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Abstract
Many of the world's most prevalent diseases are transmitted by animal vectors such 
as dengue transmitted by mosquitoes. To reduce these vector‐borne diseases, a 
promising approach is “genetic shifting”: selective breeding of the vectors to be more 
resistant to pathogens and releasing them to the target populations to reduce their 
ability to transmit pathogens, that is, lower their vector competence. The efficacy 
of genetic shifting will depend on possible counterforces such as natural selection 
against low vector competence. To quantitatively evaluate the potential efficacy of 
genetic shifting, we developed a series of coupled genetic–demographic models that 
simulate the changes of vector competence during releases of individuals with low 
vector competence. We modeled vector competence using different genetic archi‐
tectures, as a multilocus, one‐locus, or two‐locus trait. Using empirically determined 
estimates of model parameters, the model predicted a reduction of mean vector com‐
petence of at least three standard deviations after 20 releases, one release per gen‐
eration, and 10% of the size of the target population released each time. Sensitivity 
analysis suggested that release efficacy depends mostly on the vector competence 
of the released population, release size, release frequency, and the survivorship of 
the released individuals, with duration of the release program less important. Natural 
processes such as density‐dependent survival and immigration from external popula‐
tions also strongly influence release efficacy. Among different sex‐dependent release 
strategies, releasing blood‐fed females together with males resulted in the highest re‐
lease efficacy, as these females mate in captivity and reproduce when released, thus 
contributing a greater proportion of low‐vector‐competence offspring. Conclusions 
were generally consistent across three models assuming different genetic architec‐
tures of vector competence, suggesting that genetic shifting could generally apply to 
various vector systems and does not require detailed knowledge of the number of 
loci contributing to vector competence.
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1  | INTRODUC TION

Vector‐borne diseases transmitted by arthropods are major public 
health concerns worldwide. For example, the yellow‐fever mos‐
quito, Aedes aegypti, transmits dengue fever which threatens ~40% 
of the world population; malaria, transmitted by Anopheles mosqui‐
toes, kills millions of people each year (World Health Organization, 
2014). As traditional control methods like insecticides have been 
losing effectiveness as well as being recognized as having adverse 
environmental effects, alternative approaches have been sought. 
One promising approach to reducing vector‐borne diseases is to 
genetically manipulate populations of vectors to make them less 
capable of transmitting pathogens (Beaty, 2000; Beerntsen, James, 
& Christensen, 2000; Collins & James, 1996; Hardy, Houk, Kramer, 
& Reeves, 1983; Scott, Takken, Knols, & Boëte, 2002). The poten‐
tial of these proposals has long been discussed and is only now 
beginning to be seriously implemented. Many proposed modifica‐
tions involve transgenic methods by which desirable genes, such 
as pathogen‐suppression genes, are “engineered” into the vectors 
(transgenic Anopheles: Ito, Ghosh, Moreira, Wimmer, & Jacobs‐
Lorena, 2002; transgenic A. aegypti: Franz et al., 2006; Mathur et al., 
2010). However, the public has not universally accepted such ge‐
netically modified (GM) vectors (Toure & Knols, 2006) and in many 
cases has concerns about their safety and ethics, which may hinder 
their implementation (Lavery, Harrington, & Scott, 2008; Marshall, 
Touré, Traore, Famenini, & Taylor, 2010; Toure & Knols, 2006).

A potential solution to this problem is found in an old method of ge‐
netic modification: selective breeding. Humans have been genetically 
modifying plants and animals in agriculture for centuries. Such prac‐
tices utilized naturally existing genetic variations without introducing 
transgenes (genes or genetic material from a different species). Harking 
back to these traditional plant and animal breeding practices, Powell 
and Tabachnick (2014) suggested a nontransgene method to geneti‐
cally modify vector populations. In many disease vectors, resistance 
to pathogens exists naturally and is genetically controlled (Black et al., 
2002; Hardy et al., 1983; Severson & Behura, 2016; Tabachnick, 1994), 
similar to many traits selected in animal and plant breeding. Vectors re‐
sistant to transmitting pathogens have been successfully selected from 
wild populations with no introduction of foreign transgenes (Collins et 
al., 1986; Hardy, Apperson, Asman, & Reeves, 1978; Miller & Mitchell, 
1991; Wallis et al., 1985). Such selected strains could be reared to large 
numbers and released back into the wild vector populations. The ex‐
pectation is that the releases would increase the frequency of the nat‐
urally occurring alleles conferring lowered ability to transmit diseases, 
that is, lower vector competence (VC), which may ultimately break the 
disease transmission cycle (Ferguson et al., 2015; Lambrechts, 2015). 
The method is called “genetic shifting”: shifting frequencies of already 
present resistant alleles rather than introducing new genetic materials. 
It has several advantages over the GM methods (discussed in Powell 
& Tabachnick, 2014). For instance, it eliminates the controversy over 
transgenics and does not require a priori knowledge of the vector ge‐
nome, which increases its potential for broad application.

Genetic shifting essentially represents an artificially driven 
migration where the immigrants drive allele frequency changes in 
the opposite direction as natural selection, that is, introduce a “mi‐
gration load” (Lenormand, 2002; Ronce & Kirkpatrick, 2001). The 
theory of how migration and selection interact to determine ge‐
netic composition indicate that important drivers include the mi‐
gration rate, degree of genetic differentiation between populations, 
strength of natural selection, order of life cycle events (migration, 
selection, density dependence, reproduction), and genetic architec‐
ture (Baskett, Burgess, & Waples, 2013; Lenormand, 2002; Ronce 
& Kirkpatrick, 2001). Quantifying how these factors determine the 
efficacy of genetic shifting can inform whether it is a feasible strat‐
egy in terms of the scale of the release program required (number of 
released individuals and program duration), the difference in vector 
competency between captive and wild populations that is achiev‐
able, and the life history and genetic context of the target organism. 
An additional consideration for genetic shifting in insect‐borne dis‐
eases is which sex to release. In many insect disease vectors such 
as mosquitoes, only females “bite” (take blood meals), such that 
male‐only releases might be more publicly acceptable. However, 
separating sexes requires extra resources and labor (Araújo, 
Carvalho, Ioshino, Costa‐da‐Silva, & Capurro, 2015) and male‐only 
releases may reduce efficacy of vector incompetency spread due 
to increased mating competition. An additional strategy could be 
to release both sexes but allowing them to mate and the females to 
feed on uninfected blood in the laboratory. This strategy is roughly 
equivalent to releasing eggs and larvae in addition to males.

Here, we examine the feasibility and efficacy of genetic shifting 
by constructing a series of coupled demographic–genetic models 
(Baskett et al., 2013). We explore how varying parameters of these 
models affect the predicted outcome, that is, how much the wild tar‐
get population is reduced in VC. Variables tested include (a) genetic 
architecture of VC, whether highly polygenic or simple Mendelian; 
(b) the difference in VC between the release strain and target popu‐
lation; (c) size, number, and frequency of releases; (d) survival of the 
released strain relative to the target population; (e) “release strat‐
egy” in terms of whether only males or both sexes are released, with‐
out and with mating and blood‐feeding before releases; (f) effect of 
external migration; and (g) demographic effects such as density‐de‐
pendent and density‐independent survival and natural selection. We 
use the yellow‐fever mosquito Ae. aegypti as an example to parame‐
terize our models, but the models can potentially be applied to any 
vector–pathogen systems, and we preform extensive parameter sen‐
sitivity analyses to assess the consistency of our conclusions across 
parameter values that might represent different target organisms.

