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ABSTRACT
Microtubules switch between growing and shrinking states, a feature known as dynamic instability.
The biochemical parameters underlying dynamic instability are modulated by a wide variety of
microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The
forces generated by controlled growth and shrinkage of microtubules drive a large range of
processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation.
In the past decade, our understanding of microtubule dynamics and microtubule force generation
has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic
instability, the effect of external factors on this process, and how the resulting forces act on various
biological systems. Recently, reconstitution-based approaches have strongly benefited from
extensive biochemical and biophysical characterization of individual components that are involved
in regulating or transmitting microtubule-driven forces. We will focus on the current state of
reconstituting increasingly complex biological systems and provide new directions for future
developments.
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General introduction

Together with actin and intermediate filaments,
microtubules constitute the cytoskeleton of eukaryotic
cells. In contrast to what is implied by the term ‘cyto-
skeleton’ (literally: skeleton of the cell), microtubules
are generally very dynamic, and support a broad
range of functions within the cell. For example,
microtubules are essential for cell mechanics, cell
division, intracellular transport, and cell motility.
Whereas the minus-ends of microtubules are usually
stabilised by other structures, the plus-ends constantly
switch between growing and shrinking states. The
energy released by microtubule growth as well as
shrinkage is used for force generation in a wide vari-
ety of cellular processes. Over the past 2 decades, sig-
nificant advancements have been made in our basic
understanding of the diverse range of biological func-
tions that are supported by microtubule-generated
forces. The recent development of more sophisticated
reconstitution systems allows for a more in-depth
characterization of the biochemical and biophysical
processes underlying microtubule dynamics and force
generation.

In this review, we summarize our current understand-
ing of the biochemical properties that regulate microtu-
bule growth and shrinkage (see “Introduction to
microtubule dynamics”) and describe how microtubule-
associated proteins (MAPs) and other factors affect these
parameters both in vivo and in vitro (see “Modulating
microtubule dynamics”). In addition, we will discuss the
biophysical principles behind the generation of pushing
and pulling forces by microtubule-dynamics (see “Bio-
physical principles behind microtubule pushing forces”
and “Biophysical principles behind microtubule pulling
forces”) and provide examples of biological processes
that rely on these forces (see “Pushing forces generated
by microtubule polymerization” and “Pulling forces gen-
erated by microtubule depolymerization”). Finally, we
highlight recent advancements that have been made by
studying force-generation by microtubules in increas-
ingly complex synthetic biology-based systems, ranging
from single-molecule approaches to 3D-reconstitution
assays (see “Reconstituting microtubule pushing forces”,
“Reconstituting microtubule pulling forces,” and “Recon-
stituting complex force-generating microtubule
systems”).
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Introduction to microtubule dynamics

Microtubules are hollow, cylindrical polymers and are
composed of heterodimers of a- and b–tubulin subunits
that assemble in a head-to-tail fashion (Fig. 1A). Linear
arrays of a/b–tubulin dimers are termed protofilaments,
13 of which associate laterally to make up the microtu-
bule (Fig. 1B). This polarized arrangement of tubulin
dimers extends into a supra-molecular polarity with an
a-tubulin exposed ‘minus-end’ and a b-tubulin exposed
‘plus-end’.

Microtubules are constantly switching between
phases of polymerization and depolymerization, a pro-
cess known as dynamic instability.101 This feature forms
the basis for the ability of cells to swiftly remodel their
microtubule network in response to intracellular or
extracellular cues. In most cells, this dynamic behavior
is only observed at microtubule plus-ends, since the
minus-ends are most often stably embedded into the

microtubule-organizing center (MTOC) from which
microtubules nucleation is promoted. Centrosomes
function as the major MTOC during mitosis, whereas
during interphase significant microtubule-nucleation
can be observed from other structures including the
Golgi apparatus.125 The molecular mechanisms underly-
ing microtubule nucleation have recently been described
in an excellent review and will therefore not be covered
here.77

Biochemistry of tubulin

The tubulin protein family contains 3 main members in
eukaryotes: a-, b-, and g-tubulin, each being approxi-
mately 55 kDa in size.112 The majority of g-tubulin is
organized in g-tubulin ring complexes (g-TuRC) in the
MTOC, where it stabilizes the microtubule minus-ends
and acts as a microtubule nucleation template.77 The

Figure 1. Biochemical basis of microtubule dynamics. (A) Schematic representation (left) and high-resolution cryo-EM structure (right),6

of a- (green) and b- (blue) tubulin dimers, showing the non-exchangeable (N-site) and exchangeable (E-site) nucleotide-binding sites.
(B) Head-to-tail assembly of tubulin dimers into a single protofilament. (C) Assembly of 13 protofilaments into a cylindrical microtubule.
The enlargements show homotypic (a-a and b-b) lateral contacts between the protofilaments and heterotypic (a-b and b-a) lateral
contacts between protofilaments at the seam. (D) Growing microtubules incorporate GTP-bound a/b-tubulin dimers, resulting in a GTP-
rich cap. Tubulin incorporation promotes the progressive hydrolysis of the b-tubulin bound GTP (blue) molecule into GDP (brown) via a
GDP-Pi (beige) intermediate. (E) Microtubule undergoing catastrophe with protofilaments bending outwards. The GDP-lattice contains
regions that are enriched in GTP-bound b-tubulin that can promote rescue events.
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tubulin heterodimers that make up the microtubule lat-
tice are composed of one a- and one b-tubulin subunit.
The most common form of microtubules in vivo consists
of 13 protofilaments and is ordered into a so-called B-
lattice, which is characterized by homotypic lateral
contacts resulting in a-a and b-b interactions (Fig. 1C).
Due to an axial offset between the protofilaments, the
lattice contains a helical twist that gives rise to a
discontinuity, known as the seam. This seam runs along
the length of the microtubule and contains lateral
(heterotypic) a-b interactions110 (Fig. 1C).

