Mumbai partici-
pating in a randomized controlled feeding trial and conducted 16S rRNA sequencing
to determine the composition of the gut microbiota. Across the study cohort, Proteo-
bacteria dominated the gut microbiota at over 80% relative abundance, with Actinobac-
teria representation at �4%, suggesting immaturity of the gut. Increased microbial
�-diversity was associated with current breastfeeding, greater head circumference,
higher fat intake, and lower hemoglobin concentration and weight-for-length Z-score. In
redundancy analyses, 47% of the variation in Faith’s phylogenetic diversity (Faith’s PD)
could be accounted for by age and by iron and polyunsaturated fatty acid intakes. Dif-
ferences in community structure (�-diversity) of the microbiota were observed among
those consuming fats and oils the previous day compared to those not consuming fats
and oils the previous day. Our findings suggest that growth, diet, and feeding practices
are associated with gut microbiota metrics in undernourished children, whose gut mi-
crobiota were comprised mainly of Proteobacteria, a phylum containing many potentially
pathogenic taxa.

IMPORTANCE The impact of comprehensive nutritional status, defined as growth,
nutritional blood biomarkers, dietary intakes, and feeding practices, on the gut mi-
crobiome in children living in low-resource settings has remained underreported in
microbiome research. Among undernourished children living in urban slums of
Mumbai, India, we observed a high relative abundance of Proteobacteria, a phylum
including many potentially pathogenic species similar to the composition in preterm
infants, suggesting immaturity of the gut, or potentially a high inflammatory burden.
We found head circumference, fat and iron intake, and current breastfeeding were
positively associated with microbial diversity, while hemoglobin and weight for
length were associated with lower diversity. Findings suggest that examining com-
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prehensive nutrition is critical to gain more understanding of how nutrition and the
gut microbiota are linked, particularly in vulnerable populations such as children in
urban slum settings.

KEYWORDS infant, child, growth, diet, nutrition, feeding practices, microbiome, fat
intake, anthropometry

The dynamics of the developing gut microbiota in later infancy and early childhood
have not been fully explored, compared to early infancy, and particularly in

low-resource settings. Perturbations in the microbiota of infants and young children
have been associated with many factors, including nutrition status, diet, delivery mode,
infections, and immune function, including antibiotic or other medication administra-
tion (1). It is accepted that the infant gut microbiota are first represented by facultative
anaerobes in the Proteobacteria phylum and succeed in favor of Actinobacteria and in
particular, Bifidobacteria spp. with the introduction of breast milk (2). By the time the
child is 2 to 3 years of age, the microbiota in early life reach an adult-like balance mainly
consisting of Firmicutes and Bacteroidetes phyla with depleted Proteobacteria and even
lower Actinobacteria (2). However, the factors associated with this transition are less
understood.

Diet plays a direct role in the gut microbiota composition and function (3). Food
components indigestible by humans (such as fiber [4]) are broken down by commensal
microbiota in the gut to later serve as signaling molecules such as short-chain fatty
acids (SCFAs) for other human cells such as immune cells as well as nutrients for
commensal bacteria (5, 6). In infants, both indirect and direct dietary intakes are
thought to be a major driver of gut composition, from maternal diet during pregnancy
and lactation (7), to consumption by infants. Breast milk and formula have also been
shown to be associated with differences in the composition of the gut microbiota; for
example, breastfed infants tend to have lower bacterial diversity (8) and a higher
relative abundance of beneficial Bifidobacterium species, than formula-fed infants who
tend to have higher abundances of Escherichia coli and Clostridium difficile (9). However,
few studies have examined changes in the gut microbiota during weaning, with the
introduction to complementary foods.

It is well established that immune function and health outcomes differ by diet and
nutritional status during the first few years of life, particularly in low-resource settings
(10). Ascertaining differences in the gut microbiota by nutritional status and dietary
intake may represent a mediating factor in immune functional capacity, as gut micro-
biota and immune function develop in tandem (1), involving commensal microbiota-
host immune cell cross talk, signaling, and education (11, 12).

Most studies examining early life development of the gut microbiota have been
performed in higher-income settings (13–29) or in low-income settings such as Ban-
gladesh (30) and Malawi (31). However, an analysis of the gut microbiota during the
second year of life in young children living in a low-resource urban slum setting of
Mumbai, India—where poor growth (as measured by anthropometric length-for-age
Z-score [LAZ], weight-for-age Z-score [WAZ], and weight-for-length Z-score [WLZ] [32]),
infections, and poor sanitation are common (33–35)— has yet to be described. There-
fore, the objective of this cross-sectional analysis was to (i) characterize the gut
microbiota among 10- to 18-month-old children in Mumbai’s urban slums and (ii)
determine the association between comprehensive nutritional status (as determined by
anthropometric measurements, blood nutritional biomarkers, dietary intakes, and feed-
ing practices) and relative abundance, �-diversity, and �-diversity of the gut microbiota.

RESULTS
Demographic characteristics. Participant characteristics of the samples (n � 53)

are described in Table 1. Children were sampled from five urban slum communities in
Mumbai, India. Nearly 30% of children were stunted (LAZ � �2), 25% underweight
(WAZ � �2), and 12% wasted (WLZ � �2). From a subset of participants with
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TABLE 1 Participant characteristics

Parameter na Median (IQR) or n (%)

Sociodemographic
Age (mo) 53 14.8 (13.1, 16.7)
Female 53 25 (47.2)
Vaginally delivered (versus Caesarean) 51 29 (56.9)

Anthropometry
Birth weight (kg) 53 2.7 (2.5, 3.0)
Low birth weight (�2.5 kg) 53 10 (18.9)
Current weight (kg) 53 8.7 (8.0, 9.8)
Mid-upper arm circumference (cm) 53 14.8 (14.1, 15.1)
Head circumference (cm) 53 44.2 (43.0, 45.4)
Head circumference-for-age Z-score 52 �1.58 (�2.12, �0.73)
Length (cm) 51 74.0 (72.1, 77.7)
Length-for-age Z-score (LAZ) 51 �1.29 (�2.38, �0.46)
Stunting 51 15 (29.4)
Weight-for-age Z-score (WAZ) 53 �0.96 (�1.99, �0.34)
Underweight 53 13 (24.5)
Weight-for-length Z-score (WLZ) 51 �0.68 (�1.34, 0.08)
Wasting 51 6 (11.8)

