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Abstract: The gold standard of histopathology for the diagnosis of Barrett’s esophagus (BE) is
hindered by inter-observer variability among gastrointestinal pathologists. Deep learning-based
approaches have shown promising results in the analysis of whole-slide tissue histopathology images
(WSIs). We performed a comparative study to elucidate the characteristics and behaviors of different
deep learning-based feature representation approaches for the WSI-based diagnosis of diseased
esophageal architectures, namely, dysplastic and non-dysplastic BE. The results showed that if
appropriate settings are chosen, the unsupervised feature representation approach is capable of
extracting more relevant image features from WSIs to classify and locate the precursors of esophageal
cancer compared to weakly supervised and fully supervised approaches.

Keywords: deep learning; whole-slide tissue histopathology; feature extraction approaches;
Barrett’s esophagus

1. Background

Barrett’s esophagus (BE) is a precancerous condition that results from damage to the lining
of the squamous esophageal mucosa. BE diagnosis is based on the endoscopic and histologic
findings of the columnar epithelium lining the distal esophagus [1]. In order to increase sensitivity
for dysplasia, guidelines recommend the Seattle protocol, which involves taking four-quadrant
random biopsies at 1–2 cm intervals [2]. However, this protocol does not permit real-time diagnosis or
therapy and is labor-intensive, leading to low adherence [3,4]. Additionally, numerous studies have
documented poor inter-observer agreement among pathologists when diagnosing both low-grade [5–7]
and high-grade dysplasia [8], suggesting significant room still exists for improvement in even the
gold standard of histopathologic diagnosis. As dysplastic and non-dysplastic BE can progress
to esophageal cancer, the need for an accurate and efficient diagnostic tool is evident. At the
time of diagnosis, this knowledge could radically improve our clinical care by altering disease
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management and preventing disease complications. Therefore, there is a major need to develop
innovative computational methods to translate heterogeneous histopathological images into accurate
and precise diagnostics. The development of such a methodology in high-dimensional clinical research
will support precision medicine, with improved diagnostics, predictions, treatments, and patient
clinical outcomes. The success of these approaches relies on the appropriateness of extracted
morphological features for characterizing the images.

There are some problems associated with conventional feature engineering approaches: First,
the combinatorial nature of the feature extraction process makes it expensive to hand-craft features.
In addition, the development of these features commonly relies on task/domain-specific expertise,
preventing them from adapting to new tasks or domains. Furthermore, human bias is an inseparable
part of hand-crafted features. In recent years, deep learning approaches have revolutionized the
process of feature extraction tasks [9]. However, dealing with whole-slide tissue histopathology images
(WSIs) offers new challenges, which demands more effective representation-learning approaches. Some
challenges associated with these images include image size (typically 100,000 × 100,000 RGB pixels),
high complexity, high morphological variance, and uncertainty associated with the pathology level.
Automatic analysis of WSIs with typical deep learning approaches is impractical or impossible due
to the above hurdles. Most recent researches has considered feature acquisition from high-resolution
tissue tiles sampled from WSIs as a potential solution to these hurdles. In this approach, the final label
of a given WSI is predicted based on image features extracted from sampled tissue tiles [10–14]. There is
a rich body of literature investigating feature representation in the form of three primary approaches:
fully supervised (FS) [15–17], weakly supervised [18–24], and unsupervised feature learning [25–30].

Of these, the fully supervised feature learning approach requires a large amount of accurately
annotated data, which can be a labor-intensive, time-consuming, and error-prone process.
These challenges are abundantly clear in the classification and segmentation of histopathology images
as accurate and complete annotations can be difficult even for expert pathologists. On the opposite
end of the annotation spectrum, unsupervised feature representation approaches aim to learn a
discriminative representation of WSIs from annotation-free histopathology images according to the
application domain. These methods extract the salient features from WSIs without requiring any
image-level diagnosis as an image label or region of interest annotated by experts. Finally, weakly
supervised methods have the advantages of both the fully supervised and unsupervised approaches
for feature learning [31]. These approaches are not as highly dependent on annotated images as fully
supervised approaches, nor are they as prior free as unsupervised approaches. Weakly supervised
approaches exploit coarsely grained annotated WSIs to simultaneously classify histology images
and yield pixel-wise localization scores, thereby identifying the corresponding regions of interest.
Weakly supervised approaches in this way address the challenges related to the scarcity of densely
annotated images.

This paper provides a comparative study that sheds light on the characteristics and behavior
of different representation learning approaches through the sliding window approach, and their
aggregation, by using a histogram-based method [32] for whole-slide inference, and identifying
dysplastic and non-dysplastic BE on high-resolution histopathological images.