The a-tubulin subunit contains a non-exchangeable
GTP nucleotide that is buried at the a-b interface (at the
so-called ‘N-site’) (Fig. 1A). In contrast, the b-tubulin sub-
unit accommodates an exchangeable GTP nucleotide (at
the ‘E-site’). The presence of GTP at this site allows a new
dimer to bind longitudinally with a heterotypic interaction
at the exposed plus-end.111 After the incorporation of a
tubulin dimer into the microtubule lattice, the GTP nucleo-
tide at the E-site becomes hydrolysed, resulting in a lattice
containing mostly GDP nucleotides at the E-site34 (Fig. 1D).

In cryo-electron microscopy (cryo-EM) studies, the
ends of growing and shrinking microtubules adopt dif-
ferent structural configurations. Growing microtubule
plus-ends contain mostly straight protofilaments, while
shrinking plus-ends peel outward after having lost the
lateral interactions between its protofilaments94 (Fig. 1D,
E). This observation introduced the early hypothesis that
GTP-tubulin is relatively straight whereas GDP-tubulin
is more curved. However, recent work has shown that
both GTP- and GDP-bound dimers have similar curva-
tures in solution.9 It is only after incorporation of GTP-
tubulin into the microtubule lattice that a more straight
conformation is adopted.106 A recent comparison of
GDP- and GMPCPP- (a slowly hydrolysable GTP-ana-
log) bound microtubules showed that GTP hydrolysis
promotes a major change in the tubulin dimer, charac-
terized by a compaction of the E-site and strain introduc-
tion into the microtubule lattice.6

The GTP cap

It is hypothesized that the time-delay between incorpo-
ration of a tubulin dimer into the microtubule lattice and
its subsequent GTP hydrolysis generates a ‘GTP cap’ at
the growing plus-end of a microtubule (Fig. 1D). GTP
hydrolysis is fundamentally coupled to microtubule (in)
stability,23 but is not essential for microtubule polymeri-
sation, as microtubule growth occurs normally in the
presence of GMPCPP.66 The GTP cap is capable of pre-
venting the GDP lattice from releasing the strain build-
up in the lattice.23 When the GTP cap is lost, the labile
GDP-rich lattice follows the conformational trajectory

toward a curved structure (Fig. 1E). This results in the
loss of lateral contacts between the individual protofila-
ments and subsequent microtubule depolymerisation.
The precise size and state of this protective GTP cap is
however still a matter of debate. Early studies showed
that both the plus- and minus-ends of microtubules are
stabilised by a short region of about 200 GTP-bound
tubulin dimers.147 Although subsequent experiments
with GMPCPP-stabilised microtubules suggested that a
single monolayer of tubulin dimer is sufficient to stabilize
microtubules,22 recent evidence suggests that the GTP
cap does not exist as a monolayer126 and can even extend
to about 750 tubulin subunits in vivo.130 Fluctuations in
the rate of a/b-tubulin incorporation at the microtubule
plus-end, together with the stochastic nature of GTP
hydrolysis, results in a dynamic GTP cap.64 As a conse-
quence, faster growing microtubules accumulate a larger
GTP cap compared to slowly growing microtubules, and
are therefore less prone to undergo catastrophe.39

Dynamic instability

Dynamic instability, the alternation between phases of
growth and shrinkage, can be characterized by a number
of parameters: 1) the rate of growth, 2) the rate of shrink-
age, 3) the catastrophe frequency (the rate of switching
from a growing to a shrinking state), and 4) the rescue
frequency (the rate of switching from a shrinking to a
growing state).

The microtubule growth rate is linearly dependent on
the soluble tubulin concentration, whereas the shrinkage
rate is constant.146 Since microtubules do not elongate at
a constant rate, it has been proposed that variability in
the growth rate results in fluctuations in the length of the
dynamic GTP cap.64,74,126

Microtubule catastrophe was originally assumed to be a
single-step stochastic event that is mediated by GTP
hydrolysis.32 However, it was later established that micro-
tubule catastrophe is likely a multi-step process15,49,97,113

and that microtubule “aging” is responsible for the nonex-
ponential distribution of microtubule lifetimes observed
in vitro.158 In cells, the combination of timely and spatially
regulatedMAPs50,143 and the physical contact with cellular
structures68,135 control the microtubule catastrophe fre-
quency (see “Modulating microtubule dynamics”).

In contrast to the aforementioned parameters, the bio-
chemical and biophysical principles underlying the switch
from microtubule shrinkage to growth (rescue) are still
poorly understood. Early studies have shown that microtu-
bule rescue frequency shows no strong correlation with
tubulin concentration.146 It has been suggested that patches
of unhydrolyzed GTP in the GDP lattice (Fig. 1E) can dis-
rupt microtubule depolymerisation and initiate a rescue
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event.34 Besides these GTP islands, certain MAPs such as
CLASP can promote rescue events through interaction
with the microtubule lattice4 although this is mechanisti-
cally poorly understood.

Single microtubule approaches for studying
microtubule dynamics

Studying dynamic instability with microtubules that have
a sub-diffraction-limited width of 25 nm can be a chal-
lenge both in vivo and in vitro. Pioneering experiments
using dark field microscopy to observe single microtu-
bules101 were followed up by video-enhanced differential
interference microscopy (VE-DIC),146 and epi-fluores-
cence techniques.143 With the advent of fluorescence
speckle microscopy (FSM),150 it also became possible to
observe the dense network of microtubules in cells. Later,
the use of total internal reflection fluorescence (TIRF)
microscopy techniques allowed for high temporal resolu-
tion imaging with high signal-to-noise ratios due to the
elimination of fluorescence background arising from the
free tubulin in solution.12,17 TIRF microscopy also enables
experiments using multiple fluorophores, which allows
simultaneous measuring of both microtubule dynamics
and MAP localization.51 Finally, fluorescence recovery
after photo-bleaching (FRAP) techniques now enable the
investigation of turnover times of MAPs on the microtu-
bule lattice plus-end.38

Modulating microtubule dynamics

The variety of different biological processes that the cyto-
skeleton needs to adapt to in cells requires continuous
and extensive remodeling of the microtubule network.
The MTOC acts as a nucleation template for microtu-
bules and stabilizes minus-ends,77 allowing for about
65% of the total tubulin content in cells to be polymer-
ized.160 The dynamic plus-ends explore the cytoplasm by
constantly switching between phases of growth and
shrinkage, allowing for interactions with other cellular
structures at different locations in the cell. When cells
enter mitosis however, the microtubule network under-
goes a major transformation into a highly characteristic
structure called the ‘mitotic spindle’, which is required
for chromosome segregation. Extensive remodeling of
the microtubule network is mostly mediated by MAPs,
which can spatially and temporally alter the dynamic
properties of microtubules.14

Tubulin isotypes and modifications

In the past decades, multiple ways for a cell to control
microtubule dynamics have been uncovered. Firstly,

regulation of b-tubulin isotype expression levels gener-
ates heterogeneous microtubules67 that could be capable
of exhibiting different characteristics. However, until
now, only a few highly specialized microtubule types
such as neuronal microtubules70 and cilliary axonemes122

have been shown to be composed of specific b-tubulin
isotypes.