2  | MATERIAL S AND METHODS

2.1 | Model overview

The coupled demographic–genetic models follow the population 
size and the genetic distribution of VC in the vector population, 
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as both influence disease epidemic risk (Focks, Brenner, Hayes, & 
Daniels, 2000; Scott & Morrison, 2003). The genetic distribution de‐
pends on the genetic architecture of VC, that is, the number of genes 
affecting the phenotype, their interactions, and their interaction 
with environmental variations as well as the pathogens (Severson 
& Behura, 2016). Such information is very limited in most vector 
species, and the exact genetic basis of VC may be specific to each 
vector–pathogen pair (Severson & Behura, 2016). Given this uncer‐
tainty, we used three different models that represent the extremes 
of a continuum of all possible genetic architectures on which VC sits: 
a quantitative polygenic model, a one‐locus Mendelian model, and 
a two‐locus Mendelian model. The quantitative polygenic model 
assumed an infinite number of loci with additive effects (i.e., the 
overall genetic components of the traits are the sum of contribu‐
tions of all loci) on the VC genotype (Baskett et al., 2013; Turelli & 
Barton, 1994), with the phenotype distributed around the genotype 
with random environmental effects. The one‐locus and two‐locus 
Mendelian models assumed that one or two loci alone determine 
VC, with no environmental effects. In the example of Ae. aegypti in‐
teracting with dengue‐2 virus, the polygenic model likely resembles 
the genetic basis of VC better, as suggested by quantitative trait loci 
mapping studies (Bennett et al., 2005; Bosio, Beaty, & Black, 1998; 
Bosio, Fulton, Salasek, Beaty, & Black, 2000).

The life cycle of mosquitoes involves four stages: eggs, larvae, 
pupae, and adults (Christophers, 1960). In each stage, the mosqui‐
toes experience different demographic processes (Figure 1). We 
assume adult mosquitoes mate randomly and produce eggs, with 

the inheritance of VC dependent on the genetic architecture. The 
offspring experience density‐dependent survival in the larval stage, 
which represents the feeding competition in aquatic environment 
with limited resources (Legros, Lloyd, Huang, & Gould, 2009; 
Walsh, Facchinelli, Ramsey, Bond, & Gould, 2011). In the pupal 
stage, density‐independent mortality occurs due to environmental 
factors such as habitat desiccation (Southwood, Murdie, Yasuno, 
Tonn, & Reader, 1972). In the adult stage, two immigration events 
occur: release from the laboratory‐bred population and immigra‐
tion from external wild populations. We considered three differ‐
ent release strategies: (a) only males, (b) males and virgin females 
without blood‐feeding, and (c) males with females prefed with 
blood meals before release. In addition to release and immigration, 
we assume that adult mosquitoes experience stabilizing natural se‐
lection, where individuals with VC further away from the optimum 
in the wild have lower fitness (Sheldon & Verhulst, 1996). This is 
consistent with empirical studies showing intermediate levels of 
VC in natural populations (Bennett et al., 2002; Gonçalves et al., 
2014; Souza‐Neto, Powell, & Bonizzoni, 2019). Release, immigra‐
tion, and selection can occur in different orders, which can substan‐
tially alter the outcome of how the released population influences 
a wild population in coupled demographic–genetic models (Baskett 
et al., 2013; Baskett & Waples, 2013). Unfortunately, the most ap‐
propriate order is uncertain for Ae. aegypti. To account for this un‐
certainty, we explored three possible orders: (a) selection—release 
and migration (“SR‐”; Figure 1); (b) release and migration—selection 
(“‐RS); and (c) selection—releasing and migration—selection (“SRS”). 

F I G U R E  1   Model illustration based on Aedes aegypti life cycle. Each generation contains five events: reproduction that starts a new 
generation, density‐dependent survival in the larval stage, density‐independent survival in the pupal stage, stabilizing selection in the adult 
stage, and immigration and release in the adult stage. Migration from external populations happens at the same time as release. Stabilizing 
natural selection happens both before and after release and migration (“SRS”), only after release and migration (“‐RS”), or only before release 
and migration (“SR‐”). The gray downward arrows indicate the time point of censusing the population and calculating the four measures of 
efficacy in each life cycle order (immediately before release)
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We group release and migration as they influence the target pop‐
ulation in a similar way by introducing individuals external to the 
target population. We assume discrete nonoverlapping generations 
and all individuals in the wild population have synchronized devel‐
opment and reproduction.

Based on this basic model framework, we simulated the change 
of VC distribution across the life cycle and explored an array of re‐
lease schemes. We measured the efficacy of the release program 
using four metrics that describe the reduction of mean VC, the pop‐
ulation size, and the population's total VC after releases. We applied 
sensitivity analysis to examine the relative effects of all model pa‐
rameters on the release efficacy.

2.2 | Mathematical details

Here, we describe the mathematical details of the quantitative poly‐
genic model using the “SR‐” life cycle order and releasing both males 
and females without prefeeding (Figure 1). Modifications for other 
life cycle orders and release strategies are described in Appendix 1, 
and mathematical details for the one‐locus and two‐locus Mendelian 
models are described in Appendices 2 and 3. The VC genotype g of 
each individual ranges between 0 and 1: g = 0 indicates that the ani‐
mal is genetically predisposed to be completely incapable of trans‐
mitting pathogens (i.e., resistant), g = 1 indicates that it is genetically 
predisposed to be completely competent (i.e., susceptible), and the 
continuum of values between 0 and 1 represents the summed ef‐
fects of the infinite number of small‐effect loci (Turelli & Barton, 
1994). The model follows the population density distribution of 
number of individuals having genotype g denoted as ni,t(g), where 
i indicates the population of origin (i = rel: the release population; 
i = ext: the external population; and i = tgt: the target wild popula‐
tion) and t indicates generations (t = 0, 1, 2, etc.).

Mating and reproduction happen at the end of the adult stage 
and produce the new generation. We separate males and females 
in the reproduction and release steps (first and last steps). Given 
random mating, the likelihood that a male and a female with gen‐
otype g1 and g2 respectively encountering each other is the prod‐
uct of their frequency in the population: ntgt, M,t

(

g1
)

/Ntgt,M,t and 
ntgt,F,t

(

g2
)

/Ntgt,F,t, where M and F denote males and females in the 
population; and Ntgt,M,t and Ntgt,F,t are the total number of males 
and females: Ntgt,M,t= ∫ ntgt,M,t

(

g1
)

dg1;Ntgt,F,t= ∫ ntgt,F,t
(

g2
)

dg2. The 
offspring genotype follows a normal probability distribution, cen‐
tered at the mean genotype of the parents with variance equal to 
half of the genotypic variance at linkage equilibrium vle (Turelli & 
Barton, 1994). Integrating the product of parental encounter prob‐
abilities and the offspring genotype distribution over all possible 
g1 and g2 gives rise to the offspring genotype frequency distribu‐
tion. Given the number of offspring per female R and female pop‐
ulation size Ntgt,F,t, the population density distribution of offspring 
with genotype g in the cases of both‐sex and male‐only releases is:

Larvae of the next generation experience density‐dependent 
survival modeled by the Beverton–Holt function with the strength 
of density dependence α:

Pupae then go through density‐independent survival with a sur‐
vival probability of Sind:

For natural selection on VC in the adult stage, phenotypes instead 
of genotypes determine fitness, so we first translate the population 
genotype distribution into phenotypic distribution. An individual's 
phenotype f is normally distributed around its genotype g, with a 
variance equal to the environmental variance ve. The population ex‐
periences fitness‐dependent mortality given stabilizing selection for 
an optimum phenotype fm and with a selection variance (inverse of 
the selection strength) vs. Integrating the population density after 
selection over all phenotypes leads to the genotype distribution:

In the Mendelian models, we use frequency‐dependent selection 
to model stabilizing selection (mathematical details in Appendix 2 
and 3).