2. Materials and Methods

2.1. Data Collection

This study utilized previously published preliminary data to apply deep learning techniques
for detecting BE and dysplasia in Hematoxylin and Eosin (H&E) stained biopsies. All patients in the
study conducted by Shah et al. [6] (years 2014–2016) underwent targeted biopsy or mucosal resection,
and Seattle protocol biopsies. In order to increase the sample size, a retrospective chart review was
conducted to identify and retrieve biopsy slides of patients who had undergone upper endoscopies for
BE surveillance (years 2016–2019). These patients all underwent high-definition white-light endoscopy
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(HD-WLE), narrow-band imaging (NBI), and acetic acid chromoendoscopy followed by targeted
biopsies/mucosal resection, and Seattle protocol biopsies. All biopsy specimens were fixed in formalin.
Samples were embedded to exhibit the full mucosal thickness. The paraffin blocks were sectioned at
three microns to create biopsy slides that were stained with hematoxylin and eosin. All suspected
diagnoses of dysplasia or malignancy required a consensus of two or more pathologists. For patients
included in Shah et al.’s study [6], a blinded expert pathologist also reviewed all biopsy specimens.
Blinded and unblinded pathology results were prospectively recorded.

This study was approved by the Hunter Holmes McGuire Veterans Affairs Medical Center
Institutional Review Board and the University of Virginia Institutional Review Board for Health
Science Research (IRB-HSR #21328).

2.2. Esophageal Biopsy Datasets

Tissue images were digitized at 40× magnification via scanning of biopsy slides using a
Hamamatsu NanoZoomer S360 Digital slide scanner C13220 [33]. A total of 387 whole-slide images
from 130 unique patients were collected. WSIs increased to 650 after pre-processing and cropping;
115 whole-slide images from 10 patients were selected to train deep models to extract patch-level
image features in all three feature learning approaches, and the rest of the dataset was used for model
evaluation. To train deep models in fully supervised approaches, these WSIs were manually pixel-wise
annotated to highlight each class’ examples within each whole-slide image (see Figure 1).

Figure 1. An example of the annotation process on a typical whole-slide image (WSI). Red, green,
and yellow highlighted areas indicate areas that were annotated and from which labeled patches
were taken. Squamous tissue (green arrowhead), non-dysplastic Barrett’s with Goblet cells (yellow
arrowhead), and dysplastic tissue with crowding and hyperchromasia (lower zoomed section) were all
present within the same whole-slide image.

2.3. Deep Learning-Based Feature Representation

As a result of using the histogram-based method, each image is represented as a histogram; the
mapping mechanism and histogram structure depend on the feature extraction approach (i.e., fully
supervised, weakly supervised, or unsupervised). To extract histological features from tissue tiles,
each WSI Xi, i = 1, ..., N is considered as a set of tissue tiles Xi = {x1, ..., xni}. This method uses a



J. Pers. Med. 2020, 10, 141 4 of 16

functionM to map each image tile x belonging to WSI Xi to a concept ck, k = 1, ..., K. In practice,
instead of x ∈ RD, its representation learned by neural network fψ(.) with parameter ψ is considered,
fψ(x) ∈ RE in which E << D. All concepts can be organized in as a vocabulary V = {c1, ..., cK}.
Consequently, WSI Xi is mapped to histogram Hi = (h1, ..., hK) as follows [32]:

Hi =
1
|Xi| ∑

x∈Xi

M( fψ(x), V) i = 1, ..., N. (1)

The k-th bin in Hi is calculated as follows:

hk =
1
|Xi| ∑

x∈Xi

p(ck| fψ(x)) k = 1, ..., K. (2)

Here, p(ck| fψ(x)) is the likelihood that embedding vector of tissue tile x belongs to ck.
In other words, the image-level histogram is the normalized frequency of each concept ck in the
corresponding image.

2.3.1. Fully Supervised Feature Learning

In this approach, a convolutional neural network (CNN) is trained on high-resolution tissue tiles
sampled from annotated regions of WSIs in the training set. Here, vocabulary V = {c1, ..., cK} is the
set of K classes and mapping functionM is the fully connected classifier network of the CNN which
outputs class probabilitiesM( fψ(x), V) = (p(c1| fψ(x)), ..., p(ck| fψ(x)), ..., p(cK| fψ(x))) for each input
tissue tile x. The summation over patch-level class probabilities given by the CNN for all image patches
belonging to a single image generates its image-level histogram; the value of its k-th bin is derived from
Equation (2). Figure 2 represents the overview of fully supervised feature representation approach.
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Figure 2. Overview of the fully supervised feature extraction framework. (A) A convolutional neural
network (CNN) is trained on high-resolution tissue tiles sampled from annotated regions of WSIs in the
training set. (B) Next, the trained model is employed to output the class’ probability distributions for
each high-resolution tissue tile generated from new WSIs. The patch-level probabilities corresponding
to all patches derived from a WSI are aggregated into WSI-level probabilities histogram.
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2.3.2. Unsupervised Feature Learning

One of the main unsupervised approaches for feature representation is the bag-of-features
framework. This approach was inspired by the bag-of-words scheme used for text categorization and
text retrieval [27]. It consists of two main stages: In the first stage, an appropriate codebook is learned
for representing the images of interest. A codebook is a visual vocabulary V = {c1, ..., cK} including K
representative local descriptors codified as visual words; in the second stage, each image is encoded
based on each codeword’s frequencies in the image. Thus, the resulting representation of the image is
a histogram of the codewords. In more detail, image classification using the bag-of-feature approach
can be described in the following steps:

Codebook Learning

In this step, salient features of an image are identified. In the literature, different strategies have been
proposed for local feature extraction from histopathology images. Popovici et al. employed the Gabor
wavelets [30], and Caicedo et al. used the scale-invariant feature transform (SIFT) to extract features [27].
In this study, we employed a convolutional auto-encoder (CAE) trained in an unsupervised fashion to
map each tissue tile into a low-dimensional embedding space. We then used a Gaussian mixture model
(GMM) to cluster extracted features from tissue tiles into several clusters. Each cluster is considered
a visual descriptor or codeblock, which are components of a codebook. Selection of the number of
clusters (codebook size) is an important decision in codebook construction. This parameter should be
guessed/optimized and then imported to the model as an input.