Blood biomarkers and illness history
Ferritin (ng/ml) 44 7.55 (3.20, 15.70)
Iron deficiency (�12 ng/ml) 44 27 (61.4)
Zinc (�mol/liter) 38 13.18 (11.08, 15.28)
Zinc deficiency (�9 �mol/liter) 38 0 (0)
Hemoglobin (g/dl) 43 10.10 (9.10, 10.80)
Anemia (hemoglobin � 11 g/dl) 43 33 (76.7)
C-reactive protein (CRP) � 5 mg/liter 39 3 (7.7)
Diarrhea today or within past 4 weeks 51 9 (17.7)
Fever today or within past 4 weeks 51 19 (37.3)
Cough today or within past 4 weeks 51 7 (13.7)

Dietary intakesb

Calories (kcal) 52 393.0 (270.0, 645.5)
Protein (g) 52 13.6 (8.1, 21.6)
Fat (g) 52 12.9 (8.9, 20.8)
Saturated fat (g) 52 4.5 (0.8, 5.8)
Monounsaturated fat (g) 52 2.2 (0.4, 3.0)
Polyunsaturated fat (g) 52 0.4 (0.3, 0.7)
Carbohydrate (g) 52 65.3 (33.6, 85.9)
Fiber (g) 52 2.0 (0.5, 5.5)
Calcium (mg) 52 216.5 (62.0, 349.5)
Iron (mg) 52 2.0 (1.2, 3.3)
Zinc (mg) 52 1.3 (0.8, 2.0)
Vitamin A (�g RAE) 52 99.0 (17.0, 141.0)
Cobalamin (vitamin B12) (�g) 52 0 (0, 0)

Feeding practices
Diet: Vegetarian (including eggs) 51 7 (13.7)
Diet: Vegetarian (no eggs) 51 15 (29.4)
Diet: Nonvegetarian 51 29 (56.9)
Ever breastfed 52 48 (92.3)
Breastfed yesterday (current breastfeeding) 48 40 (83.3)
Exclusive breastfeeding duration (months) 51 7.0 (6.0, 7.0)
Exclusively breastfed � 6 months 51 33 (64.7)
Consumed grains (bread, rice, noodles, porridge) yesterdayc 51 47 (92.2)
Consumed any fruits and vegetables yesterdayd 51 23 (45.1)
Liver, kidney, heart, or other organ meatse 50 2 (4.0)
Consumed beef, pork, poultry yesterdayf 51 7 (13.7)
Consumed eggs yesterdayg 51 10 (19.6)
Consumed dried fish or seafood yesterdayh 51 2 (3.9)
Consumed beans, peas, lentils, nuts, or seeds yesterdayi 51 22 (43.1)
Consumed dairy yesterdayj 50 26 (52.0)
Consumed oil or butter yesterdayk 51 13 (25.5)
Consumed sugary foods yesterdayl 51 30 (58.8)
Consumed condiments yesterdaym 50 6 (12.0)

(Continued on next page)
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hemoglobin data, 77% were anemic, and from a subset of participants with nutritional
blood biomarker data, 74% were iron deficient. Most children consumed a nonveg-
etarian diet and were reported to be currently breastfeeding. Comparison of charac-
teristics between the included cohort in this report (n � 53) and the rest of the
screened population (n � 312) from the parent trial is in Table S1 in the supplemental
material. Participants did not differ in most characteristics; however, more children
were born by Caesarean section (compared to vaginal birth) in the current study.

Gut microbiota 16S sequencing. From 53 participants, a total of 16,778,710
forward and reverse reads were processed. After initial quality filtering and trimming
(see Materials and Methods for more details) (36), the number of joined paired-end
reads totaled 7,554,901, with 9,251 unique sequences across the study population
(median 138,928 [interquartile range {IQR}, 94,704, 175,232] reads per sample). Filtering
out mitochondria and chloroplasts removed 18,119 sequences for a total frequency of
7,536,782 sequence variants, including 2,248 unique sequences (median 138,834 {IQR,
94,357, 174,909]) per sample, with a minimum sequence frequency per sample of
38,012.

Relative abundance. Rarefaction to 38,012 reads per sample retained 2,014,636
sequences (26.73% of total sequences). Genera of the phylum Proteobacteria (Fig. 1; see
also Fig. S1 in the supplemental material) dominantly represented the gut microbiota.
Approximately 128 identified and unidentified genera were found across the popula-
tion. The Aeromonadales order (unspecified genera) and genus Vibrio spp. combined
represented over 75% of all sequences across all participants (Fig. 1). Additional genera
represented at greater abundance (�1%) included Prevotella, Pseudomonas, and En-
terococcus, with genera at minimal representation (mean abundance of �1%) including
Streptococcus, Enhydrobacter, Anaerococcus, Dialister, Campylobacter, Bifidobacterium,
and Staphylococcus (Fig. 1). A full legend of all genera may be found in Fig. S1.

After correction for multiple comparisons using the Benjamini-Hochberg false dis-
covery rate (FDR) (37), multivariate linear regressions showed no nutritional exposures
associated with percent relative abundance of the four main phyla present in gut
microbiota: Proteobacteria, Firmicutes, Bacteroidetes, or Actinobacteria (Table 2). All
linear regressions examining associations between nutritional exposures and phylum
relative abundance are included in Table S2.

�-Diversity. Across the study population, �-diversity metrics included Shannon
diversity index (SDI), a measure of taxon diversity and evenness (38), and Faith’s
phylogenetic diversity (Faith’s PD), which accounts for the phylogenetic distance
between taxa within each sample (39). The median (IQR) SDI and Faith’s PD were 3.77
(3.39, 4.33) and 13.41 (11.15, 15.32), respectively. In multivariate linear regression,
greater head circumference was positively associated with a 0.23 (95% confidence
interval [95% CI], 0.09, 0.37) unit increase in SDI, while higher weight-for-length Z-score
was associated with a 0.31 (95% CI, 0.13, 0.49) unit decrease in SDI (Table 3). In
sex-stratified analysis, WLZ remained inversely associated with SDI only in male children
(�0.35 [95% CI, �0.57, �0.13]; P � 0.002), while head circumference remained posi-
tively associated with SDI only in female children (0.28 [95% CI, 0.16, 0.40]; P � 0.0001).