Release and migration also happen at the adult stage, and in the 
“SR‐” scenario, after natural selection. The release population has 
a normal distribution of the genotype frequency �rel (g)with mean 
VC of rm (<fm) and standard deviation of rsd. Releases occur every τrel 
generations (e.g., when τrel = 2, we release every other generation). 
The size of release in generation t is a fraction prel,t of the size of the 
prerelease target population Ntgt, equ, where prel, t=0 when no release 
occurs in a generation. The release program lasts for lrel number of 
releases; thus, the total number of generations over which releases 
occur is τrel × lrel. Irrespective of the VC genotypes, the released mos‐
quitoes experience higher mortality than the wild mosquitoes due 
to potential laboratory domestication, leading to a relative survival 
probability srel<1. A constant number of immigrants Nm= ∫ n

ext
(g) dg 

from the external wild populations also join the target population 
in each generation. The external population has the same genotype 
frequency distribution next (g)/Nm as the prerelease target popula‐
tion. When both males and females are released without feeding, 
the population density after release and immigration is:

We then assume the population density distribution of each sex 
is ntgt,M,t+1 (g)=ntgt,F,t+1 (g)=

1

2
n
tgt,t+1

(g) given a 1:1 sex ratio in all pop‐

ulations (target, external, release). Appendix 1 describes how this 
and other dynamics change with different release strategies.(1)
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(5)ntgt,t+1 (g)=n++
tgt, t

(g)+prel,tNtgt,equsrel�rel (g)+next (g) .
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2.3 | Model implementation and analysis

We numerically implement the models by iterating Equations 1–5 
in R 3.2.2 (R Development Core Team, 2016). In the quantitative 
polygenic model, the VC genotype range 0–1 is discretized with a 
step size of 2−9 and we apply Simpson's rule for any integral. We first 
demonstrate how VC genotype reduces throughout releases using 
the default parameter values in Table 1. These default parameter 
values are informed by empirical studies when available.

Each simulation contains three stages: prerelease initialization, 
release, and postrelease recovery. In the prerelease initialization, we 
generate an initial VC distribution of the target population. In the 
quantitative polygenic model, the prerelease target population has 
a population distribution of ntgt,0(g) with mean fm, that is, centered 
at the optimum under natural selection. We then iterate Equations 
1–5 and allow the distribution to reach equilibrium without releases 
(prel,t = 0). We define the equilibrium state as when the proportional 
change of n(g) for any genotype g is smaller than 10−5. We then start 
the lrel releases each τrel time steps (generations). After the releases 
end, we follow the population for 20 more generations to examine 
the selection‐driven recovery of VC in the target population. Fast 
reduction of VC during the release stage and slow recovery during 
the postrelease recovery stage indicate greater efficacy. We use 
the same default parameter values in all three release strategies 
and all three life cycle orders, which allows direct comparisons. We 
also standardize the parameter values when possible across the 

polygenic models and the two Mendelian models (compare Tables 1, 
Table S5, and Table S13).

We summarize the release outcome with four metrics. First, 
we calculate the relative mean VC of the target population after 
releases (�shift; Equation S4). This represents the shift of VC mean 
relative to the mean of the initial target population 

−
g
tgt,0 and the 

release population rm, with �shift=1 indicating that the postre‐
lease population has the same mean VC as the prerelease popu‐
lation, and �shift=0 indicating that the postrelease population has 
the same mean VC as the laboratory‐bred release population. The 
second metric is the number of standard deviations shifted (�shift ; 
Equation S5). This metric indicates the extent of reduction in pop‐
ulation mean VC relative to the standard deviation of the prere‐
lease population and therefore considers changes in both the mean 
and the variance of VC distribution. The third metric is the ratio of 
population size after release and before release (NR∕N0 ; Equation 
S6). The last metric is the proportion of remaining integrated VC 
(pVC ; Equation S7). This is the ratio of the population's total VC after 
 releases to that before releases. It accounts for changes of both 
the genotypic frequency and the population size and is likely most 
relevant to disease transmission (Ferguson et al., 2015; Focks et al., 
2000). The equations of these metrics are in Appendix 1. Smaller 
�shift and pVC and larger �shift indicate a greater reduction of VC in 
the postrelease population, that is, higher efficacy of genetic shift‐
ing. We calculated all four metrics every generation right before the 
 release and migration step (Figure 1, gray arrows).

TA B L E  1   Descriptions and values of model parameters in the quantitative polygenic model

Parameter Description Default Range Ref.a

fm Optimal VC in the field 0.55 0.10–0.90b (1)

vp Total phenotypic variance of VCc 0.01 0.0001–0.25 (2)

h2 Heritability of VCc 0.4 0.01–1 (2)

R Mean number of offspring per female 40 5–150 (3)

Α Beverton–Holt density‐dependent saturation constant 10−4 10−5–10−3 (4)

vs Selectional variance (1/selection strength) 1 0.01–100 (4)

Sind Density‐independent survival probability 0.7 0.2–1 AP

Nm Number of immigrants from external population 0 0–500 AP

rm Mean VC of the release population 0.2 (0–1) fm MD

rsd Standard deviation of VC in the release population 0.05 (0–1)
√

vle MD

prel,t Relative size of the release at generation t 0.1d 0.01–0.5d MD

srel Mean survival probability of released individuals 0.75 0.01–1 MD

lrel Number of releases 20 1–50 MD

τrel Release frequency: number of generations between releases 1 1–5 MD

Rrel Mean number of offspring per blood‐fed released female 50 20–150 AP

aData sources: (1) the mean VC measured from 32 wild Ae. aegypti populations (Bennett et al., 2002; Gonçalves et al., 2014); (2) Bosio et al. (1998); (3) 
Christophers (1960); and (4) because no empirical estimation is available for Ae. aegypti, we used the same value as in Baskett et al. (2013) and tried 
a broad range of values in the sensitivity analysis; AP: author opinion—these parameters depend mostly on the target population with little empirical 
data, so we estimated the value and range based on experience. MD: manager decision—these variables determine the scale of the release program. 
bIn the local sensitivity analysis, fm ranges from 0.2 to 0.9, as fm ≥ rm for our model to be relevant to genetic shifting with the purpose of reducing 
vector competence. 
cThe genetic variance at linkage equilibrium vle =vph