Secondly, several post-translational modifications
(PTMs) have been shown to modify the stability and
structure of the microtubule lattice.58,67 Most PTMs
affect polymerised microtubules and are not acquired on
soluble tubulin.144 For this reason, PTMs have only been
observed in vivo on long-lived subpopulations of micro-
tubules. These modifications may either act individually
or in concert with each other by creating a combinatorial
readout.121,141 It has been proposed that different tubulin
isotypes or PTMs, known as the ‘tubulin code’, can result
in unique interactions with MAPs.144 Detyrosination, for
example, which refers to the enzymatic removal of the
C-terminal tyrosine of a-tubulin subunits,57 can have
extremely different outcomes in various biological sys-
tems. 1) It has been shown that the localization and
activity of several proteins that affect dynamic instability
are directly affected by microtubule detyrosination.118,119

2) Recent studies revealed that detyrosination decreases
the processivity of the motor protein kinesin-1, but
causes the opposite effect on kinesin-2 and ¡7
motors.10,131 3) Microtubule detyrosination promotes
their interaction with the sarcomere (via desmin) to reg-
ulate cardiac myocyte stiffness and contractility.123

Whether these biological outcomes are a result of the cell
specific regulation of (the expression of) downstream
effectors of this PTM or whether detyrosination triggers
different outcomes in combination with additional
PTMs is currently unknown.

Microtubule-associated proteins (MAPs)

MAPs play a central role in adapting microtubule
dynamics in order to accommodate the large variety of
functions microtubules have to perform within a cell.
MAPs are capable of altering various parameters of
microtubule dynamics, either through direct microtubule
contact or through the association with other MAPs.
CLIP-170 was the first MAP observed to accumulate at
growing microtubule plus-ends in vivo. It was observed
that CLIP-170 binds in stretches along microtubule
ends, forming comet-like structures.117 An important
subclass of MAPs comprises so-called plus-end tracking
proteins (CTIPs), which are capable of accumulating
specifically at the growing plus-ends of microtubules.129

Their localization to microtubule plus-ends makes them
prime candidates for establishing interactions with other
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intracellular structures while growing microtubules
explore the cytoplasm. Since this first discovery, many
CTIPs have been identified and their contribution to a
large CTIP interaction network has been established
(see “The end binding protein family” and “The C TIP
interaction network”) (for excellent recent reviews,
see refs. 1, 47.

The end binding protein family

A central player in the CTIP interaction network is the
conserved family of End Binding (EB) proteins. The first
in vitro reconstitution of microtubule plus-end tracking
showed that Mal3, the EB protein from fission yeast, is
able to autonomously track growing microtubule ends.12

Three subtypes of mammalian EB proteins have been
described: EB1, EB2, and EB3. EB1 and EB3 have been
found to increase microtubule polymerisation rate both
in vivo and in vitro.97 In addition, EB proteins increase
the microtubule catastrophe rate in vitro.79 by destabiliz-
ing the GTP cap.39,162 Interestingly, in vivo depletion of
EB1 and EB3 results in a reduction of persistent microtu-
bule growth and in an increase of catastrophe frequency,
resulting in fewer microtubules being located near the
cell cortex.79 The discrepancy between these in vitro and
in vivo observations is most likely the consequence of the
removal of other EB dependent CTIPs that impact on
microtubule dynamics.47

The interaction of EB with microtubule plus-ends is
mediated by its N-terminal calponin homology (CH)
domain132 and does not require dimerization.19,79 It has
been demonstrated that EB can bind to the lattice of
microtubules stabilised by GTPgS (a slowly hydrolysable
GTP analog) with similar high affinity as to the microtu-
bule tip, but not to GMPCPP-stabilised microtubules.96

Taking into account the intermediate curvature of
GMPCPP microtubules,105 (compared to the straight lat-
tice and the curved tubulin dimers, the view emerged
that GMPCPP mimics the unhydrolysed GTP-state
located at the very end of the microtubule tip, while
GTPgS mimics an intermediate (GDP-Pi) nucleotide
hydrolysis state.16 This model is further substantiated by
the fact that the position of the EB comet is displaced up
to »100nm from the tip.39,97

Recent high-resolution cryo-EM studies have now elu-
cidated the specific interactions between EB3 proteins
and the microtubule lattice and propose an explanation
for their effect on microtubule dynamics. The CH
domain of EB binds at the interface of 4 tubulin dimers,
except at the seam, and is therefore positioned in close
proximity to the nucleotide at the E-site.98 Once bound,
EB promotes conformational changes in a-tubulin lead-
ing to a compacted lattice with a unique twist. As a

consequence, the catalytic residue in the a-subunit of the
longitudinally adjacent dimer is brought into closer prox-
imity to the E-site, facilitating GTP hydrolysis and pro-
moting microtubule catastrophe.6 Since EB binds at the
intersection of lateral and longitudinal contacts, it also
promotes seam closure and stabilises the end structure,
resulting in an increased microtubule growth rate.162

The CTIP interaction network

TheCTIP interaction network is build around the EB pro-
teins, which can autonomously recognize the plus-end of a
growing microtubule.97,162 Upon plus-end binding, EB
proteins create a platform for recruiting a multitude of
other MAPs through several interaction modules.1