TABLE 1 (Continued)
an is the number of participants in the study.
bDietary intakes as absolute (unadjusted) values.
cInfant and Young Child Feeding (IYCF) (World Health Organization) food group A.
dIYCF food groups B to F combined (orange and starchy root vegetables, dark leafy green vegetables, ripe
mangoes or papayas, any other fruits and vegetables).

eIYCF food group G.
fIYCF food group H.
gIYCF food group I.
hIYCF food group J.
iIYCF food group K.
jIYCF food group L.
kIYCF food group M.
lIYCF food group N.
mIYCF food group O.
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Head circumference was also associated with a 0.77 (95% CI, 0.37, 1.20) unit increase
in Faith’s PD. Other nutritional exposures positively associated with Faith’s PD included
fat intake, current breastfeeding, and child’s age in multivariate regression, while
increasing hemoglobin concentration was inversely associated with Faith’s PD, and
female children had lower Faith’s PD than male children. All associations remained
significant after correction for multiple comparisons (Table 3), and all linear regressions
examining �-diversity as an outcome are shown in Table S3.

Redundancy analysis (RDA) of sociodemographic, clinical, dietary intakes as nutrient
residuals adjusted for energy, and feeding practices revealed that after removing
colinear variables, the age of the child had the largest explanatory power (27%) on
variation in Faith’s PD, followed by iron intake (15%) and intake of polyunsaturated fatty
acids (5%) (Fig. 2; details may be found in Table S4). No correlates were associated with
SDI in redundancy analysis.

�-Diversity. Differences in community structure between groups were measured
using unweighted and weighted UniFrac distances and tested for significant differences
by permutational multivariate analysis of variance (PERMANOVA) (40) as well as PER-
MDISP (41) to test for dispersion, in addition to DEICODE robust Aitchison distances (42)
and Qurro (43) to determine specific taxa driving clustering (Table S5). No nutritional
exposures were associated with differences in community structures measured by
either unweighted or weighted UniFrac distances (Table 4). Robust Aitchison distances
produced by DEICODE assessed by PERMANOVA were significantly different between
samples from subjects who did and did not consume oils and fats the previous day

FIG 1 Relative abundance of genera across participants. Each stacked bar plot corresponds to one infant subject. Figure legend colors repeat for additional
identified taxa. Please see Fig. S1B in the supplemental material for full legend.
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(Infant and Young Child Feeding [IYCF] food group M; Fig. 3A, P � 0.04) (Table 4;
Table S6). The specially separated arrows in the compositional biplot revealed ratios of
features classified of the phylum Firmicutes (lowest classified taxonomic level; Entero-
coccaceae, Enterococcus, Lactococcus, Anaerococcus, WAL_1855D) and Proteobacteria
(lowest classified taxonomic level; Aeromonadales, Moritellaceae, Vibrio) that drove
sample separation (Fig. 3A; Fig. S2A; see Table S5 for full list of features). By inspecting
the biplot, we selected features spatially separating oil and fat consumption and
visualized the corresponding log ratios using Qurro, which were assessed by t tests
(Fig. 3A). We repeated this for 17 separate log ratios according to the cluster in which
they were identified. We found that the log ratio of Lactococcus to Anaerococcus was
significantly higher in the group consuming oils and fats (median [IQR], 2.62 [1.05, 6.15]

TABLE 2 Correlates of phylum relative abundance in multivariate analysesa

Taxon and parameter n � (%) (95% CI) P valueb P value adj.c

Actinobacteria (%)
Head circumference (cm) 52 0.30 (0.02, 0.57) 0.0327 0.0719
Age (mo) 52 0.14 (�0.05, 0.33) 0.1439 0.1759
Female 52 �0.39 (�1.23, 0.45) 0.3660 0.4026

Bacteroidetes (%)
Serum zinc (�mol/liter) 38 1.41 (0.21, 2.61) 0.0211 0.0719
Age (mo) 38 0.51 (�0.83, 1.85) 0.4570 0.4570
Female 38 4.63 (�1.40, 10.66) 0.1320 0.1759

Firmicutes (%)
Iron (mg)d 48 7.50 (1.98, 13.03) 0.0078 0.0572
Log energy (kcal)d 48 �3.81 (�8.27, 0.65) 0.0944 0.1731
Age (mo) 48 1.34 (0.16, 2.53) 0.0264 0.0719
Female 48 4.05 (�1.17, 9.27) 0.1280 0.1759

Proteobacteria (%)
Weight-for-length Z-score (WLZ)e 51 5.33 (1.25, 9.41) 0.0104 0.0572

aAnalyses were performed using complete case analysis; similar results were found using missing indicators
with median imputation (not shown).

bBoldface P values are statistically significant (P � 0.05).
cP value adj., adjusted P value corrected for multiple comparisons using the Benjamini-Hochberg false
discovery rate (FDR).

dIron intake residual adjusted for energy.
eNot adjusted for age and sex, as calculation of WLZ incorporates age and sex.

TABLE 3 Correlates of �-diversity in multivariate analysesa

Correlate and parameter n � (95% CI) P valueb P value adj.c

Shannon diversity index (SDI)
Head circumference (cm) 51 0.21 (0.08, 0.33) 0.001 0.0023
Weight-for-length Z-score (WLZ) 51 �0.31 (�0.49, �0.13) 0.0007 0.0021

Faith’s phylogenetic diversity (PD)
Head circumference (cm) 37 0.77 (0.34, 1.20) 0.0004 0.0018
Hemoglobin (g/dl) 37 �0.58 (�1.06, �0.10) 0.0183 0.0206
Fat (g)d 37 2.91 (1.33, 4.48) 0.0003 0.0018
Log energy (kcal)e 37 �1.58 (�2.67, �0.49) 0.0045 0.0081
Breastfed yesterday (current

breastfeeding)
37 2.27 (0.53, 4.02) 0.0106 0.0153

Age (mo) 37 0.31 (0.03, 0.60) 0.0298 0.0298
Female 37 �1.58 (�2.81, �0.35) 0.0119 0.0153

aAnalyses were performed using complete case analysis; similar results were found using missing indicators
with median imputation (not shown).

bBoldface P values are statistically significant (P � 0.05).
cP value adj., adjusted P value corrected for multiple comparisons using the Benjamini-Hochberg false
discovery rate (FDR).

dNot adjusted for age and sex, as calculation of WLZ incorporates age and sex.
eFat residual adjusted for energy.