2; the environmental variance ve=vp(1−h2). 
dprel,t = 0 when no release occurs at generation t. 
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We perform local and global sensitivity analyses on all model pa‐
rameters. For simplicity, we focus on the VC distribution at the end 
of the release step in all sensitivity analysis. Local sensitivity analysis 
(LSA) allows only one parameter value to change while keeping the oth‐
ers the same as in the default case. The range of each parameter is in 
Table 1. Although LSA directly illustrated how each parameter affects 
the model predictions given biologically realistic values for all other pa‐
rameters, such effects likely depend on the values of other variables. 
To explore the relative effect of each parameter independent of other 
parameter values, we also perform a global sensitivity analysis (GSA) 
where all parameters vary simultaneously. In our GSA, we iterated 
the models with 100,000 combinations of parameter values randomly 
sampled from their ranges (Table 1). We then use Random Forest (RF), 
a stochastic regression and classification algorithm, to calculate impor‐
tance value (“%IncMSE”) of all parameters in predicting each efficacy 
metric (Black et al., 2002; Harper, Stella, & Fremier, 2011). This param‐
eter importance (PI) value represents the effect of a parameter after 
accounting for the variation of the rest of the parameters. We calcu‐
lated PI using increasing numbers of simulations (20,000–100,000) to 
confirm that the rank of PI is relatively stable. For each set of simula‐
tions, we calculate the importance values three times. We performed 

the GSA simulations and RF analysis for all life cycle orders and re‐
lease strategies using the same 100,000 samples of parameter values. 
In addition to calculating parameter importance, we also compare all 
four efficacy metrics directly across these different model scenarios 
using the Friedman rank‐sum test, and post hoc pairwise comparison 
using the Wilcoxon signed‐rank test, as the data do not follow a normal 
distribution. We repeat all LSA and GSA in the Mendelian models in 
addition to the quantitative polygenic models.

3  | RESULTS

3.1 | Default case

In the quantitative polygenic model, across all release strategies 
and life cycle orders and under the default parameter values, VC 
in the target population decreased rapidly during the 20 releases 
(Figure 2). The mean VC genotype dropped from 0.55 to 0.25–0.3 
depending on the scenario (Figure 2a), which equals to shifting 
3–5 standard deviations of the prerelease population (Figure 2b). 
The integrated VC of the target population decreased by roughly 
half (Figure 2d). The population size had little change in all release 

F I G U R E  2   Change of VC during 20 generations of releases and 20 generations of recovery in the quantitative polygenic model. The 
model followed the changes of (a) relative mean of VC in the postrelease population (�shift), (b) number of SDs shifted by the VC mean (�shift
), (c) ratio of population size between the postrelease and prerelease population (NR∕N0), and (d) the proportion of remaining integrated 
VC (pVC) in the target population. Colors of the lines indicate release strategies: The yellow lines represent releasing only males, the blue 
lines represent releasing both sexes without blood‐feeding, and the red lines represent releasing prefed females with males. Line types 
indicate different orders between release and selection: The dashed, solid, and dotted lines represent the “SRS,” “‐RS,” and “SR‐” scenarios, 
respectively. The first and second dashed vertical lines indicate the start and the end of the releases. Five generations before the release 
started are also shown to demonstrate the equilibrium state of the prerelease population. The horizontal lines in (a) indicate the selection 
optimum (fm) and the mean VC of the release population (rm). The horizontal line in (c) indicates the size of the prerelease population. We 
model all scenarios using the default parameter values in Table 1. Note that the vertical axes do not start from 0 in panels (c) and (d)
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strategies and life cycle orders (Figure 2c). The relative order of 
selection and release did not have a strong effect on any of the ef‐
ficacy metrics in the release stage, except that population size was 
more stable in the “‐RS” scenario than in other scenarios. During 
the postrelease recovery stage, VC of the target population slowly 
recovered, but the population's mean VC remained at least two 
standard deviations lower than that of the original population 
for at least 80 generations, and 1 standard deviation lower for at 
least 160 generations (Figure S1). The target population recov‐
ered faster when selection happens both before and after release 
(“SRS,” dashed lines in Figures 2 and Figure S1).

In the analysis of different release strategies, releasing blood‐fed 
females together with males was more effective than the other two 
strategies, resulting in lower mean VC (�shift), larger numbers of stan‐
dard deviation shifted (�shift), and a smaller proportion of integrated 
VC remained (pVC) (Figure 2a,b,d). Releasing only males was the least 

efficient strategy, but including unfed females only slightly improved 
the release outcome (compare yellow and red lines in Figure 2). The 
three release strategies were analogous in their effects on population 
size, which likely resulted from females having high fecundity and 
the total number of offspring usually exceeding the carrying capac‐
ity, such that the mosquito population size was primarily regulated by 
density‐dependent survival rather than reproduction. This result sug‐
gests that if strong density dependence occurs early in the life cycle, 
releasing females is unlikely to increase vector population size or biting 
rates in the long run.

The fast reduction of both populations’ mean VC and integrated 
VC with little change in population size, and the greater efficiency 
of releasing blood‐fed female, occurred for all genetic architectures 
(Figures S10 and S21). However, the order of selection and release 
had stronger effects on VC in the Mendelian models than in the quan‐
titative polygenic models: When selection happens both before and 

F I G U R E  3   Parameter importance (PI) in determining the four efficacy metrics in the scenario “SRS: blood‐fed” through global sensitivity 
analysis: (a) relative mean of VC in the postrelease population (�shift), (b) number of SDs shifted by the VC mean (�shift), (c) ratio of population 
size between the postrelease and prerelease population (NR∕N0), and (d) the proportion of remaining integrated VC (pVC). The error bars 
represent standard errors calculated from the three replicates. Parameters are ordered decreasingly according to their PI value in each 
panel. PI in other scenarios is shown in Appendix 1
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after releasing (“SRS”), reduction of VC was slower. Compared to the 
single‐locus Mendelian model, this disparity among different selec‐
tion–release orders was smaller in the two‐locus Mendelian model, 
which represents a first step toward the quantitative polygenic model.

3.2 | Global sensitivity analysis

The proportion of integrated VC (pVC) was most sensitive to param‐
eters controlling the release, such as mean VC of the release popu‐
lation (rm), size of each release (prel), relative survival of the released 
animals (srel), and the frequency of releases (τrel). The strength of 
density‐dependent survival (α) and the size of immigration from ex‐
ternal populations (Nm) also had strong impacts on pVC (Figure 3d). 
These parameters were also the most influential parameters in 
determining the relative mean VC after releases (�shift) (Figure 3a), 
except rm, the variation of which is already accounted for in the 
calculation of �shift (Equation S4). This consistency between the 
PI ranks of pVC and �shift could be explained by the little change of 
population size through releases (Figure 4c), such that pVC depends 
mostly on the change of the VC genotype distribution indicated by 

�shift. The number of SDs shifted (�shift) was also sensitive to density 
dependence (α) and immigration from external populations (Nm), yet 
unlike pVC and �shift, release‐related parameters were less influential 
for �shift. Instead, �shift was more sensitive to parameters describ‐
ing the distribution of VC genotypes in the original wild population, 
including total phenotype variance of VC (vp), heritability of VC (h2), 
and optimal VC in the wild (fm) (Figure 3b). This likely results from 
the definition of this metric (we calculate �shift from VC mean and 
variance, so by definition they strongly influence this metric). Lastly, 
population size ratio (NR∕N0) was most sensitive to demographic pa‐
rameters such as reproduction (R), density‐dependent survival (α), 
density‐independent survival (Sind), selectional variance (vs), and the 
frequency of releases (τrel) which describes migration from the labo‐
ratory‐bred population (Figure 3c).