A coiled-coil region at the C-terminus of EB is
required for its dimerization and mediates the interaction
with other CTIPs through the EB homology (EBH)
domain. Interactions with the EBH domains are mostly
mediated by a microtubule tip localization signal (MtLS),
which is characterized by a short Ser-x-Ile-Pro (SxIP)
motif that is embedded in a region containing basic resi-
dues.61 Examples of CTIPs containing this SxIP motif are
the microtubule-stabilizing family of CLASP proteins,37

the microtubule-actin crosslinking factor (MACF),89 and
the microtubule-destabilizing kinesin MCAK.33 In addi-
tion to the EBH domain, the flexible C-terminal tail of EB
contains an EEY/F sequence capable of binding to CAP-
Gly domains present in the microtubule-rescue promoting
CLIP-17080 and p150glued, which is part of the dynactin
complex.128 The EEY/F sequence is also present on CLIP-
170 itself, where it mediates an auto-inhibitory interaction
with its own CAP-Gly domain,46 and on a-tubulin, sug-
gesting copolymerization of tubulin and CLIP-170 onto
the microtubule end.100

Besides EB, other CTIPs are also capable of interact-
ing with the microtubule lattice and tip directly. The two
structurally related proteins XMAP215 (homolog of
human ch-TOG) and CLASP are recruited to the plus-
end by conserved TOG domains. It has been shown that
XMAP215 binds tubulin in a 1:1 complex and catalyzes
the addition of up to 25 dimers to the growing plus-
end.17 In vitro, XMAP215 acts synergistically with EB to
increase the growth rate to physiological levels.159

CLASP on the other hand promotes microtubule rescue
and supresses catastrophe events.3 Additionally, motor
proteins are also capable of tracking the microtubule
ends. The depolymerizing kinesins Kip3 and MCAK
have different effects on microtubule dynamics: Kip3
slows down microtubule growth in a length-dependent
manner and MCAK eliminates microtubule aging alto-
gether, transforming microtubule catastrophe a single-
step process.49 Another example of a motor protein
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capable of altering microtubule stability is cortical
dynein, which can capture incoming microtubule plus-
ends and trigger a catastrophe.85

Pushing forces generated by microtubule
polymerization

Dynamic microtubules are able to exert forces on inter-
acting entities. Growing microtubules can generate forces
by simply colliding with membranes, organelles or pro-
tein(¡complexe)s, but are also capable of promoting
directed transport through the interaction of plus-end
tracking complexes with their cargo partners. The
importance of microtubule pushing forces has long been
appreciated in various biological systems, most notably

in mitotic spindle formation and positioning (Fig. 2B)
(see “Positioning the nucleus and mitotic spindle”). A
wide variety of studies now starts to unveil a more
diverse role for microtubule pushing forces, visible
through their importance in cell polarity, directed pro-
tein transport, organelle architecture and the arrange-
ment of other cytoskeletal networks (see “Microtubule
pushing forces in organelle architecture”).

Positioning of the nucleus and mitotic spindle

In some organisms, like yeasts, the MTOC (in this case
the spindle pole body) is an integral part of the nuclear
envelope throughout most of the cell cycle. This results
in the concerted positioning of the nucleus and the

Figure 2. Pushing forces generated by polymerising microtubules. (A) 3D model of interphase microtubule organization in fission yeast,
image from ref. 62. (B) Mitotic spindle in human CFPAC-1 cell, image from ref. 90. showing DNA in blue, centrosomes in red and micro-
tubules in green. (C) Microtubule growing against a rigid object slows down microtubule growth. Brownian motion generates space
between the microtubule plus-end and the object and allows for the slow incorporation of new tubulin dimers (red/orange). (D) Sche-
matic representation of a eukaryotic mitotic cell, showing centrosomes (green spheres), microtubules (green lines), chromosomes (blue)
and kinetochores (red) and the microtubule pushing forces (arrows) that act on the mitotic spindle. (E) Reconstitution of microtubule
aster positioning in microfabricated chambers, displaying a schematic representation (left) and immunofluorescent image showing fluo-
rescent tubulin (right).85 (F) Nuclear positioning in fission yeast by microtubule pushing forces.
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mitotic spindle. In the fission yeast S. pombe, the position
of the interphase nucleus is an important determinant
for the position of the cleavage plane during mito-
sis.25,136,138 (Fig. 2A, F). Within these bundles, microtu-
bules are organized in an antiparallel fashion with their
growing plus-ends oriented toward the cell poles.62,69,139

These growing microtubule plus-ends collide with the
plasma membrane at the cell tips62 where they exert
pushing forces that result in nuclear displace-
ment136,137,139 (Fig. 2A, F). A balance between the push-
ing forces generated at opposite sides of the cell has been
suggested to ensure a centralised localization of the
nucleus,114,137 even during cell elongation in inter-
phase.30 This nuclear centring is not only achieved by
balancing the number of microtubules that push on
either side, but also by active regulation of microtubule
dynamics by PRC1 (ase1 in S. pombe),30,69,92 CLIP170
(tip1 in S. pombe),18,30 and EB3 (mal3 in S. pombe).11

Recent evidence from Drosophila oocytes suggests
that similar microtubule pushing forces are responsible
for anterior-directed motion of the oocyte nucleus in
order to establish the dorso-ventral axis.163 In contrast to
the microtubule bundles observed in fission yeast,139

nuclear positioning in Drosophila oocytes is mediated by
the pushing forces generated by approximately 6 singular
microtubules at any given time.163

Centrosome positioning depends on force-generating
microtubules in virtually all studied organisms, but whether
these microtubules are pushing or pulling is organism spe-
cific. Up to now, only limited evidence supports a clear con-
tribution of microtubule pushing forces in MTOC
positioning in non-yeast cells. Since most eukaryotic cells
are significantly larger than yeast cells, they are expected to
have difficulties to efficiently transmit pushing forces as a
result of microtubule buckling.35,36,63 It is therefore thought
that larger cells mostly rely on microtubule pulling forces
for efficient centrosome positioning103 (see “Centrosome
positioning by cortical anchors” and “Dynein-mediated
centrosome positioning”).