Huey et al.

September/October 2020 Volume 5 Issue 5 e00731-20 msphere.asm.org 6

https://msphere.asm.org


versus 1.05 [�2.25, 3.57]; P � 0.01) (Fig. 3B). Figure S2B shows the Qurro rank plot with
the Lactococcus/Anaerococcus log ratio highlighted.

DISCUSSION

In this cross-sectional study, we examined the gut microbiota of 10- to 18-month-
old children living in urban slums of Mumbai, India, and determined associations with
comprehensive nutritional status. Overall, children were undernourished with high
proportions of poor growth and nutrient deficiency, with the Proteobacteria phylum
representing the majority of taxa in their gut microbiota. Multivariate analyses revealed
differences in gut microbiota composition and measures of diversity in association with
nutritional markers, including anthropometry indicators such as head circumference
and weight for length; blood nutritional biomarkers, including hemoglobin; dietary fat
and iron intakes; and feeding practices, such as current breastfeeding and consumption
of fats and oils. Taxa from the Firmicutes and Proteobacteria phyla were identified as
driving the gut microbiome sample separation globally in this cohort. Among these

FIG 2 Redundancy analysis (RDA) for Faith’s phylogenetic diversity (Faith’s PD) of sociodemographic,
clinical, feeding practices, and dietary correlates (dietary intakes are nutrient residuals adjusted for
energy after removing colinear variables). Factors are sorted according to their effect size in the sample
population and colored for distinguishability. PUFA, polyunsaturated fatty acids.

TABLE 4 Correlates of �-diversity

Characteristic

PERMANOVAa PERMDISPb PERMANOVA

Unweighted UniFrac Weighted UniFrac Unweighted UniFrac Weighted UniFrac DEICODEc

Test
statistic

P
value

q-
valued

Test
statistic

P
value

q-
value

Test
statistic

P
value

q-
value

Test
statistic

P
value

q-
value

Test
statistic

P
value

q-
value

Consumed oil or
butter yesterdaye

1.39 0.05 0.04 0.81 0.45 0.44 0.19 0.75 0.77 0.53 0.50 0.47 3.54 0.04 0.04

aPERMANOVA, permutational multivariate analysis of variance.
bPERMDISP, test for homogeneity of multivariate dispersions.
cDEICODE, robust Aitchison principal component analysis (RPCA) to determine which taxa strongly influence clustering. A boldface P value or q-value is statistically
significant (P � 0.05).

dq-values derived from pairwise testing and represent the false discovery rate (FDR) analog of a P value.
eInfant and Young Child Feeding (IYCF) (World Health Organization) food group M.
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phyla, species in the Enterococcus genus, Anaerococcus genus, Aeromonadales order,
and Vibrio genus were of high relative abundance; these have been previously shown
to cause infection and harbor antibiotic resistance (44).

Dominance of Proteobacteria. Members of the Proteobacteria phylum dominated
the gut microbiota among infants and children in this study, contrary to our expecta-
tion that Bifidobacteria would be in abundance due to the report of current breast-
feeding in over 80% of participants. A high abundance of Proteobacteria has been
considered a “marker for dysbiosis” or gut microbial imbalance and associated with
negative health outcomes (45). For example, preterm newborns tend to have greater
Proteobacteria abundance in their gut microbiota compared to full-term newborns
(46–48), which has been shown to be associated with necrotizing enterocolitis (NEC), a
devastating and potentially fatal disease in which the underdeveloped intestinal wall is
invaded by bacteria with subsequent inflammation (49). In particular, higher abun-
dance of the Gammaproteobacteria class has been observed in premature infants with
NEC (50); interestingly, we found that most of the bacterial sequences in the data set
in urban slums of Mumbai, India, were classified as Gammaproteobacteria. Previous
studies have also found associations between Proteobacteria abundance and poor
health states in other age groups, such as inflammatory bowel disorders (49), irritable
bowel syndrome (49), gastric bypass surgery (51), metabolic disorders (52), and intes-
tinal inflammation (45, 53, 54), perhaps due to many Proteobacteria species having
highly immunogenic lipopolysaccharide in the cell wall in comparison to other Gram-
negative bacteria (55, 56). From these findings, Proteobacteria has been considered to
reflect the “unstable structure of the gut microbial community” (45), and the abun-
dance of Proteobacteria in this population may be a sign of an imbalance of the gut

FIG 3 (A) DEICODE biplot showing distances among samples from children consuming fats and oils the previous day (IYCF food group
M) (purple squares) compared to samples from children not consuming fats and oils the previous day (green spheres) (PERMANOVA,
P � 0.04). Samples with missing data (n � 2) are represented by gray rings. (B) Lactococcus/Anaerococcus log ratio between groups
reporting “yes” versus “no” showing the 37 (69.81%) samples containing a valid log ratio (not containing zero). The difference in the
Lactococcus/Anaerococcus log ratio was statistically significant (P � 0.01).
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microbiota or dysbiosis, suggesting gut microbial immaturity compared to children
who are healthy.

Further, though this study did not find an association between undernutrition and
Proteobacteria, poor nutrition status has been linked with higher Proteobacteria abun-
dance and other aberrations in gut microbiota (31, 57–59). In a study of 20 children
from 0 to 2 years of age living in slums in southern India, healthy children had a higher
prevalence of Bacteroidetes, Bifidobacterium longum, and Lactobacillus mucosae, com-
pared to stunted children, who harbored more potentially pathogenic organisms such
as Desulfovibrio and Campylobacterales (60). Similarly, in a case study of two children
(one healthy, one malnourished) living in an urban slum of Kolkata, India, a higher
prevalence of Campylobacterales and Clostridiales was observed in the malnourished
child’s gut microbiome (59). Another study in a Bangladesh slum among healthy and
malnourished children found a high prevalence of Klebsiella and Escherichia with a
decrease in Bacteroidetes and other anaerobes as well as Lactobacillus in the malnour-
ished children (57). Similarly, a study in a rural community of West Bengal, India, found
a significant clustering of potentially pathogenic groups such as Escherichia, Strepto-
coccus, and Shigella in severely malnourished children compared to healthy children 0
to 60 months of age (61). In the gut microbiomes of Malawian twins discordant for
kwashiorkor, gut microbiota were causal in the development of kwashiorkor after
performing mechanistic studies in mice; upon examining their gut microbiome, the
mice that had developed kwashiorkor had more members of Proteobacteria, particularly
Bilophila wadsworthia, which caused systemic inflammation in specific-pathogen-free
mice (62) as well as Clostridium innocuum, a member of Firmicutes and associated with
sudden infant death syndrome (63).