When comparing across release strategies and different life 
cycle orders, the parameter ranks of �shift, �shift, and pVC were rela‐
tively stable (Figures S2, S3, and S5). PI ranks for the population size 
ratio (NR∕N0) were less consistent (Figure S4), possibly due to the rel‐
atively small variations of population size changes in all simulations 
(Figure 4c). In the Mendelian models, the PI ranks for all parameters 

F I G U R E  4   Median and interquartile range of each efficacy metric for all nine model scenarios, calculated at t = lrel×�rel from the 100,000 
GSA simulations: (a) relative mean of VC in the postrelease population (�shift), (b) number of SDs shifted by the VC mean (�shift), (c) ratio of 
population size between the postrelease and prerelease population (NR∕N0), and (d) the proportion of remaining integrated VC (pVC). The 
three bars in each scenario represent the 25% quantile, the median, and the 75% quantile, respectively. The gray lines represent 10 randomly 
selected simulations. The numbers at the bottom of each figure show the median values of the 100,000 simulations
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were generally less consistent, but the general pattern remained: 
�shift and pVC were most sensitive to parameters controlling the re‐
lease, and NR∕N0 was most sensitive to demographic parameters 
(one‐locus model: Figures S11–S14; two‐locus model: Figures S22–
S25). �shift was more sensitive to release‐related parameters (e.g., τrel) 
in the Mendelian models compared to that the quantitative models 
(comparing Figures S12, S23 and S3). The parameter ranks were rela‐
tively stable with increasing the number of simulations for all models 
(Figures S6, S15, and S26).

In our comparison across all nine model scenarios (combinations 
of release strategies and life cycle orders) using the 100,000 GSA 
simulations, the Friedman rank‐sum test suggested significant differ‐
ences for all efficacy metrics (�shift : ${\sigma }$2 = 540,450, df = 8, 
p < 0.001; �shift: ${\sigma }$2 = 512,860, df = 8, p < 0.001; NR∕N0: ${\
sigma }$2 = 110,040, df = 8, p < 0.001; pVC: ${\sigma }$2 = 410,700, 
df = 2, p < 0.001). Post hoc pairwise comparisons using the Wilcoxon 
signed‐rank tests with Bonferroni correction showed significant dif‐
ferences for all tests, except for three pairs of population size ratios 
(Tables S1–S4). Similar to the default simulation, releasing blood‐fed 
females with males was the most effective strategy (Figure 4), result‐
ing in the lowest population mean VC (�shift) and integrated VC (pVC
) and the largest number of SDs shifted (�shift). Releasing both sexes 
without feeding yielded a slightly better outcome than releasing only 
males. The order of selection and release had little effect. Neither re‐
lease strategies nor life cycle order had strong effects on the change 
of population size, despite statistical significance: The median pop‐
ulation size ratio was 1, with the interquartile range smaller than 
0.001 (Figure 4c). Despite these general patterns across different 
scenarios, variations exist among individual simulations (see Figure 4, 
gray lines). This suggests that selecting the optimal release strategy 
for a specific target population may require knowledge of the local 
population of mosquitoes and the specific release scheme, if such 
information is available. The GSA results of the Mendelian models led 
to analogous conclusions as the quantitative polygenic models (one‐
locus model: Appendix 2, Figures S11–S16, Tables S6–S10; two‐locus 
model: Appendix 3, Figures S22–S27, Tables S14–S18).

3.3 | Local sensitivity analysis

The directional effects of all parameters except fm and rm on the 
release efficacy were consistent across different efficacy metrics, 
where lower pVC and �shift and higher �shift indicate more effective 
releases (Figures 5, S7, and S8). Specifically, release efficacy consist‐
ently increased with the size of each release (prel,t), the survival of 
the released mosquitoes (srel), and the number of releases (lrel), but 
decreased with VC variance in the target population (vp), heritability 
of VC (h2), number of immigrants (Nm), and number of generations 
between two releases (τrel). The efficacy was relatively independent 
of the strength of density‐dependent survival (α) and density‐inde‐
pendent survival (Sind). Increasing selectional variance (vs), that is, 
decreasing selection strength, increased release efficacy, but only 
when selection was relatively strong. Similarly, the release efficacy 
increased with increasing VC variance in the released population 

(rsd), but the effects were restricted to small rsd. The only conflicts 
between different efficacy metrics were observed for the optimal 
mean VC in the field (fm) and the mean VC of the release population 
(rm): Increasing fm and decreasing rm resulted in lower pVC and higher 
�shift (i.e., higher efficacy), but also an increase in �shift (Figure 5a, 
5i, Figures S7a, S7i, S8a, and S8i). However, this �shift increase was 
more likely explained by the calculation of this metric (Equation S4), 
rather than a true indicator of decreasing release efficacy. Larger fm 
and smaller rm increase the disparity between the prerelease target 
population and the release population, which leads to an increase 
of �shift for the same amount of absolute reduction of mean VC. 
Therefore, for fm and rm, pVC and �shift are more informative metrics 
than �shift.

For population size ratio (NR∕N0), the LSA showed that param‐
eters that increase release efficacy tend to reduce population size 
(Figure S9), but this pattern was scenario‐dependent. Overall, none 
of the parameters strongly increase or decrease population size as 
NR∕N0 rarely exceeded 1.02 or dropped below 0.9, except for repro‐
duction (R), selectional variance (vs), and the optimal mean VC in the 
wild (fm). Selection variance, vs, showed a nonmonotonic effect on 
population size (Figure. S9g), which was also observed in Ronce and 
Kirkpatrick (2001). When selection is weak, fitness‐dependent mor‐
tality is low, and the population size is likely regulated by density‐
dependent survival instead of selection. On the other hand, when 
selection is very strong, it could effectively eliminate the effects of 
the releases. Only with an intermediate selection strength can the 
wild population accumulate migration load, which then decreases 
population size.

The order of release and selection had little effect on the release 
efficacy (�shift, �shift, andpVC) (Figures 5, S7, and S8). In comparison, 
the change of population size, NR∕N0, was more sensitive to the life 
cycle order (Figure S9). When selection happens only after releases 
(“‐RS”), the population size is relatively constant across the ranges 
of most parameters. This was mainly caused by the model setup 
where we censused the population before releases, and in the “‐RS” 
scenario that is right after the density‐dependent and independent 
survival which determine the population size and mask the effects of 
selection or releases on the population size.