WSI Encoding

After codebook learning, the histogram of codeblocks’ occurrences in the set of local features
of an image is considered as image representation. This concept was inspired by term frequencies
(TF) in text applications [27]. The hard assignment or soft assignment of patches to the clusters can be
considered, depending on which clustering algorithm is used. In the case of employing k-means (KM)
clustering, which gives a hard assignment of instances to clusters, image-level histogram values are
calculated based on Equation (3).

hk =
1
|Xi| ∑

x∈Xi

I(cp = k) k = 1, ..., K, (3)

where hk is the value of codeblock k-th in the generated histogram, and cp is the cluster that image
patch p-th belongs to. If soft assignment is considered, a WSI-level histogram would be calculated
according to Equation (2), where ck is the k-th cluster and p(ck| fψ(x)) is the posterior probability of
cluster k-th given embedding vector fψ(x), which in GMM is derived from the following equation [34]:

p(cm| fψ(x)) =
πmN ( fψ(x)|µm, Σm)

∑K
k=1 πkN ( fψ(x)|µk, Σk)

, m = 1, ..., K, (4)

where πm is the probability of component m, and N is the multivariate Gaussian distribution with
mean µm and covariance matrix Σm. Figure 3 represents the overview of the unsupervised feature
representation approach.

2.3.3. Weakly Supervised Feature Learning

An overview of the weakly supervised feature representation approach is shown in Figure 4.
In this section, multiple instance learning (MIL) [32] as a particular form of weakly supervised learning
and an expectation-maximization (EM)-based method [22], which was developed as an improvement
over MIL, are investigated in more detail.
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Figure 3. Overview of the unsupervised feature extraction framework. (A) This is the codebook
learning phase. In this step, tissue tiles are sampled from WSIs in the training set. Neither the annotated
areas nor the WSIs labels are used in this framework. An encoder is trained in an unsupervised fashion
to map each high-resolution tissue tile into a low-dimensional embedding space, and then the Gaussian
mixture model (GMM) is employed to cluster extracted features from tissue tiles into a number
of clusters. Each cluster is indeed a morphological feature called a codeblock. The set of all codeblocks
is called codebook. (B) This is the WSI encoding phase. In this phase, the trained convolutional
autoencoder (CAE) is employed to extract embedding features from high-resolution tissue tiles derived
from new WSIs. Then, the posterior probabilities of clusters constructed in the previous phase for
patch-level extracted features are calculated. Finally, the posterior probabilities corresponding to all
patches derived from a WSI are aggregated into a WSI-level probabilities histogram.
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Figure 4. Overview of weakly supervised feature extraction framework. (A) A CNN is trained on
high-resolution tissue tiles sampled from the labeled WSIs in the training set. This model uses only the
reported diagnoses as labels for training WSIs and assumes that sampled tissue tiles have the same
labels as their corresponding WSIs. (B) Once the training concludes, the trained model is employed to
output the class’ probability distributions for each high-resolution tissue tile generated from new WSIs.
The patch-level probabilities corresponding to all patches derived from a WSI are aggregated into a
WSI-level probabilities histogram.
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Multiple Instance Learning

In MIL, a classifier is trained on a training set of labeled bags; each contains multiple instances.
Here in the training phase, unlike the fully supervised approach in which a CNN is trained on tissue
tiles sampled from pixel-wise annotated regions of WSIs, a CNN is trained on tissue tiles that are
sampled from labeled WSIs. The training instances are not individually labeled, and it is assumed
that each instance’s label is the same as the corresponding WSI. In this setting, some instances inside
one bag might be more related to other classes of bags. These instances do not convey any relevant
information about the class, providing some confusing information.

Similar to the fully supervised, in this approach, vocabulary V is a set of K classes, and mapping
function M is the fully connected classifier network of CNN which outputs class probabilities
M( fψ(x), V) = (p(c1| fψ(x)), ..., p(ck| fψ(x)), ..., p(cK| fψ(x))) for each input tissue tile x. Finally, each
WSI is encoded as an image-level histogram by aggregation over patch-level class probabilities given
by the trained CNN for its tissue tiles.