Anthropometry. The prevalence of poor growth was high in this study, and
anthropometric measurements were found to be differentially associated with the gut
microbiota, which parallels a recent review (2). In this study, head circumference was
positively associated with �-diversity. To our knowledge, studies examining head circum-
ference in relation to the gut microbiome in children have only been done in neonatal
and/or premature infants. One study found that administration of a synbiotic, which
included members of Firmicutes and Actinobacteria as well as fructo-oligosaccharides,
resulted in a lower odds of head circumference below the 10th percentile, compared to a
control group after 1 year of supplementation (64). In another study, certain genera of the
maternal microbiota and maternal SDI were positively correlated with neonatal male head
circumference (65). In newborn preterm infants, receiving an intervention of 10 to 15 g of
medically graded bee honey (a source of oligosaccharides) daily was associated with
increased head circumference after 2 weeks, in addition to increased colonization with
Bifidobacterium bifidum compared to control receiving no intervention (66). However, to
our knowledge, head circumference has not been examined in concert with other nutri-
tional metrics in relation to the gut microbiota diversity or composition in older infants and
children.

Increasing weight-for-length Z-score (WLZ) was inversely associated with SDI. When
stratified by sex, these associations were present only in male children. Poor growth
outcomes in male children compared to female children have been previously ob-
served (67–70). Earlier studies in undernourished infants and their microbiota have
found lower microbial diversity with stunting (71), underweight and wasting (57), or
severe acute malnutrition (30). Other studies have found no differences in diversity in
mice which received microbiota from either severely stunted or nonstunted infants
after 30 days postcolonization (72), or in Malawian infant weight-for-age Z-scores (WAZ)
between 12 and 18 months of age (73). A potential explanation for our results is our
small sample size, or some unmeasured environmental factor(s) may have influenced
the association between WLZ and the gut microbiota in this cross-sectional analysis.
However, our data suggest that both age and sex should be considered when exam-
ining growth and the gut microbiota of infants and children, particularly in lower-
resource settings.
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Biomarkers. In this study, hemoglobin concentration was associated with decreases
in Faith’s phylogenetic diversity (Faith’s PD). A previous study of rural Kenyan infants
and children found that hemoglobin concentration was not associated with microbial
diversity but was positively correlated with numbers of Escherichia coli, a member of the
Proteobacteria phylum (74, 75). Further, in anemic infants, a positive correlation was
found between hemoglobin concentration and Actinomycetales, an order of Actinobac-
teria (74, 75). These findings together suggest that further examination of hemoglobin
and the gut microbiota would be informative.

Dietary intakes and feeding practices. Consumption of fat was consistently
associated with �- and �-diversity in this study. Specifically, the log ratio between two
genera of the Firmicutes phylum, the Lactococcus/Anaerococcus log ratio, was found to
be significantly higher among children who consumed oils and fats compared to
children who did not consume oils and fats the previous day. While these particular
genera have not been specifically explored in association with dietary fat intake, a
recent meta-analysis of 27 studies done with mice and humans found that high-fat
diets reproducibly changed gut microbial community structure, including increased
Firmicutes relative abundance, but had no consistent association with diversity (76). In
children 1 to 6 years of age, European children with fat constituting 44 to 47% of their
diet, Bacteroidetes and Firmicutes were more abundant than in African children whose
diets were made up of 25 to 28% fat (77). Some studies of children and infants do
suggest an association between fat intake and microbial diversity. In a study in
premature infants, supplemental polyunsaturated fatty acids increased bacterial diver-
sity (78), similar to our findings from the Faith’s PD redundancy analysis. Increased fat
intake from complementary foods becomes an important source of energy as breast
milk consumption decreases (79), particularly in populations at higher risk of under-
nourishment; our finding of higher fat intake from complementary foods may reflect
greater dietary quality, translating to an increase in Firmicutes (80) and greater microbial
diversity.

Current breastfeeding was also associated with greater �-diversity. Previous studies
have found lower �-diversity in breastfed individuals, as breast milk selects for micro-
biota capable of digesting particular human milk oligosaccharides (HMO) present in
breast milk (81–83), such as Bifidobacterium, which may suppress the expansion of
other microbiota incapable of digesting HMO, resulting in lower diversity (8). In these
studies, Bifidobacterium spp. dominated the gut microbiota as a result of breast milk
consumption, in contrast to our study where Proteobacteria represented over 80% of
the taxonomic composition despite the report of current breastfeeding in over 80% of
participants. We observed higher �-diversity when Proteobacteria abundance was
relatively low (data not shown), which could allow the expansion of members from
other phyla; indeed, we found an inverse association between Actinobacteria and
Faith’s PD (data not shown). Understanding associations between diet and gut micro-
biota in populations living in environments with higher risk for undernutrition and poor
sanitation may require additional scrutiny compared to populations in higher-income
countries.

Strengths. There are several strengths of this study. This is the first study to examine
the gut microbiota among Indian children living in urban slums of Mumbai, and
children from five slums were sampled and analyzed, improving generalizability of
findings to children in this age group from other urban slums of Mumbai. We used
rectal swabs to sample the microbiota, which has multiple benefits. They are easily
obtained and convenient (84). They are stored immediately after sampling, resulting in
a lower risk of contamination (84). Short-term storage at room temperature has been
shown to have had no impact on composition of gut microbiota (84). They are
appropriate for sampling from this age group (85–87). Skin bacterial contamination has
been none or low (84). Importantly, the microbiome profile has been shown to be
comparable to bulk stool samples in previous studies (48, 84, 85, 87). As another
strength, we followed protocols from the Earth Microbiome Project (88, 89), such as
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DNA extraction and sequencing protocols and 16S rRNA hypervariable region selected,
to facilitate interstudy comparability. Further, we analyzed data using state-of-the-art
bioinformatics methods (90, 91), including the fragment insertion method to acquire
the taxonomic assignments of sequences, which provides advantages over de novo
phylogenies, including accurate branch lengths, multistudy meta-analyses, and mixed
region meta-analyses (36). Use of the V4 hypervariable 16S rRNA region has been
shown to be especially appropriate for infant microbiota investigations, as this region
tends to allow better recovery of Bifidobacterium (92), making our observation of very
low bifidobacteria in this population even more stark.