Regarding release strategies, releasing blood‐fed females 
showed the highest efficacy across most parameter values (Figure 5, 
S7, and S8), which is consistent with the default simulations and the 
GSA. The only exception is the reproductive output per female (R). 
R had little effect on model output when releasing only males or 
releasing both sexes without feeding, yet when blood‐fed females 
are released, increasing R decreased the release efficacy (Figure 5d). 
We assumed that the released blood‐fed females would produce 
a different number of offspring (Rrel) from the wild females, so in‐
creasing R reduced the relative contribution of the released females 
to the next generation, hence resulting in a reduction in efficacy. 
Correspondingly, increasing Rrel while holding R constant increased 
the release efficacy (Figure 5o). Population size was robust among 
different release strategies (Figure S9), which again suggested that 
releasing females does not have strong demographic consequences.
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LSA in the one‐locus and two‐locus Mendelian model reached 
similar conclusions as in the quantitative polygenic model 
(Appendices 2 and 3: Figures S17–S20 and S28–S31). The optimal 
allele frequency in the wild population (Aw, Aw1, Aw2) and the allele 
frequency of the release population (Ar, Ar1, Ar2) had similar effects 
on release efficacy as fm and rm in the quantitative polygenic model. 
A noticeable difference between the Mendelian models and the 
quantitative polygenic model was that R and Sind had larger effects 
on the release efficacy (Figures S20 and S31), possibly due to their 
larger effects on population size (Figure S19 and S30). The strength 

of frequency‐dependent selection (sfd) also had a stronger and more 
linear effect on release efficacy, compared to that of the selec‐
tional variance (vs) in the quantitative polygenic model (comparing 
Figure 5g and Figures S20f and S31h). This suggests that the mech‐
anism of selection in the wild may play a role in determining the out‐
come of the release program. Unique to the Mendelian models, the 
dominance of the susceptible alleles (d, d1, d2) had a negative effect 
on release efficacy; that is, increasing d, d1, or d2 resulted in less re‐
duction of VC. This is expected as d, d1, and d2 directly determine the 
VC of heterozygotes in the mosquito population.

F I G U R E  5   Local sensitivity analysis of the remaining proportion of integrated VC after releases (pVC) to each parameter given all other 
parameters at their default values (see Table 1 for default values and ranges). Selection variance (vs) was square‐root‐transformed. Note the 
difference in the y‐axis values across plots. Line types and colors are as in Figure 2
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4  | DISCUSSION

Our models predict that releasing mosquitos selected to have low‐
ered ability to transmit pathogens can rapidly reduce vector com‐
petence of the wild vector populations. With the best‐estimated 
parameter values, with one release per generation, in just 20 gen‐
erations (where insect vectors can have generation times on the 
scale of a month) the population's mean VC decreased by more than 
three standard deviations and the integrated VC of the entire popu‐
lation decreased by roughly half. Significant reduction persists for 
about 80 generations after releases are ended (~7 years) with some 
levels of reduction persisting for 160 generations (~13 years). The 
reduction was consistent across models assuming different genetic 
architectures of vector competence (quantitative polygenic model 
or Mendelian models) and was insensitive to different timing of the 
releases relative to the natural selection. These results suggested 
that genetic shifting could be effective in reducing disease trans‐
mission capability of wild mosquito populations with modest time 
and resource investment, and implementation does not rely heavily 
on understanding the genetic architecture of vector competence, 
which is currently unavailable for most arthropod vectors.

4.1 | Determinants of release frequency

Both local and global sensitivity analyses suggested that param‐
eters directly related to the management of the release program had 
strong effects on the efficacy of the releases, especially for the pro‐
portion of the population's integrated VC remained after releases 
(pVC). High sensitivity of pVC to the mean VC of the release population 
(rm), the size of each release (prel), the survival rate of the released 
mosquitoes (srel), and the frequency of releases (τrel) (Figure 3d) sug‐
gests that, empirically, these four parameters require the most at‐
tention in management decisions. rm and srel largely depend on the 
result of selective breeding prior to the releases, and their effects on 
the release efficacy were relatively linear (Figure 5i, 5l). Therefore, 
maximizing the efficacy of the selective breeding program (i.e., de‐
riving a release strain with the lowest competency possible while 
minimizing adverse fitness effects like inbreeding) is critical for the 
success of later releases. The size of each release (prel) and the re‐
lease frequency (τrel), on the other hand, determine the scale of the 
release program. τrel had moderate PI ranks in the quantitative poly‐
genic model and a top rank in the Mendelian models with a linear 
effect on pVC indicating that when resources are available, releas‐
ing mosquitoes as frequently as possible can enhance program suc‐
cess. Despite the importance of prel, LSA suggested a diminishing 
effect which saturates around 0.3 (i.e., 30% of the size of the wild 
population).

How large of a release is feasible depends on the target popula‐
tion size. For example, the effective population size (Ne) of wild Ae. 
aegypti ranges from as low as 50 up to about 600 (Endersby et al., 
2011; Olanratmanee et al., 2013; Rašić et al., 2015; Saarman et al., 
2017). These estimates are for local demes that may extend over only 
a few hundred meters consistent with the low migration behavior of 

this mosquito (Harrington et al., 2005; Maciel‐De‐Freitas, Codeco, 
& Lourenco‐De‐Oliveira, 2007; Muir & Kay, 1998). Measured cen‐
sus population sizes range from about 1,000 (Lounibos, 2004) to 
5,500 (Carvalho et al., 2015). Rearing a release population of a few 
thousand every month is practical for most facilities and mosquito 
research laboratories (Zhang et al., 2018). The other parameter de‐
scribing the scale of the release program is the duration (lrel) of re‐
leases. Its relatively weak and diminishing effect on pVC suggested 
that releases can be effective in a relatively short period (~20 re‐
leases) and program managers have the flexibility to adjust the du‐
ration according to resource availability without strongly influencing 
the outcome.

When comparing different release strategies with regard to 
which sex to release, releasing prefed females together with males 
always yielded the highest efficacy of reducing the target popula‐
tion's VC. This high efficacy likely resulted from the fact that prefed 
females are already mated before released and ready to lay eggs, 
so they are more likely to contribute to the next generation before 
experiencing the stabilizing selection in the adult stage and other 
sources of mortality. Because of the low survival rates of mos‐
quito adults in the wild (Brady et al., 2013; Harrington et al., 2001; 
Maciel‐De‐Freitas et al., 2007; Reiter, 2007) and the low VC of the 
released females, we do not expect this strategy to significantly in‐
crease the disease transmission compared to releasing only males. 
Simulations of the effect of releasing blood‐fed females on disease 
transmission confirm this and will be the subject of a forthcoming 
publication. Another advantage of releasing prefed females is that 
the optimal rearing environment likely increases the fecundity of 
these females (Rrel), which can further increase the efficacy of re‐
leases (Figure 5o). Between the other two release strategies, the 
slightly lower efficacy of releasing only males is expected, because 
releasing only males biases sex ratio and intensifies mating compe‐
tition, which reduces the likelihood of reproduction for the released 
males. We did not consider strategies in which only females (with 
or without blood‐feeding) are released, as separating sexes requires 
more resources (Araújo et al., 2015) and the public is less likely to 
accept an all‐female release.

In addition to parameters and decisions related to the release 
scheme, characteristics of the target population and the local envi‐
ronments also influenced the release efficiency and therefore inform 
decisions on whether it is time‐ and resource‐efficient to implement 
a genetic shifting program in a particular locality or for a particu‐
lar vector. The relatively high importance of immigration (Nm) and 
density dependence (α) for all efficacy metrics (Figure 3) suggests 
that these two parameters are most crucial to consider before imple‐
menting the release programs. The importance of immigrants from 
external populations was also shown in a spatially explicit model by 
Okamoto, Robert, Lloyd, and Gould (2013). For Ae. aegypti, release 
programs will be more effective in isolated mosquito populations, 
such as on islands or in rural villages, than in well‐connected popu‐
lations like in large cities. On the other hand, the small Ne and short 
dispersal range for this species suggest a metapopulation struc‐
ture with relatively small and geographically limited demes, that is, 
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relatively isolated subpopulation. This implies that releases of even 
of a few hundred mosquitoes spaced over an area at a short interval 
(e.g., ~300 m) could potentially be effective in larger areas like cities.