Expectation-Maximization Model

In the EM method, which was proposed by [22], the main goal is to train the model over
discriminative patches, i.e., those more likely to have the same labels as their corresponding WSIs.
As the patch-level labels do not match the WSI labels, to avoid misleading the model by training
over patches with incorrect labels, the model will be trained over patches, which are more likely
to have the correct labels. It is assumed that there are hidden binary variables z corresponding
to each tissue tile extracted from the labeled WSIs to detect discriminative patches. The hidden
variable’s value is equal to 1 if and only if this tissue tile is discriminative for the corresponding WSI.
In this method, at the initial E-step, it is assumed that all tissue tiles are discriminative (i.e., for all
images and all tissue tiles, z = 1). In the M-step, a CNN is trained over discriminative tissue tiles
to maximize data likelihood. Here, vocabulary V = {c1, ..., cK} is a set of K classes and the fully
connected classifier network of CNN is a mapping function M which outputs class probabilities
M( fψ(x), V) = (p(c1| fψ(x)), ..., p(ck| fψ(x)), ..., p(cK| fψ(x))) for each input patch x. Then, in the
E-step, the hidden variables z are estimated by applying Gaussian smoothing on p(ck| fψ(x)) for all
patches belong to a single image. Those patches will be considered discriminative if and only if p(z|X)

is above a certain threshold. These tissue tiles are selected to continue training the CNN. Expectation
and maximization steps are repeated until convergence is reached.

2.4. Slide-Level Inference

After encoding of WSIs using aggregation of patch-level labels, the image-level histograms are
employed to train a classifier to predict the WSI-level labels. Since this decision-level fusion scheme [22]
considers different patterns of the combination of patch-level labels to predict image-level class, it is
more robust than the max-pooling method, which only considers the class with more tiles to predict
the label of WSI. Additionally, because this image representation is generated by aggregating lots of
tiles, it is very robust to misclassified tiles [22].

2.5. Feature Importance

Regions of interest (ROIs) detected by the models are considered to evaluate each model’s
interpretability. A softmax function fit in the CNN architecture outputs each class’ probability
distribution for each tissue tile in fully supervised and weakly supervised approaches. Visualizing
these probabilities for every patch in a WSI generates a heatmap that highlights the attention areas
associated with each class. Nevertheless, for the unsupervised approach, there is not a one-to-one
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correspondence between classes and codeblocks ck, k = 1, ..., K. In this setting, each tissue tile’s
importance for class C, IC

x is calculated as follows:

IC
x =

K

∑
m=1

p(cm| fψ(x))IC
cm , (5)

where p(cm| fψ(x)) is the posterior probability of codeblock m-th given fψ(x) (embedding vector of
tissue tile x), and IC

cm is the importance of the same codeblock for class C. We use the permutation
feature importance to calculate per-class importance of each feature. In this method, each feature’s
importance for a specific class is defined to be the increase in the models’ prediction error when values
of that feature are randomly shuffled [35].

3. Experimental Evaluation

3.1. Patch Extraction

We employed a sliding window method on each WSI at 40×magnification to generate patches
of size 128 × 128 pixels. Tissue tiles with less than 50% tissue sections were discarded. Image
augmentation was also performed by horizontal flipping and random 90-degree rotations during
training to prevent CNNs from over-fitting.

A common issue that causes bias while training the model on histopathological images is color
variation. This issue, which originates from various sources, including differences in raw materials,
staining protocols, and digital scanners [36], should be addressed and resolved as an essential
pre-processing step before any analyses. Various solutions, such as color balancing [37], gray-scale,
and stain normalization, have been proposed in the published literature to address the color variation
issue. In this study, we used gray-scale images, and before converting the RGB patches to gray-scale,
the stain normalization approach proposed by Vahadane et al. [36] was applied to make sure that the
effect of variation of color intensity was significantly reduced.

3.2. Deep Models Architecture

For fully supervised and weakly supervised feature representation, we used the ResNet34 [38]
architecture as our baseline architecture. We removed fully connected layers from the original network
and employed the ResNet backbone as feature extractor followed by a dense layer with 1024 neurons
that received the flattened output of the feature extractor. Finally, our softmax output layer was added
to deliver the probability of each class. We used dropout on the fully connected layers with p = 0.5 as
the regularizer.

For unsupervised feature extraction, ResNet18 was employed as a convolutional encoder.
The decoder comprised convolutional and up-sampling layers to increase the size of the feature
map and get back the original size of input image.

3.3. Experimental Setup

We used 115 WSIs from 13 patients (around 18% of the dataset) to train deep models to extract
patch-level image features for WSIs encoding to associated histograms. After encoding another 535
WSIs, we employed 10-fold cross-validation, and all the models used the same groups of training and
test sets for a fair evaluation. By changing some components of the approaches such as classifier type
(SVM or random forest (RF)) in the decision fusion method and clustering algorithm (KM or GMM) for
codebook learning in unsupervised feature learning, 10 models were evaluated in total. These models
were as follows:

1. FS-RF: Image features were extracted using the fully supervised approach, and the random forest
was employed for image-level decision fusion;
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2. FS-SVM: Image features were extracted using the fully supervised approach, and SVM was
employed for image-level decision fusion;

3. MIL-RF: Image features were extracted using the MIL approach, and the random forest was
employed for image-level decision fusion;

4. MIL-SVM: Image features were extracted using the MIL approach, and SVM was employed for
image-level decision fusion;

5. EM-RF: Image features were extracted using the EM approach, and the random forest was
employed for image-level decision fusion;

6. EM-SVM: Image features were extracted using the EM approach, and SVM was employed for
image-level decision fusion;

7. KM-RF: Image features were extracted using an unsupervised approach that applies the k-means
clustering algorithm to learn codewords. This model employs the random forest for image-level
decision fusion;

8. KM-SVM: Image features were extracted using an unsupervised approach that applies the
k-means clustering algorithm to learn codewords. This model employs SVM for image-level
decision fusion;

9. GMM-RF: Image features were extracted using an unsupervised approach that applies the GMM
clustering algorithm to learn codewords. This model employs the random forest for image-level
decision fusion;

10. GMM-SVM: Image features were extracted using an unsupervised approach that applies the
GMM clustering algorithm to learn codewords. This model employs SVM for image-level
decision fusion.