Limitations. This study has some limitations. First, this pilot study sample was
comprised of the first 53 participants from whom a rectal swab was able to be collected
between June and July 2017 (consecutive sampling); as a result, we did not include
samples from infants from the full screening period of the parent trial (93): specifically,
5 out of 20 communities sampled are represented in this cross-sectional analysis, which
may present selection bias. In comparison to the rest of participants screened, we found
that there were no dissimilarities in age, sex, other sociodemographic characteristics,
but we did find differences in other measures, including a lower proportion of vaginal
births in the microbiome subset (see Table S1 in the supplemental material). The
difference in the higher proportion of vaginal births is unexpected, but it may be
dependent on the subset of communities included and specific cultural practices.
Another limitation in this study is the possibility of error due to the inherent drawbacks
of a 24-h dietary recall questionnaire. Recall bias due to the mother’s inability to
accurately recall the child’s dietary intake, as well as information bias due to the
limitations in food composition databases to convert the reported food consumption
to energy and nutrient intakes, may limit the validity of the dietary information
collected (94). However, the diet in early childhood is relatively simple with lower
dietary diversity than an adult’s diet; in addition, we used the recently updated Indian
food composition database (95), suggesting that this is a likely relatively minor weak-
ness of the study. Another limitation is that few children consumed adequate dietary
intakes from complementary foods, limiting power for statistical analysis. However, this
finding parallels the results from India’s 2016 –2018 Comprehensive National Nutrition
Survey in children under 2 years of age, suggesting increased generalizability of the
cohort (96). Finally, as we conducted 16S rRNA sequencing, we were unable to include
an investigation of the functional potential of the gut microbiota, given that algorithms
used to predict function, such as Phylogenetic Investigation of Communities by Re-
construction of Unobserved States (PICRUSt) (97), have been validated only on adult
populations and therefore are not appropriate for infant populations.

Conclusions. This sample of 10- to 18-month-old children living in urban slums of
Mumbai, India, had high prevalence of poor growth and nutrient deficiencies, as well
as a dominance of Proteobacteria in the gut. Anthropometry (head circumference,
weight for age), nutritional biomarkers (hemoglobin), and diet (fat intake, iron intake,
current breastfeeding) were associated with gut microbiota composition and diversity.
Further longitudinal research examining comprehensive nutritional status and the gut
microbiota in similar populations is warranted, given that multiple markers of nutri-
tion— growth, biomarkers, diet, and feeding practices—were associated with the gut
microbiota.

MATERIALS AND METHODS
Study population, setting, and design. Participants were children between 10 and 18 completed

months of age living in urban slums of Mumbai, India (including the eastern wards of Khar, Santacruz,
and Bandra) who provided informed caregiver consent to be screened for enrollment into the parent
study, a randomized controlled nutrition intervention trial (Clinicaltrials.gov ID: NCT02233764) (93). This
exploratory cross-sectional study examined a subset of participants at screening, prior to enrollment (67).

The protocol was reviewed and approved by the Inter Systems Biomedical Ethical Committee (ISBEC)
(Mumbai, Maharashtra, India), St. John’s Research Institute (SJRI) Institutional Ethics Committee (IEC), and
the Institutional Review Board (IRB) of Cornell University. In addition, permissions to conduct the study
were obtained from the Health Ministry Screening Committee of India (Indian Council of Medical

Nutrition and Gut Microbiota in Children in Mumbai

September/October 2020 Volume 5 Issue 5 e00731-20 msphere.asm.org 11

https://msphere.asm.org


Research). Informed consent was obtained from all caregivers in an audio/visual format per Indian
Government guidelines (98).

Screening data for this cross-sectional study were collected from June to July 2017; screening data
for the parent trial were collected between March and November 2017. Caregivers who had at least one
10- to 18-month-old child as identified during a census survey were invited to come to the study center,
the Centre for the Study of Social Change (CSSC) (Bandra East, Mumbai, India), with their child to be
screened for eligibility in the randomized trial. Inclusion criteria for enrollment into the parent trial have
been described previously (93). The sample size constituted the first 53 stool samples to be collected and
next-generation-sequenced and is therefore a convenient sample for this exploratory study. All children
were provided 400 mg albendazole as recommended by the World Health Organization (99) during
screening under supervision by the study physician.

Anthropometry. Trained research assistants collected anthropometric measurements using stan-
dardized procedures (100). The average of duplicate (recumbent length, mid-upper-arm circumference,
head circumference) measurements was used as the final measurement. The weight of each child was
measured using Rice Lake and Seca 703 body weight scales to the nearest 0.01 kg and calculated as the
difference in weight of the child’s caregiver alone compared to the weight of the caregiver holding the
child, both wearing standard attire (without shoes) (GmbH & Co. KG, Hamburg, Germany). Child
recumbent length was measured to the nearest 0.1 cm using an infant length board (ShorrBoard; Weigh
and Measure LLC, Olney, MD, USA). Infant anthropometric Z-scores were computed using WHO Inter-
national Growth References (version 3.2.2, 2011).