Microtubule pushing forces in organelle architecture

Microtubules play an important role in intra-cellular
organization and in defining organelle shape. In addition
to the formation of lateral contacts between the microtu-
bule lattice and membrane-enclosed compartments,
microtubule plus-ends and membranes can also form
dynamic connections that can reshape or position a wide
variety of intracellular structures.56 In Xenopus egg
extracts, growing microtubule plus-ends can interact
with membranes and push out long, extended endoplas-
mic reticulum (ER-)tubes.149,151 The tips of ER-tubes
have also been observed to track growing microtubule

plus-ends in human tissue culture cells, a process that is
mediated by an interaction between EB1 and the ER
transmembrane protein STIM1.52,152

In S. pombe, mitochondrial tubules that interact with
microtubule plus-ends can shrink and extend in a coordi-
nated motion together with microtubule (de)polymeriza-
tion.155 This process does not dependent on microtubule
motor-proteins91 and is thought to promote the motility
and distribution of mitochondria.91,155 At present, the influ-
ence of microtubule pushing forces on organelle shape and
positioning is relatively understudied and it is therefore
unknown to what extent these processes are conserved and
important for cellular fitness.

Reconstituting microtubule pushing forces

The biological relevance of the pushing forces generated
by growing microtubules has been appreciated for sev-
eral decades. This has stimulated the extensive biophysi-
cal characterization and theoretical modeling of the
force-generating capacity of growing microtubule plus-
ends (see “Biophysical principles behind microtubule
pushing forces”). In addition, significant efforts have
been made to reconstitute the cellular processes that
depend on microtubule pushing forces using in vitro bot-
tom-up approaches. These efforts are largely focused on
the reconstitution of MTOC positioning by microtubule
pushing forces and will be discussed in see “Biophysical
principles behind microtubule pushing forces.”

Biophysical principles behind microtubule
pushing forces

Growing microtubules are able to generate substantial
pushing forces, resulting in the displacement or deforma-
tion of movable or flexible obstacles (assuming the
MTOC position is fixed). On the other hand, when the
obstacles are immobile and rigid, the growing microtu-
bule can push itself away from the obstacle (assuming
the MTOC position is not fixed). Microtubule pushing
forces are generated by the continued incorporation of
tubulin-dimers at the plus-end of a growing microtubule.
According to the ‘Brownian ratchet’model, thermal fluc-
tuations in the position of the growing microtubule and
the obstacle create large enough gaps to accommodate
the addition of new tubulin dimers142 (Fig. 2C). This
enables the continued elongation of the microtubule
plus-end (albeit at a lower velocity) and the generation
of a pushing force. To investigate the forces generated by
growing microtubules, optical tweezers have been
employed to trap a microtubule-bound dielectric bead
with a focused laser.73 Interaction of the growing micro-
tubule with a barrier results in a measureable
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displacement of the bead, enabling the determination of
the generated pushing force.74 The maximum pushing
force (Fc) that an individual microtubule can generate
through continued tubulin-subunit incorporation is in
the range of 3-4 pN.36,68,78 This maximum pushing force
is a function of both microtubule-length (L) and rigidity
(k), and can be expressed as Fc D 2pk/L2.36,75,83 Upon
encountering a rigid barrier, growing microtubules can
buckle when the exerted force is greater than the critical
buckling force (the force beyond which a microtubule
buckles).28,36,63 Since the critical buckling force decreases
with the square of microtubule length, long microtubules
are able to generate significantly lower pushing forces
compared to short microtubules.36 However, as the cellu-
lar context wherein microtubules grow can affect their
rigidity, growing microtubules might be able to generate
significantly different amounts of force in vivo than their
length-force relationship would predict. In addition,
microtubules often associate into microtubule bundles,
which increases their force-generating capacity in an
additive fashion.84

Reconstituting centrosome positioning

Since the amount of force that can be generated by a
growing microtubule depends on its length, the shape
and position of the mitotic spindle is strongly influenced
by the geometrical confinement in which these spindles
assemble. This idea is supported by mechanical models
that describe how microtubule pushing forces mediate
aster positioning in both 2D- and 3D-confine-
ments.60,63,85,93,116 Purified centrosomes are able to
nucleate microtubules in the presence of tubulin and
GTP.102 The forces generated by these growing microtu-
bules are sufficient to promote self-organization of
microtubule-asters in the center of squared or round
micro-fabricated chambers60,85,107 (Fig. 2E). Once micro-
tubules grow longer, this geometric symmetry is broken,
resulting in a decentred microtubule aster position.60,85

The decentralised position of these microtubule asters is
relatively stable, although a central position can be
regained by increasing microtubule catastrophe rates.41

Recent developments using microfluidics now allow the
first reconstitutions of mitotic spindle assembly and
positioning in spherical emulsion droplets that mimic
the geometrical confinement of a mammalian mitotic
cell124,145 (see also “Geometrical confinements”).

Pulling forces generated by microtubule
depolymerization

In order for a depolymerizing microtubule to transmit a
pulling force to its potential cargo, the cargo must be

capable of forming and maintaining load-bearing attach-
ments to a rapidly shrinking microtubule. The most exten-
sively studied examples of microtubule polymerization-
driven force-generation come from mitosis. Mitotic spindle
formation and positioning are not only dependent on
microtubule pushing forces, but also rely on stable links
between the cell cortex and depolymerizing microtubules
(see “Microtubule attachment sites at kinetochores”). In
addition, mitotic chromosomes have to form stable interac-
tions with spindle-microtubules in order to become equally
distributed over the 2 new daughter cells. The physical sepa-
ration of the replicated sister-chromatids is driven by the
formation of connections between a specialized chromatin-
bound protein complex, called the ‘kinetochore’, and depo-
lymerizing microtubules originating from opposing centro-
somes (see “Centrosome positioning by cortical anchors”).
Both cortical- and kinetochore-localized protein-complexes
that interact with microtubule plus-ends are able to directly
modulate the dynamic instability properties of these micro-
tubules (see “Modulating microtubule dynamics in
mitosis”).