The effect of density‐dependent survival in the larval stage on re‐
lease efficacy is less straightforward, because the LSA indicated that 
changing α alone had little effect (Figure 5e). This disparity suggests 
that density dependence may influence release outcomes through 
interactions with other life cycle events, such as natural selection, 
or it may show stronger effects under different values of other pa‐
rameters. The potentially complex effects of density‐dependent 
survival are suggested in Gomulkiewicz, Holt, and Barfield (1999). 
These potential interactions may also cause the RF analysis in the 
GSA to underestimate the importance of some parameters, which 
could partially explain the unexpected low parameter importance of 
selection strength. Under default parameter values of all other pa‐
rameters, only very strong selection (i.e., small vs) diminished release 
efficacies (Figure 5g). We are unaware of any empirical evidence 
supporting such strong selection pressure on vector competence in 
mosquitoes. In addition, if there is strong selection against incompe‐
tent mosquitoes, one would not expect the high level of these indi‐
viduals (10%–70%) often observed in populations (e.g., Gonçalves et 
al., 2014; Souza‐Neto et al., 2019). Therefore, natural selection on 
mosquitoes might not hinder the efficacy of genetic shifting.

Lastly, our comparison across different life cycle orders and 
genetic architectures (Mendelian models vs. the quantitative poly‐
genic model) of VC did not find large effects on release efficacy in 
most cases, except that selection had stronger effects in Mendelian 
models. They also did not alter how each parameter influences the 
release outcomes. Therefore, implementing genetic shifting is not 
likely to require detailed knowledge on the number of loci that con‐
tribute to VC. In sum, among all parameters characterizing the wild 
population and the habitat, measuring the strength of density‐de‐
pendent survival and the gene flow from external populations will 
help to accurately predict release outcomes and to evaluate whether 
a target population is suitable for genetic shifting.

4.2 | Release as migration

The releases in our model resemble one‐way migrations from the 
selective‐breeding population with lower VC into the target popula‐
tion with higher VC. In a generic model of migrations between two 
populations experiencing stabilizing selection for different trait val‐
ues, Ronce and Kirkpatrick (2001) showed that increasing difference 
between the two populations’ optima, increasing migration rate, 
and decreasing strength of selection increased maladaptation in 
the receiving population (“migration load”) and decreased the equi‐
librium population size. Although our model focused on the short‐
term changes of the phenotype instead of the equilibrium states 
as in Ronce and Kirkpatrick (2001), we observed similar effects: 
Decreasing VC of the breeding population (i.e., distance between the 
two populations’ optima), increasing release size (i.e., migration rate), 
and decreasing selection strength resulted in a higher number of SDs 
shifted by the population VC mean (a proxy for maladaptation, sensu 

Ronce & Kirkpatrick, 2001) and a lower population size (Figures S8 
and S9). However, in contrast to the generic model predicting ac‐
cumulation of maladaptation (migration load) (Lenormand, 2002; 
Ronce & Kirkpatrick, 2001), our models did not predict a large re‐
duction in the population size. This difference may be explained by 
the relatively high reproductive rate typical of small insects like mos‐
quitoes (R ranged between 5 and 150) in our models compared to 
that in the generic model (R ≈ 1) (Ronce & Kirkpatrick, 2001). This 
high productivity allowed the population to reach carrying capacity 
in just one generation, even when mortality from the maladaptation 
was strong.

Previous migration‐load models demonstrated that the out‐
come of migration depended largely on the timing of migration 
relative to selection, reproduction, and density dependence. 
Migration has the greatest effect on population size and pheno‐
typic distribution when it happens after selection within a single 
generation (Baskett et al., 2013; Baskett & Waples, 2013; Ronce 
& Kirkpatrick, 2001). Consistent with these results, we observed a 
similar pattern in our model as the “SR‐” scenario showed slightly 
higher efficiency than the other two life cycle orders. However, the 
disparities among different orders were minor in our model com‐
pared to similar coupled genetic–demographic models with one‐
way migration (Baskett et al., 2013), possibly due to the weaker 
selection pressure and the larger genetic variance assumed in our 
models, which reduced the efficiency of selection in removing 
maladapted individuals. Empirical studies of VC in wild mosquito 
population usually report larger variance (Kristine E. Bennett et al., 
2002; Gonçalves et al., 2014; Gubler & Rosen, 1976; Souza‐Neto 
et al., 2019), and no evidence has supported very strong natural 
selection on VC in the wild. Therefore, in the case of genetic shift‐
ing for disease vectors, the time of releases within a life cycle may 
be less important.

The outcomes of releases (i.e., migrations) not only depend on 
the timing of releases but also which sex and life stage are released. 
To our knowledge, this model is the first to examine the effect of 
sex‐dependent dispersal on the migration load. Sex‐biased disper‐
sal is common in nature; for example, in mammals it is usually the 
males who disperse, while in birds female dispersal is more common 
(Greenwood, 1980; Handley & Perrin, 2007). Our model provided 
an example that sex‐dependent migration could alter the expec‐
tation of migration load, particularly when coupled with the life 
history of the species (here, blood‐fed females vs. unfed females). 
Incorporating sex‐biased migration into models could refine model 
predictions and even provide new insights into our understanding 
of natural systems.

4.3 | Model assumptions

Predictions from our model inevitably depend on model assump‐
tions, so it is important to examine them to assess the generality 
and accuracy of our conclusions. First, for the genetic architecture 
of vector competence, we assumed either an infinite number of 
genes with additive small effects (the quantitative polygenic model) 
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or one or two Mendelian genes. They represent the two extreme 
genetic architectures, and consistency among the three models im‐
plied that our conclusions are likely to hold with the actual genetic 
architecture of VC in various vectors. However, uneven contribu‐
tion of genes (i.e., genes of major and minor effect), dominance, and 
epistasis, ignored in our model, may affect the speed of adaptation 
and therefore may influence the interaction between selection and 
migration (Gomulkiewicz, Holt, Barfield, & Nuismer, 2010). Future 
models incorporating more complex genetic architectures could po‐
tentially increase the accuracy of quantitative predictions. We also 
assumed random mating in all models. Relaxing this assumption may 
reduce release efficiency if released individuals experience mating 
discrimination from the target population possibly due to favoring 
local adaptation (Baskett et al., 2013; Lenormand, 2002). However, 
genetic shifting selects the release strain from the local wild popula‐
tions, which reduces the risk of mating discrimination by wild mos‐
quitoes and ensures high local fitness (Powell & Tabachnick, 2014). 
Therefore, assortative mating is not likely to be strong. Thirdly, we 
assumed nonoverlapping generations while wild mosquitoes have 
overlapping generations. In another study, Yang et al. found that in‐
cluding overlapping generations by adding age structure did not sub‐
stantially alter the expected demographic and genetic dynamics for a 
wild population experiencing input from a captive population (). This 
provides indirect support that conclusions from our model will likely 
hold when considering overlapping generations. Furthermore, the 
model lacks demographic stochasticity or mutation. Débarre, Ronce, 
and Gandon (2013) explored these factors in a model featuring two 
habitats connected by migration and showed that both population 
density and mean trait values were robust to demographic sto‐
chasticity. Mutation had little effects on trait values but could alter 
population density. However, their model focused on the equilibrium 
states while our model examined the effects of releases in the short 
term (< 50 generations), during which mutation in the vectors is not 
likely to accumulate. Lastly, we assumed that migration from exter‐
nal populations and releases always occur at the same time in the 
adult stage (Figure 1). In reality, mosquitoes often migrate in other 
life stages such as eggs, particularly assisted by human transporta‐
tion. Our model predicted that releasing blood‐fed females, which 
essentially approximates releasing eggs, reduced VC of the target 
population more than releasing unfed females and males. Likewise, 
immigrants from external populations could have larger effects if 
they come as eggs or larvae instead of adults. Therefore, investi‐
gations into how different life stages of immigrants may influence 
release efficacy warrant future study.