These models are summarized in Table 1.

Table 1. Summary of models.

Feature Extraction Approach Clustering Algorithm Classification Algorithm Model

fully supervised - Random Forest FS-RF
fully supervised - SVM FS-SVM
weakly supervised (MIL) - Random Forest MIL-RF
weakly supervised (MIL) - SVM MIL-SVM
weakly supervised (EM) - Random Forest EM-RF
weakly supervised (EM) - SVM EM-SVM
unsupervised k-means Random Forest KM-RF
unsupervised k-means SVM KM-SVM
unsupervised GMM Random Forest GMM-RF
unsupervised GMM SVM GMM-SVM

Accuracy, the area under the ROC curve (AUC), precision, recall, and F1 score were considered as
evaluation metrics for assessing the models’ performance.

3.4. Classification Results and Statistical Analysis

The performance of a classification model was highly correlated with the degree of separability
between different classes. Before applying classification algorithms on encoded WSIs, we visualized
features extracted by different methods using the principal component analysis (PCA) method to
understand better how well each method characterizes the histopathology images’ visual contents.
Figure 5 shows the results of PCA. What can be deduced from the graphs is that in all models, squamous
WSIs were encoded relatively separately from dysplastic and non-dysplastic BE. However, there is
considerable confusion between these two classes. Unexpectedly, the degree of separation between
images encoded by the fully supervised approach was not better than those of other methods, and the
confusion between BE with dysplasia and without dysplasia and even the confusion between squamous
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and two other classes was higher compared to some other methods. The unsupervised approach
with GMM clustering demonstrated a considerable performance in the extraction of image features,
which contributed to high separability between different classes. k-means was an exception—its graph
does not show acceptable separability performance, at least between two hard-to-separate classes:
dysplastic and non-dysplastic BE. As the diagrams show, the MIL and EM algorithms’ performances
for discriminating between classes were not much different in the domain of weakly supervised
approaches. In this setting, applying the EM algorithm to detect discriminative patches to improve the
training process did not lead to a significant improvement over MIL.

Classification results can further refine our findings from the PCA plots. We used 10-fold
cross-validation to evaluate the models’ performances, randomly dividing 120 patients in the test
set into 10-folds, using all WSIs belonging to a single patient in a fold for testing and other WSIs
for training the classifier. The classification results of esophageal WSIs in three classes of squamous,
dysplastic BE, and non-dysplastic BE for different models are summarized in Table 2. The reported
values are averages with 95% confidence intervals. For computing confidence intervals, numbers
greater than one were truncated to 1.

As the number of clusters is a key parameter in the performance of clustering methods,
we evaluated different numbers of clusters (codeblocks) for both k-means and GMM to pick a
decent number of codeblocks given our dataset and type of classifier. We used weighted AUC
as an evaluation metric. Table 3 summarizes the results of the evaluation of different numbers of
clusters for k-means and GMM. These results demonstrated that the optimal feature number was as
follows: 200 features for the combination of k-means and SVM, 100 features for the combination of
k-means and random forest, and 150 features for GMM.

Figure 6 shows boxplots of the 10-fold cross-validation for different metrics. As shown, GMM-RF
and GMM-SVM performed better than the other models, and as PCA plots show and boxplots confirm,
the performances of classification models on WSIs encoded by the fully supervised approach and also
WSIs encoded by employing k-means clustering were poorer than those of the other models.

In terms of the classification model, results show that there is not a significant difference between the
performances of SVM and random forest given the same set of encoded WSIs. In other words, choosing the
type of classifier is not a critical decision as opposed to deciding on the feature extraction approach.

EDCBA

Figure 5. Principle component analysis (PCA) plot for WSIs encoded using (A) fully supervised,
(B) multiple instance learning (MIL), (C) expectation-maximization (EM), (D) unsupervised (k-means),
and (E) unsupervised (GMM) approaches.

A B C D EA B C D E

Figure 6. Boxplots of the 10-fold cross-validation results for weighted (A) accuracy, (B) area under the
ROC curve (AUC), (C) precision, (D) recall, and (E) F1 score in different models.
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Table 2. Results of WSI classification.