Centrosome positioning by cortical anchors

Whereas microtubule pushing forces are the main forces
underlying spindle pole body and nucleus positioning in
yeast, larger eukaryotic cells usually depend on microtu-
bule pulling forces for centrosome positioning and spin-
dle architecture (Fig. 3A). Cortical microtubule anchors
are capable of converting the force generated by microtu-
bule depolymerization into a pulling force on the centro-
some. Cytoplasmic dynein (hereafter referred to as
‘dynein’), a minus-end directed microtubule motor,
appears to play a central role in centrosome positioning
both during interphase and mitosis.

During interphase, dynein localized at the cell cortex
is responsible for centrosome positioning20 and pro-
motes the reorientation of the MTOC toward the immu-
nological synapse in antigen-stimulated T cells.95,157

During cell migration, enrichment of dynein at the lead-
ing edge of a migrating cell is required for cell polarity,
MTOC positioning and cell motility.40,48,115

In mitosis, cortical dynein functions as a force generat-
ing and/or force transmitting linker between microtubules
and the plasma membrane in many organisms24,85,108

(Fig. 3B). In budding yeast, cortical dynein forms lateral
attachments to spindle microtubules and relies on its
minus-end directed motor activity to slide the microtubules
along the long axis of the cell.104 In metazoans, dynein is
recruited to the cell cortex by the heterotrimeric Gai/LGN/
NuMA complex.82 In this case, cortical dynein pulls on cen-
trosomes by forming load-bearing interactions with depoly-
merizing microtubule plus-ends24,85,108 (Fig. 3C). In
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specialized cases, asymmetry in dynein-mediated force gen-
eration at the cell cortex is also thought to control asym-
metric spindle position, like in the C. elegans one cell stage
embryo.53,108

In addition, early studies using a chemical inhibitor
of dynein’s ATPase activity have shown defects in
pole-ward movement of centrosomes during late ana-
phase (a process known as spindle elongation) in ver-
tebrate cells.13,21 This movement was later shown to
depend on microtubule pulling forces generated by
cortically anchored dynein in a wide variety of
organisms.42,76,108,164

Microtubule attachment sites at kinetochores

Microtubules emanating from opposing centrosomes
attach to sister chromatids in a bipolar fashion in order

to promote faithful chromosome segregation (Fig. 2B).
Mitotic kinetochores are composed of over 80 different
proteins and are essential for forming load-bearing
attachments between the chromatin and spindle micro-
tubules.43 After stable attachments have been established
between kinetochores and spindle microtubules, the sis-
ter chromatids physically separate by tracking depolyme-
rizing microtubules81 (Fig. 4A). The most broadly
conserved microtubule-attachment site at the kineto-
chore is the 9-subunit KNL1/MIS12-complex/NDC80-
complex (KMN) Network. Both in yeasts and in verte-
brates, the KMN Network is accompanied by an addi-
tional microtubule-binding complex: the Dam1- or
SKA1-complex respectively. Although all 3 complexes
can independently form load-bearing attachments to
microtubules, the mode with which they interact is fun-
damentally different.

Figure 3. Pulling forces generated by depolymerising microtubules drive spindle positioning. (A) Mitotic spindle positioning is accom-
plished by linking depolymerizing microtubules to the cell cortex. (B) Dynein (purple) is anchored to the cell cortex by means of the
NuMa/LGN/Gai trinary adapter complex (green) and interacts with shrinking microtubules. (C) Single molecule approach to study
dynein-mediated pulling forces using an optical trap setup. Barrier (gray) attached dynein is bound to a depolymerizing microtubule
that has grown from a stabilised seed (yellow) that has been linked to a magnetic bead (gray sphere). The formation of load-bearing
attachments results in a pulling force (F) that displaces the bead from the optical trap (yellow).

CELL ADHESION & MIGRATION 483



The KMN Network contains microtubule-binding
regions in both the NDC80-complex and KNL1,27 the for-
mer of which is the most extensively studied component.
The NDC80-complex binds to microtubules at the
a/b-tubulin interface and can diffuse along the microtubule
lattice.7,120 Although the NDC80-complex can form load-
bearing attachments to microtubules, it has only a weak
ability to track depolymerizing microtubule plus-ends120,127

(Fig. 4B). Both the Dam1- and SKA1-complex are recruited
to kinetochores by the NDC80-complex and provide the
NDC80-complex with the ability to track depolymerizing
microtubule ends.87,127,134 The SKA1-complex also binds to
the microtubule lattice but is unique in its ability to stably
interact with both straight and curved microtubule protofi-
laments127 (Fig. 4C). The 10-subunit Dam1-complex
adopts a ring-like structure around the microtubule that is
thought to slide along the microtubule lattice using the
force generated by the outward pealing of protofilaments
during microtubule depolymerization54,148,154 (Fig. 4D).

Modulating microtubule dynamics in mitosis

During mitosis, many events require the controlled
growth and shrinkage of microtubules. Stable kineto-
chore-bound microtubule bundles are composed of both
growing and shrinking microtubules.8 In metaphase,
pole-to-pole oscillation of sister-chromatids correlates
with coordinated bursts of microtubule growth.8 Inacti-
vation of the cyclin-dependent kinase 1 (CDK1)-cyclin
A complex stabilises these kinetochore-fibers when all
chromosomes are aligned at the cell equator.71 Next, dur-
ing anaphase, kinetochore-bound microtubule bundles
collectively undergo catastrophe in order to drive sister
chromatids toward opposite centrosomes. This process is
still poorly understood at the molecular level, but might
be explained as a consequence of the loss of tension
between sister-kinetochores that stabilised these micro-
tubules during metaphase.2 During late anaphase (also
called ‘anaphase b’), the mitotic spindle elongates

Figure 4. Pulling forces generated by depolymerising microtubules drive chromosome segregation. (A) Mitotic cell in anaphase showing
the released sister chromatids that are pulled toward the opposing centrosomes. (B-D) Different modes of kinetochore-microtubule
attachments, showing lateral attachment of the conserved NDC80-complex to the microtubule lattice (B), ring-formation of the Dam1-
complex around a microtubule (C) and attachment of the SKA1-complex to curved protofilaments (D). (E) Single molecule approach to
study kinetochore-mediated pulling forces using an optical trap setup. A microtubule growing from an immobilised microtubule seed
(yellow) attaches to kinetochore-complexes or –particles (here indicated the Dam1 complex). Microtubule depolymerisation in the pres-
ence of load-bearing attachments results in a pulling force that displaces the bead (gray sphere) from the optical trap (yellow).
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through the pole-ward movement of the opposing cen-
trosomes in order to accommodate complete segregation
of the replicated chromosomes. During this process, the
mitotic spindle drastically reorganises with the majority
of growing plus-ends localizing to the inter-polar region,
in both Drosophila and yeast cells.26,31,45 It has been sug-
gested that a spatial gradient of microtubule catastrophes
could account for this spindle reorganization and
elongation,26 although at present there is no molecular
understanding of this phenomenon.