Demographic data, dietary intakes, feeding practices, and health history. Research assistants
collected maternal and child demographic and health history data through interviews with caregivers.
These variables included the age of the child, sex of the child, child’s birth weight (low birthweight was
defined as less than 2.5 kg [101, 102] and determined by caregiver’s recall and confirmed by maternal/
child health card), dietary information, and birth/delivery mode. The child’s health history data were
reported to the study physician by the mother, a physical examination was conducted by the study
clinician, and morbidity data were recorded as a report of the child having had any occurrence of
diarrhea, fever, or cough within the past month. In addition to breastfeeding status information, dietary
food group consumption data from the Infant and Young Child Feeding (IYCF) questionnaire were
collected (103). These IYCF dietary food groups A to O include the following: A, porridge, bread, rice,
noodles, or other foods made from grains; B, pumpkin, carrots, squash, or sweet potatoes that are yellow
or orange inside; C, white potatoes, white yams, manioc, cassava, or any other foods made from roots;
D, any dark green leafy vegetables; E, ripe mangoes, ripe papayas; F, any other fruits or vegetables;
G, liver, kidney, heart, or other organ meats; H, any meat, such as beef, pork, mutton, lamb, goat, chicken,
or duck; I, eggs; J, fresh or dried fish, shellfish, or seafood; K, any foods made from beans, peas, lentils,
nuts, or seeds; L, cheese, yogurt, paneer, butter, milk, or other milk products; M, any oil, fat, palmolein,
butter, or foods made with any of these; N, any sugary foods such as chocolate, sweets, candies, pastries,
cakes, or biscuits; and O, condiments for flavor such as chilies, spices, herbs, or fish powder. IYCF food
groups B, C, D, E, and F were combined to reflect consumption of all fruits and vegetables in analysis.
Dietary intakes of the child were estimated using 24-h dietary recall administered to their mother or
caregiver; nutrient intakes were calculated using the updated Indian Food Composition Tables (95) via
CS Dietary System software (CS Dietary System, version 1.1). These intakes represent a conservative
estimate of macro- and micronutrients consumed from only complementary foods, and no nutrient
contributions from breast milk. Dietary intakes were adjusted for energy using multivariate nutrient
residual models which included log calories as a constant, i.e., microbiota outcome � b1Nutrient
residual � b2Calories (104).

Biological specimen collection. At the study center (CSSC), a pediatric phlebotomist applied topical
anesthetic (Prilox Cream [lidocaine with prilocaine]; Neon Laboratories Limited, Mumbai, India) and
performed topical antisepsis before collecting blood from the antecubital vein. After centrifugation to
separate serum from whole blood, blood was divided into aliquots and immediately transported (within
a range of 1 to 6 h after collection) to SRL Diagnostics (Goregaon, Mumbai, India) for immediate analysis
as well as storage at �80°C for future batch analyses of nutrition status and immune function. Complete
blood counts, including hemoglobin were immediately analyzed (DXH 600 Coulter Counter) (intra-assay
coefficient of variation [CV], 0.43%). Serum ferritin was measured using electrochemiluminescence
(Cobas8000) (intra-assay CV, 4.5%) (limit of detection [LOD] �0.5 ng/ml). Serum zinc was measured using
FAAS with D2 correction (Aanalyst800) (intra-assay CV, 4.99%). C-reactive protein (CRP) was measured
using nephelometry (BN II nephelometer) (intra-assay CV, 5.24%).

Stool samples were collected using Copan FecalSwab Regular Flocked Collection kit (Nylon FLO-
QSwab and tube containing 2 ml Cary-Blair medium) (Thermofisher, catalog no. R723487) by inserting
the swab gently 2 to 3 cm into the rectum and rotating 360 degrees until fecal material was visible on
the swab. The rectal swab was then stored at 4°C for a maximum of 48 h and subsequently stored at
�20°C for a maximum of 1 month until DNA extraction (per the manufacturer’s instructions). Two
separate swabs per participant were collected to ensure maximal DNA recovery.

DNA extraction and 16S rRNA gene next-generation sequencing. Samples were shipped on ice
packs to Genotypic Technology in Bangalore, India, for DNA extraction (modified from the MoBio DNeasy
PowerSoil HTP 96 kit Instruction Manual, per instructions for DNA extraction proposed by the Earth
Microbiome Project 2018 instructions [105, 106]) and sequencing. The concentration and purity of
samples were estimated using the Nanodrop spectrophotometer and Qubit fluorometer. Genomic DNA
(25 ng) was amplified for 26 cycles using KAPA HiFi HotStart PCR kit (Kapa Biosystems Inc., Boston, MA,
USA). The V3-V4 region was targeted for library construction using 341F/806RB primers modified as
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described previously (107–110). The forward PCR oligonucleotide (50 bp) contained a 5= Illumina
sequencing adapter, a 10-nucleotide (nt) pad sequence, and the 341 16S specific linker-primer sequence
(5=-CCTACGGGNGGCWGCAG-3=). The reverse PCR oligonucleotide (55 bp) contained the 3= reverse
complement of an Illumina sequencing adapter, the 12-nt Golay barcode, a 10-nt pad sequence, and the
16S specific 806R (modified) reverse linker-primer sequence (5=-CCGGACTACNVGGGTWTCTAAT-3=).

The V4 region was chosen to correspond with the reverse primer of the Earth Microbiome Project
(EMP), and the V3 region was included in the single fragment to facilitate better alignment during the
subsequent analysis. The forward and reverse primer concentrations (0.2 �M each) were analyzed on a
1.2% agarose gel. Round 1 PCR amplicons (1 �l, 1:10) were used for round 2 indexing PCR by amplifying
round 1 PCR amplicons for 10 cycles to add Nextera adapters (Nextera XT v2 index kit; Illumina, USA).
Round 2 PCR amplicons were analyzed on 1.2% agarose gel. Amplicons were sequenced on Illumina
MiSeq, using 275 bp x 2 paired-end sequences by Genotypic Laboratory (Bangalore, India).

Bioinformatics processing. Demultiplexing of paired-end reads was performed using bcl2fastq
v1.8.4 (111). Further processing was performed using the open-source bioinformatics pipeline, QIIME 2
version 2019.7, installed in a conda environment in Linux CentOS (90). Sequence primers were quality
filtered and trimmed using a length of 100 bp via the Deblur workflow, using a minimum read number
of 1 and trim length of 100 bp (36, 112, 113). The resulting quality-filtered feature table of sequence
variants (equivalent to 100% operational taxonomic units [OTUs]) was visually summarized using the
qiime feature-table summarize command to generate descriptive statistics. For phylogenetic
diversity analysis, we used the fragment insertion method (114–117) using the Greengenes 13_8
reference database at 99% (command qiime fragment-insertion sepp) as detailed earlier (118).
Chloroplast and mitochondrial sequences were filtered out of the resulting table using the qiime taxa
filter-table command.