Models Classes Metrices
Accuracy AUC Precision Recall F1 score

FS-RF

Dysplastic BE 0.563 [0.454, 0.671] 0.616 [0.489, 0.743] 0.395 [0.211, 0.578] 0.451 [0.319, 0.584] 0.367 [0.261, 0.472]
Non-dysplastic BE 0.655 [0.563, 0.746] 0.758 [0.653, 0.863] 0.565 [0.360, 0.770] 0.555 [0.384, 0.726] 0.520 [0.360, 0.680]
Squamous 0.857 [0.755, 0.958] 0.934 [0.866, 1.000] 0.760 [0.565, 0.954] 0.732 [0.566, 0.898] 0.720 [0.558, 0.881]

Weighted Average 0.655 [0.560, 0.751] 0.761 [0.647, 0.876] 0.655 [0.507, 0.802] 0.537 [0.416, 0.657] 0.554 [0.430, 0.678]

FS-SVM

Dysplastic BE 0.619 [0.480, 0.758] 0.661 [0.481, 0.840] 0.434 [0.246, 0.622] 0.565 [0.379, 0.751] 0.455 [0.303, 0.607]
Non-dysplastic BE 0.663 [0.551, 0.775] 0.778 [0.665, 0.892] 0.542 [0.323, 0.762] 0.418 [0.162, 0.673] 0.424 [0.217, 0.632]
Squamous 0.888 [0.811, 0.964] 0.921 [0.842, 1.000] 0.741 [0.565, 0.916] 0.860 [0.710, 1.000] 0.779 [0.634, 0.923]

Weighted Average 0.689 [0.593, 0.784] 0.773 [0.644, 0.902] 0.637 [0.466, 0.807] 0.585 [0.448, 0.721] 0.572 [0.423, 0.721]

MIL-RF

Dysplastic BE 0.842 [0.739, 0.945] 0.924 [0.835, 1.000] 0.756 [0.584, 0.929] 0.761 [0.526, 0.996] 0.694 [0.524, 0.863]
Non-dysplastic BE 0.844 [0.742, 0.945] 0.926 [0.835, 1.000] 0.816 [0.657, 0.976] 0.820 [0.710, 0.930] 0.793 [0.692, 0.893]
Squamous 0.990 [0.978, 1.000] 1.000 [0.999, 1.000] 0.964 [0.899, 1.000] 0.984 [0.955, 1.000] 0.971 [0.933, 1.000]

Weighted Average 0.874 [0.778, 0.971] 0.939 [0.856, 1.000] 0.877 [0.781, 0.974] 0.838 [0.738, 0.938] 0.831 [0.716, 0.947]

MIL-SVM

Dysplastic BE 0.845 [0.736, 0.954] 0.918 [0.828, 1.000] 0.744 [0.592, 0.895] 0.775 [0.535, 1.000] 0.707 [0.534, 0.880]
Non-dysplastic BE 0.847 [0.738, 0.956] 0.935 [0.858, 1.000] 0.840 [0.689, 0.991] 0.808 [0.696, 0.920] 0.799 [0.694, 0.905]
Squamous 0.989 [0.978, 1.000] 0.998 [0.995, 1.000] 0.983 [0.946, 1.000] 0.968 [0.931, 1.000] 0.974 [0.949, 0.999]

Weighted Average 0.876 [0.774, 0.978] 0.938 [0.862, 1.000] 0.868 [0.758, 0.977] 0.841 [0.733, 0.948] 0.831 [0.704, 0.957]

EM-RF

Dysplastic BE 0.837 [0.719, 0.954] 0.896 [0.783, 1.000] 0.668 [0.436, 0.901] 0.747 [0.480, 1.000] 0.676 [0.439, 0.912]
Non-dysplastic BE 0.836 [0.717, 0.954] 0.915 [0.818, 1.000] 0.809 [0.649, 0.969] 0.817 [0.676, 0.958] 0.794 [0.661, 0.928]
Squamous 0.985 [0.974, 0.996] 0.998 [0.994, 1.000] 0.958 [0.893, 1.000] 0.963 [0.925, 1.000] 0.957 [0.918, 0.996]

Weighted Average 0.865 [0.760, 0.971] 0.923 [0.825, 1.000] 0.828 [0.670, 0.986] 0.829 [0.713, 0.944] 0.814 [0.671, 0.958]

EM-SVM

Dysplastic BE 0.858 [0.738, 0.979] 0.900 [0.805, 0.994] 0.757 [0.524, 0.990] 0.757 [0.486, 1.000] 0.709 [0.474, 0.945]
Non-dysplastic BE 0.859 [0.739, 0.980] 0.938 [0.870, 1.000] 0.846 [0.688, 1.000] 0.863 [0.733, 0.994] 0.834 [0.705, 0.963]
Squamous 0.983 [0.970, 0.996] 1.000 [1.000, 1.000] 0.958 [0.894, 1.000] 0.964 [0.922, 1.000] 0.957 [0.920, 0.995]

Weighted Average 0.883 [0.775, 0.991] 0.935 [0.861, 1.000] 0.852 [0.691, 1.000] 0.850 [0.732, 0.969] 0.834 [0.687, 0.981]

KM-RF

Dysplastic BE 0.660 [0.488, 0.831] 0.778 [0.651, 0.905] 0.517 [0.238, 0.796] 0.516 [0.232, 0.801] 0.449 [0.212, 0.686]
Non-dysplastic BE 0.682 [0.522, 0.843] 0.793 [0.642, 0.943] 0.665 [0.440, 0.890] 0.727 [0.539, 0.915] 0.626 [0.440, 0.812]
Squamous 0.954 [0.910, 0.998] 0.996 [0.990, 1.000] 0.877 [0.725, 1.000] 0.976 [0.946, 1.000] 0.907 [0.806, 1.000]