Reconstituting microtubule pulling forces

Over the past decade, significant advancements have
been made in the purification and biochemical character-
ization of microtubule-binding protein complexes. Since
most of these proteins are unstable when separated from
their biochemical context, determining their stoichio-
metric composition has been essential for reconstitution-
based assays. This, together with the rapid development
of methods to measure force-resistance of protein-pro-
tein interactions using optical tweezers setups, has pro-
vided important insights at the single-molecule level. In
addition, more and more efforts are being made to
reconstitute the functions of these protein complexes in
cell-like geometrical confinements.

Biophysical principles behind microtubule
pulling forces

In addition to the ability of microtubules to generate push-
ing forces by growing into obstacles, the energy released by
microtubule depolymerization can be used to generate pull-
ing forces. The forces associated with microtubule depo-
lymerization are in the range of 30-65 pN32,55 and are
therefore about an order of magnitude larger than the
forces generated by microtubule growth (3-4 pN).36 Micro-
tubule catastrophe can be actively promoted or inhibited by
MAPs and physical barriers (see “Introduction to microtu-
bule dynamics”). Over long distances, microtubule-medi-
ated pushing forces might be less efficient than pulling
forces due to length-dependent microtubule buckling (see
“Biophysical principles behind microtubule pushing
forces”). In the case of mitotic spindle positioning, smaller
cells (like yeasts) usually rely on microtubule pushing
forces, whereas the pulling forces generated by depolyme-
rizing microtubules drive the same process in metazoa.

Single-microtubule force measurements on
kinetochore structures

The ability to track depolymerizing microtubules has
been investigated in vitro for a wide range of proteins.

The complexity of the molecules tested in these setups
varies from single proteins (dynein heavy-chain)85 and
(combinations of) recombinant protein complexes
(NDC80-, Dam1-, SKA1-complexes)120,127,153,154 to
kinetochore particles2 (Fig. 4E). The maximum load-
bearing force measured for individual microtubule bind-
ing complexes is about 2-3 pN (Table 1), whereas puri-
fied kinetochores from budding yeast can resist a load-
bearing force up to »11 pN.2 These numbers agree well
with pioneering studies in cells, which have estimated
that kinetochores can carry loads of 1-10 pN per micro-
tubule.5,109 It is important to note that the different
microtubule binding complexes are not conserved in all
eukaryotes and they can be present at kinetochores in
different stoichiometries. Whereas a single Dam1-com-
plex can entrap a single microtubule,148 the SKA1-com-
plex forms dimers,153 and the NDC80-complex
undergoes extensive oligomerization, which is suggested
to lead to additive or even cooperative microtubule bind-
ing.7 It is however unknown to what extent all complexes
form independent load-bearing attachments at the same
time, making it difficult to assign individual activities to
single complexes in vivo.

Dynein-mediated centrosome positioning

In optical tweezers setups, dynein can form load-bearing
attachments to the plus-ends of depolymerizing microtu-
bules and resist forces up to 5 pN59,72,85,86 (Fig. 3C).
Unlike the extensive studies on kinetochore-microtubule
attachments (see “Single-microtubule force measure-
ments on kinetochore structures”), the molecular mecha-
nism by which dynein attaches to depolymerising
microtubules remains largely elusive. For instance, it is at
present unknown whether stable dynein-mediated
attachments are formed by individual molecules or
depend on a number of cooperating motor proteins. Do
several dynein-molecules form a ring-like structure
(such as is the case with the Dam1-complex)? Can
dynein interact with curved protofilaments (such as is
the case for the SKA1-complex)? Or are different

Table 1. Maximum rupture force measurements of microtubule
sub-complexes.

Maximum rupture force References

NDC80-complex 2.5 pN 120

2.7 pN 134

Dam1-complex 3.0 pN 165

2.3 pN 54

3.2 pN 166

SKA1-complex N.D.
NDC80 C Dam1 4.4 pN 134

NDC80 C SKA1 N.D.
Kinetochores 11 pN 2

Note. N.D., non-determined
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mechanisms involved? And how does this relate to
dynein’s minus-end directed motor activity?

Several in vitro studies are now building toward
increasingly complex in vivo-like reconstitutions of the
function of cortical dynein in mitotic spindle formation
and positioning85,124,145 (see “Reconstituting complex
force-generating microtubule systems”). In micro-fabri-
cated 2D-chambers, the pushing forces generated by
growing microtubules are sufficient to promote centro-
some displacement to the periphery of the chamber (see
“Reconstituting centrosome positioning”). However,
when the walls of these chambers are coated with dynein,
centrosomes are stabilised in a more central position,
even after extensive microtubule growth.85 This effect
can be reconstituted in spherical (3D) water-in-oil emul-
sion droplets, where lipid-anchored dynein also gener-
ates a centring force on astral microtubules.124,145

Modulating microtubule dynamics through
end-on interactions

In addition to the ability to hold on to depolymeriz-
ing microtubules, many microtubule-binding com-
plexes at the kinetochore also actively control
microtubule dynamics. Purified kinetochores from S.
cerevisiae cannot only form load-bearing attachments
to shrinking microtubules, but they also reduce the
microtubule catastrophe rate when these attachments
are under tension.2 Likewise, recombinant Dam1- and
NDC80-complexes reduce catastrophe rates and pro-
mote rescue events in vitro.44,140 In contrast, the
SKA1-complex induces the formation of and interacts
with curved protofilaments.127 Although this is
expected to promote microtubule catastrophes (see
“Introduction to microtubule dynamics” and “Modu-
lating microtubule dynamics”), there is currently no
direct evidence supporting this idea.