The qiime feature-table rarefy command was used to rarefy the data (by random
subsampling) to a sampling depth of 38,012, the deepest sampling depth possible that included all 53
samples (119). The qiime diversity alpha and qiime diversity beta-phylogenetic
plug-ins were used to compute �-diversity and �-diversity metrics on the rarefied sequence variant table.
Measures of �-diversity analyzed included the Shannon diversity index (SDI) (38), and Faith’s phyloge-
netic diversity (Faith’s PD) (39). �-Diversity was measured using unweighted and weighted UniFrac to
consider the relative abundance of taxa in addition to presence or absence information (120, 121) as well
as DEICODE (42).

Statistical analysis. We first analyzed continuous variables for normality using the Shapiro-Wilk test.
If data were not normally distributed, median and interquartile range (IQR) values were reported.
Continuous data were assessed for correlational relationships using Spearman correlation, and medians
(IQRs) were compared between groups using the Hodges-Lehmann-Sen test. Categorical data were
compared between groups using the chi square test; Fisher’s exact test was used in analyses where at
least 25% of expected counts were less than five.

Linear regression was performed to examine the association between exposures of poor nutrition
status and gut microbiota outcomes, percent relative abundance, and �-diversity metrics, SDI and Faith’s
PD. To identify potentially confounding factors, nutritional exposure variables associated with the
outcome of interest at P � 0.20 in univariate analysis were included in the multivariate model; only those
correlates were retained in the model that were associated with the outcome with a P value of �0.05
(122). All analyses were adjusted for age and sex.

We also identified nonredundant covariates using a forward stepwise redundancy analysis (RDA) with
the vegan package in R. This analysis estimates the linear cumulative and independent effect size of each
nonredundant covariate on microbiome diversity variation (123). For RDA analysis, after removing
colinear variables, we included dietary, sociodemographic, and clinical correlates in the model.

�-Diversity (unweighted and weighted UniFrac metrics) was visualized by principal coordinate
analysis (PCoA) using the Emperor software through QIIME 2, using abundance data to determine
clustering patterns between the participants (124). To determine whether UniFrac distances clustered
among participants with particular characteristics, we used the qiime diversity beta-group-
significance command to run a permutational multivariate analysis of variance (PERMANOVA) (40,
125) test to determine whether (weighted or unweighted) UniFrac distances between participants within
a group were more similar to each other than they were to participants representing the other
(reference) group. To test for homogeneity of multivariate dispersions, PERMDISP (41) was run to
compare within-group spread among groups using the average distance between individual observa-
tions to their group centroid to identify the relative spreads of data cloud shapes among groups (126).

To address sparsity in our data, we also examined which taxa strongly influenced clustering using
default parameters of the robust Aitchison principal component analysis (RPCA) DEICODE (version 0.2.4)
QIIME 2 plug-in (qiime deicode rpca) (42). DEICODE is robust to high levels of sparsity, such that
zero values do not influence the resulting ordination. Any taxon identified to the species level was
considered misidentified, as 16S rRNA sequencing is susceptible to species-level misidentifications. The
resulting compositional biplots (127) were visualized in QIIME 2 using Emperor to assess the 25 features
with the highest magnitudes, i.e., those expected to be important in causing separation in the data set
(https://forum.qiime2.org/t/how-to-make-pcoa-biplot-in-r-using-q2-deicode-ordination/8377/6) (--p-
number-of-features, 25). We performed PERMANOVA on the DEICODE results.

The feature loadings in a compositional biplot produced by DEICODE output were then visualized in
the Qurro version 0.4.0 QIIME 2 plug-in (command qiime qurro loading-plot) to display a plot
of feature loadings for a given axis in the biplot alongside a plot of the log ratios of selected features’
abundances within samples (43). The rank plot field was unadjusted, and therefore, the feature loadings
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from axis 1 of the biplot were assessed. The log ratios of taxa at the extremes of the Qurro rank plot were
selected to compare (using Student’s t test assuming unequal variances and no multiple comparisons
correction applied) between group characteristics that were statistically significantly different from the
DEICODE results.

Exposures of interest included anthropometric indices, including birth weight, current weight,
mid-upper arm circumference, length, head circumference, weight-for-age Z-score (WAZ), length-for-age
Z-score (LAZ), and weight-for-length Z-score (WHZ) (128); blood biomarkers, including ferritin, zinc, and
C-reactive protein, hemoglobin concentration; report of diarrhea, cough, or fever within the past 4 weeks;
and dietary and feeding practices, including dietary intakes of macro- and micronutrients, current
breastfeeding, IYCF indicators (103); as well as data on birth mode (vaginal or Caesarean). All analyses
were adjusted for age and sex where appropriate.

Selection bias was examined by comparing characteristics (such as age, sex, and other clinical and
dietary characteristics) of the sample in this cross-sectional study with the rest of the screened
participants. All exposure/outcome combinations were tested and are reported in supplemental tables;
we reported those of interest and those that were statistically significant.

After statistical tests, we utilized false discovery rates (FDR) per the Benjamini and Hochberg
approach (37), as post hoc multiple testing corrections. All analyses were two sided, and differences
between groups were considered significant at P � 0.05. Data were analyzed using SAS version 9.4 (SAS
Institute, Cary, NC, USA), R Studio (R Foundation), and QIIME 2 version 2019.7.

Data availability. These data were subject to cross-checking and confirmation by the Cornell
Institute for Social and Economic Research (CISER) (member of DataCite, https://doi.org/10.5281/zenodo
.556235) to ensure reproducibility; data sets and code are available upon request at https://doi.org/10
.6077/zrvc-pc31. The data that support the findings of this study are openly available in NCBI BioProject
at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA657036. The DNA sequences corresponding to the 16S
rRNA gene data in this study have been submitted as raw fastq files to the SRA at https://www.ncbi
.nlm.nih.gov/sra/PRJNA657036. Various QIIME 2 files, including Qurro plots, are available at https://github
.com/knightlab-analyses/nutrition-gut-microbiota-mumbai.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 2.3 MB.
FIG S2, TIFF file, 0.5 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.02 MB.
TABLE S3, DOCX file, 0.02 MB.
TABLE S4, DOCX file, 0.01 MB.
TABLE S5, DOCX file, 0.02 MB.
TABLE S6, DOCX file, 0.02 MB.
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