Weighted Average 0.720 [0.575, 0.865] 0.836 [0.715, 0.957] 0.728 [0.547, 0.908] 0.648 [0.484, 0.812] 0.631 [0.453, 0.810]

KM-SVM

Dysplastic BE 0.676 [0.542, 0.809] 0.754 [0.642, 0.867] 0.512 [0.322, 0.702] 0.632 [0.412, 0.852] 0.509 [0.353, 0.662]
Non-dysplastic BE 0.705 [0.565, 0.845] 0.776 [0.641, 0.912] 0.672 [0.468, 0.876] 0.643 [0.499, 0.788] 0.615 [0.461, 0.769]
Squamous 0.939 [0.884, 0.995] 0.976 [0.935, 1.000] 0.852 [0.695, 1.000] 0.946 [0.883, 1.000] 0.880 [0.768, 0.991]

Weighted Average 0.733 [0.608, 0.857] 0.812 [0.695, 0.929] 0.743 [0.597, 0.889] 0.660 [0.531, 0.790] 0.664 [0.527, 0.802]

GMM-RF

Dysplastic BE 0.948 [0.907, 0.989] 0.985 [0.967, 1.000] 0.921 [0.834, 1.000] 0.929 [0.843, 1.000] 0.914 [0.856, 0.972]
Non-dysplastic BE 0.941 [0.903, 0.979] 0.983 [0.965, 1.000] 0.892 [0.776, 1.000] 0.947 [0.912, 0.982] 0.910 [0.840, 0.981]
Squamous 0.993 [0.984, 1.000] 0.999 [0.997, 1.000] 0.985 [0.960, 1.000] 0.988 [0.959, 1.000] 0.986 [0.967, 1.000]

Weighted Average 0.952 [0.915, 0.989] 0.986 [0.970, 1.000] 0.955 [0.930, 0.980] 0.941 [0.903, 0.979] 0.942 [0.904, 0.981]

GMM-SVM

Dysplastic BE 0.937 [0.913, 0.961] 0.988 [0.980, 0.997] 0.814 [0.708, 0.921] 0.976 [0.948, 1.000] 0.879 [0.811, 0.946]
Non-dysplastic BE 0.931 [0.909, 0.954] 0.973 [0.959, 0.987] 0.937 [0.882, 0.991] 0.862 [0.814, 0.910] 0.895 [0.858, 0.933]
Squamous 0.994 [0.987, 1.000] 1.000 [1.000, 1.000] 1.000 [1.000, 1.000] 0.959 [0.908, 1.000] 0.978 [0.950, 1.000]

Weighted Average 0.950 [0.928, 0.972] 0.986 [0.977, 0.995] 0.942 [0.921, 0.964] 0.931 [0.909, 0.954] 0.933 [0.912, 0.954]

Table 3. Area under the ROC curve (AUC) comparison among different numbers of codeblocks.

Number of Codeblock
KM GMM

RF SVM RF SVM

3 0.583 [0.454, 0.713] 0.594 [0.440, 0.748] 0.551 [0.465, 0.637] 0.651 [0.538, 0.764]
5 0.690 [0.578, 0.802] 0.698 [0.578, 0.817] 0.681 [0.586, 0.775] 0.698 [0.597, 0.799]
10 0.799 [0.685, 0.913] 0.795 [0.682, 0.907] 0.812 [0.716, 0.908] 0.789 [0.685, 0.894]
20 0.806 [0.676, 0.936] 0.801 [0.682, 0.920] 0.894 [0.815, 0.973] 0.827 [0.747, 0.906]
50 0.821 [0.690, 0.952] 0.793 [0.664, 0.921] 0.931 [0.875, 0.987] 0.843 [0.764, 0.921]
100 0.836[0.715, 0.957] 0.796 [0.683, 0.909] 0.956 [0.914, 0.997] 0.922 [0.872, 0.972]
150 0.824 [0.968, 0.949] 0.809 [0.685, 0.933] 0.986[0.970, 1.000] 0.986[0.977, 0.995]
200 0.833 [0.711, 0.957] 0.812[0.695, 0.929] 0.984 [0.967, 1.000] 0.978 [0.962, 0.994]
300 0.830 [0.701, 0.959] 0.812[0.693, 0.931] 0.984 [0.968, 1.000] 0.983 [0.971, 0.995]

3.5. Visualization of ROIs on WSIs

For more scrutiny about the models’ performances, heatmaps using different feature extraction
approaches on WSIs with dysplastic BE and non-dysplastic BE were considered. In this evaluation,
the performances of weakly supervised (MIL and EM) and unsupervised (GMM) approaches, which
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have better performances in the classification of WSIs, were examined. Some heatmaps for WSIs from
both classes generated by the three approaches mentioned above are presented in Figure 7. In each
heatmap, image regions that are more important given the associated classes are in red. As can be seen,
the performance of the unsupervised approach in ROI detection is far better than the performances of the
weakly supervised approaches.