Both in budding and fission yeast, dynein-mutant
cells have significantly longer microtubules24,156 and
barrier-coated dynein has been suggested to increase
microtubule catastrophe rates in vitro.85 Interestingly,
binding of dynein to depolymerising microtubule
plus-ends slows down microtubule shrinkage by
straightening and thereby stabilizing protofilaments in
an ATP-dependent fashion.59,85 Similar to dynein, a
cortex-localized pool of Drosophila Dm-Kat60 (a
functional ortholog of katanin) also interacts with
microtubule plus-ends and promotes microtubule cat-
astrophes.161 Although cortical Dm-Kat60 and dynein
seem to have a similar function in regulating cell
polarization and migration,161 it is unknown whether
Dm-Kat60 also promotes this by forming load-bear-
ing interactions with depolymerizing microtubules.

Reconstituting complex force-generating
microtubule systems

The studies described above have proven to be extremely
valuable for our molecular and biophysical understand-
ing of force generation by growing and shrinking micro-
tubules. However, most of these studies have been
executed in relatively simplified systems, either using
force-measurements on individual microtubules or by
studying the positioning of a single centrosome in simple
geometrically confinements. Here we discuss recent
progress on reconstituting more complex and in vivo-
like microtubule force-generating systems, with a focus
on mitotic spindle assembly and positioning.

Geometrical confinements

Whereas most reconstitution studies have been per-
formed using single-molecule assays, it will be a major
challenge for the future to translate these studies into
geometrical confinements mimicking the in vivo situa-
tion. The shape and nature of the confinement is an
important determinant of the forces that can be gener-
ated by microtubules of the mitotic spindle.99 Most
eukaryotic cells that lack a rigid cell wall, adopt a spheri-
cal shape when entering mitosis. Important insights will
therefore come from studies on microtubule-aster posi-
tioning in spherical water-in-oil emulsion droplets gen-
erated using microfluidic technologies124,145 (Fig. 5A). In
addition, microtubule asters growing inside micro-fabri-
cated chambers that resemble the asymmetric shape of
the bud-neck of S. cerevisiae, show a highly complex
positioning behavior,60 which is at present poorly under-
stood. In specialized cases, the mitotic spindle is posi-
tioned asymmetrically within the dividing cell, resulting
in 2 daughter cells of different size and often with differ-
ent cell fate. Reconstitution assays within the relevant
geometrical confinements will enable the quantitative
assessment of the forces involved in asymmetric spindle
positioning. In addition to the shape of the geometrical
confinement, the nature of the confinement can also
affect microtubule dynamics and force generation. Bar-
rier flexibility directly affects the friction between micro-
tubules and the barrier, which is predicted to directly
impact on microtubule slipping behavior.116 It will there-
fore be interesting to assess how growing microtubules
respond to relatively rigid barriers compared to more
flexible barriers such as emulsion droplets or the single
lipid bilayer of unilamellar vesicles.

Spindle assembly and positioning

During mitosis, the spindle is formed by the coordinated
assembly of 2 microtubule asters in a bipolar orientation.
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It is important to note that encapsulation of 2 microtu-
bule asters within the same geometrical confinement will
give rise to additional effects compared to a single micro-
tubule aster. In addition to the pushing forces that are
generated by microtubules growing against the confine-
ment boundary, microtubules originating from one cen-
trosome can push against the second microtubule aster,
resulting in centrosome repulsion.29 This force is large
enough to at least partially overcome the forces gener-
ated by astral microtubules colliding with the confine-
ment boundary and can push centrosomes to opposite
sides of the confinement60,145 (Fig. 2D). Furthermore,
the repulsion forces between 2 asters partially

antagonises the centring forces generated by the pulling
of cortical dynein.145

Mitotic spindle assembly and positioning is not only
achieved by the forces generated by microtubule dynam-
ics. Many other microtubule motor proteins and cross-
linkers play important roles in mitotic spindle assembly
and positioning. Plus-end directed motor-proteins of the
Kinesin-5 and ¡12 families are for instance responsible
for centrosome separation and bipolar spindle formation
in vivo.133 Furthermore, passive microtubule cross-link-
ers of the Ase1/PRC1 family are able to generate entropic
forces that increase the overlap of antiparallel overlap-
ping microtubules.88 The complex process of bipolar

Figure 5. Building toward more complex in vitro reconstitution systems. (A) Reconstitution of mitotic spindle formation and positioning
in spherical water-in-oil emulsion droplets, displaying a schematic representation (left) and immunofluorescent image showing fluores-
cent tubulin (right). (B) Toward creating more complex reconstitution systems in which multiple cytoskeletal components are captured
into geometrical confinements together with chromosomes and additional force-generators.
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spindle assembly in the presence of these and many
other force generating complexes is at present difficult to
interpret. It will therefore be important to invest in the
step-wise reconstitution and quantitative assessment of
mitotic spindle formation and positioning in in vivo-like
geometrical confinements.

General thoughts and perspectives

The technological progress in methods for purifying
recombinant protein(- complexe)s have enabled exten-
sive biochemical and biophysical characterization of
numerous MAPs over the past decade. This knowledge
forms a strong basis for the in vitro reconstitution of bio-
logical processes using synthetic biology-based
approaches. Although the reconstitution of tip-tracking
complexes has progressed significantly over the past
years, our understanding of the role of microtubule
dynamics in organelle positioning and architecture is still
very limited. Also, studies on the interplay between dif-
ferent cytoskeletal components are only starting to unveil
the first of potentially many modes of co-organization
and -regulation of these components.65 Combining these
different cytoskeletal systems into geometrical confine-
ments to reconstitute their collective functions in various
biological processes will be of great importance (Fig. 5B).
To effectively reconstitute biological processes within
geometrical confinements, it will be important to care-
fully consider the size, shape and nature of these confine-
ments. A major challenge for future endeavors will be to
increase the complexity of the described reconstituted
systems toward in vivo-like levels.
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