A

Original Image Weakly-supervised (MIL) Weakly-supervised (EM) Unsupervised (GMM)

B

Pathologists’ Annotation

A

Original Image Weakly-supervised (MIL) Weakly-supervised (EM) Unsupervised (GMM)

B

Pathologists’ Annotation

Figure 7. Heatmaps generated by different feature extraction approaches for some samples from
(A) dysplastic Barrett’s esophagus (BE) and (B) non-dysplastic BE. Area of attention is shown in red.

4. Discussion

In this comparative study, the performances of different deep learning-based approaches for
extracting image features from tissue tiles for identification of dysplastic and non-dysplastic BE on
whole-slide tissue histopathology images were evaluated. The results demonstrated the capability
of the unsupervised approach in extracting relevant image features from WSIs if an appropriate
setting is chosen. This is important because the unsupervised approach without utilizing any
manually annotated image or even image-level diagnosis learned a discriminative representation of
esophageal WSIs.

By contrast, the fully supervised feature extraction approach did not achieve as high a performance
as the other two approaches. Although the fully supervised approach used the same deep learning
model as the weakly supervised approach, difficulties in obtaining accurate annotations on WSIs may
explain the relatively poor performance of the fully supervised approach. Specifically, distinguishing
non-dysplastic BE from low-grade dysplasia can be challenging even for human pathologists,
and annotations involving confusing areas may muddle the inputs for the fully supervised model.

In the unsupervised approach, a CAE was applied to map tissue tiles to an embedding space
to reduce the dimensionality of raw image features. Then, the embedding vectors were clustered
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into using a clustering algorithm independently of the first step. Although employing GMM for the
soft assignment of embedded features to clusters and encoding WSIs generated promising results,
the assumptions underlying the dimensionality reduction techniques are generally independent of the
clustering techniques’ assumptions. Thus, there is no theoretical guarantee that the network would
learn feasible representations. End-to-end training of such a model can be an improvement over the
unsupervised approach applied in this study. Applying such a model ensures that features are learned
that lead to the best results in the WSI classification phase.

A deep learning-based model for detecting and locating dysplastic and non-dysplastic BE patterns
on histopathologic images has a wide variety of applications in clinical settings. Such a model can be
integrated into clinical information management systems as a decision support system. These support
systems can provide clinicians with "possible" diagnoses or improve confidence in their assessments
via providing second opinions for prognostic decision-making of more challenging histopathological
patterns. Successful implementation of this system can support a more accurate classification of
pre-malignant diseases of the esophagus.

This study has some limitations. First, all biopsy images used for this study were collected from a
single center and scanned with the same equipment. Thus, such data might not be representative of
the entire range of histopathological patterns in patients worldwide. Collaboration with other medical
centers and collecting more images would allow us to refine our model using a more diverse dataset.
Furthermore, in this study, we applied the gray-scale images to reduce color variation to prevent the
model from being misled. Repeating this study with color images while at the same time applying an
approach to mitigate the color variation problem could be another potential area of future work.

5. Conclusions

In this paper, we performed a comparative study on different feature representation approaches,
including unsupervised, weakly supervised, and fully supervised approaches to classify precursors to
esophageal cancer using whole-slide histopathology images. We used a two-step process, in which,
in the first step, a feature representation of WSIs was learned as an image-level histogram, and a
decision fusion model was trained on histograms in the second step to output the final labels of
new WSIs. Considering different feature extraction approaches in the first step and two different
classification models (i.e., SVM and random forest) in the second step, 10 models were evaluated on an
independent test set of 535 WSIs from 120 patients. The results showed that applying the unsupervised
approach can lead to extracting more relevant image features from WSIs, and consequently, better
identifying dysplastic and non-dysplastic BE. Employing a CAE for mapping tissue tiles in an
embedding space while aiming for dimensionality reduction, and then their soft assignment to
a relatively large number of clusters using GMM can generate a discriminative representation of
esophageal WSIs. Applying a classification algorithm in such representations accurately predicted
the labels of WSIs. Highlighting the histopathological patterns identified by the models that
contributed to the WSI classification and comparing them with the same images annotated by our
pathologist annotators demonstrated a comparable diagnostic performance of the unsupervised feature
representation approach. Nevertheless, despite having relatively good classification results, weakly
supervised approaches showed a poor performance in locating regions of interest on WSIs. Thus,
the model trained on histopathological features learned by the unsupervised approach, if confirmed in
clinical trials, could be employed to improve diagnostic procedures of precursors to esophageal cancer.
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Abbreviations

The following abbreviations are used in this manuscript:

BE Barrett’s Esophagus
WSI Whole-Slide Images
H&E Hematoxylin and Eosin
HD-WLE High-Definition White-Light Endoscopy
NBI Narrow Band Imaging
CNN Convolutional Neural Networks
SIFT Scale-Invariant Feature Transform
CAE Convolutional Auto-Encoder
GMM Gaussian Mixture Model
TF Term Frequencies
MIL Multiple Instance Learning
EM Expectation-Maximization
ROI Regions of Interest
FS Fully Supervised
RF Random Forest
KM k-Means Clustering
AUC Area Under the ROC Curve
PCA Principle Components Analysis
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