Relaxation of other model assumptions may provide insights 
into additional management approaches to further increase the ef‐
ficacy of genetic shifting. For example, we assumed that the field 
conditions remain consistent throughout the period of releases. In 
reality, most mosquito populations experience seasonality resulting 
in fluctuating population size due primarily to temperature fluctua‐
tions and/or marked rainy and dry seasons (Scott et al., 2000). Our 
models predicted that the releases will be more efficient during the 
dry/cold season when the target population is small (release cohorts 

represent a larger percentage of the target population; Figure 5k). 
The likelihood of fixation of the resistant alleles is also predicted to 
be higher with smaller target populations (Okamoto et al., 2013). 
Analogous to taking advantage of seasonality, traditional vector con‐
trol methods can actively reduce the wild population size. However, 
such measures may have undesirable outcomes. For example, using 
insecticides to reduce populations prior to or during releases is less 
likely to promote the efficacy of genetic shifting because the release 
strain would need to be resistant to the insecticide used, which 
would then introduce insecticide resistance into the target popula‐
tion. However, methods such as standing water reduction can both 
reduce the wild population and increase the efficacy of genetic shift‐
ing to synergistically enhance overall vector control efficacy.

Another model assumption is that we treated the target popu‐
lation as a single homogeneous group and ignore spatial structure, 
yet empirically a large target population may actually contain sev‐
eral subgroups (Maciel‐De‐Freitas et al., 2007; Muir & Kay, 1998; 
Olanratmanee et al., 2013). This could hinder the efficacy of releases 
as resistance is constrained in a subset of the target population. A 
spatially explicit model like Skeeter Buster (Magori et al., 2009) could 
provide guidance on selecting the optimal release approaches, such 
as multiple local releases instead of a single or few concentrated re‐
leases (Magori et al., 2009). Additionally, our models only explored 
the change of VC distribution over a few years or tens of generations. 
After the release program stopped, natural selection will drive the 
VC back toward the optima (Figure 2). Future models monitoring the 
long‐term efficacy of release and incorporating additional actions, 
such as low‐frequency maintenance releases, can greatly extend the 
longevity of effectiveness of the control program.

Finally, we did not consider the possible interaction between dif‐
ferent pathogen genotypes and different vector genotypes, that is, 
GxG interactions (Lambrechts, 2011; Lambrechts, Fellous, & Koella, 
2006; Severson & Behura, 2016). The existence of multiple patho‐
gen genotypes could undermine the efficacy of genetic shifting, es‐
pecially if the GxG interactions undermine the ability to select for 
low VC to multiple pathogen strains; for example, lower competency 
to one pathogen genotype leads to higher competency to another. If 
different pathogen genotypes occur in different locations, an effec‐
tive program would require selecting the release strain from mosqui‐
toes collected from the target population as well as using a pathogen 
for selection isolated from the target area (Powell & Tabachnick, 
2014). Whether the selected strain would have reduced VC for 
pathogens not specifically selected for, either different genotypes of 
the same pathogen or other pathogens, is another unknown. GxGxE 
(environmental) interactions would be important if the environment 
in the target area changed or the releases were moved to a different 
locality. In addition to GxGxE interactions, we ignored the possible 
adaptation of pathogens to the increase of resistance in the vector 
population during releases, which could diminish the efficacy of re‐
leases. One could potentially reduce the effects of pathogen adap‐
tation by regularly renewing the release population of vectors, that 
is, repeating the selective breeding during the course of releases 
using the newly evolved pathogen as the selective agent. Additional 
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models incorporating the coevolution between vectors and patho‐
gens could further increase the accuracy in predicting the outcome 
of genetic shifting.

4.4 | Broad application of genetic shifting

Our model provided theoretical support for the potential to use ge‐
netic shifting in reducing the capacity of a wild mosquito population 
to transmit diseases, but how does it compare to other vector con‐
trol approaches? One of the most promising and successful propos‐
als is to use the intracellular bacteria Wolbachia (Caragata, Dutra, 
& Moreira, 2016; Hoffmann et al., 2011). Infection of Wolbachia 
reduces disease capacity of the mosquitoes and also introduces 
cytoplasmic incompatibility (CI) which provides frequency‐depend‐
ent advantages for infected female mosquitoes over wild females 
(Barton & Turelli, 2011; Caragata et al., 2016; Turelli, 2010; Turelli & 
Hoffmann, 1991). This CI‐induced advantage was hoped to poten‐
tially allow the Wolbachia infection, and thus resistance to patho‐
gens, to spontaneously spread in the wild populations. This would 
be a major improvement from most existing mosquito control ap‐
proaches, including genetic shifting, which suffer from the lower 
fitness of the released mosquitoes in the wild. The example of a suc‐
cessful establishment of Wolbachia in Australia also demonstrated 
that it is a practical approach for persistent control of disease trans‐
mission (Hoffmann et al., 2011; Schmidt et al., 2017). However, 
Wolbachia infection also comes with a fitness cost of lower viabil‐
ity and fecundity of the mosquitoes (McMeniman & O'Neill, 2010; 
Ross, Endersby, & Hoffmann, 2016). The ratio of CI‐induced repro‐
ductive advantage and infection‐induced fitness cost determines a 
frequency threshold only above which Wolbachia infection can be 
stabilized in the target population (Barton & Turelli, 2011; Schmidt et 
al., 2017; Turelli, 2010; Turelli & Barton, 2017). This limits the spread 
of the infection (Schmidt et al., 2017). In contrast, our results suggest 
that genetic shifting does not have a strong threshold effect, ren‐
dering it a more general mosquito control approach. Furthermore, 
genetic shifting does not rely on the host–symbiont association with 
characteristics of Wolbachia, so the method is easier to transfer to 
different vectors.

The models explicated here could also be coupled with Wolbachia 
infection to achieve an even higher efficacy of vector control. For 
instance, achieving the threshold frequency for Wolbachia infection 
in the target population requires initial releases of laboratory bacte‐
ria‐infected mosquitoes into the target population, a process similar 
to releasing selectively bred mosquitoes with low VC. Incorporating 
our models could potentially provide useful information for opti‐
mizing the initial release steps. In addition, the concept of genetic 
shifting could be applied to selectively breed mosquitoes that have 
a higher susceptibility to Wolbachia infection, lower fitness cost, and 
stronger dispersal ability, and release them back to modify the target 
population to further facilitate the establishment of Wolbachia.

Although in the current study we primarily focused on Ae. ae-
gypti control, our models can be easily adapted to assess release 
programs for other disease vectors, such as Anopheles mosquitoes 

and tsetse flies Glossina spp., as long as we know their basic life 
history and empirical measurements of a few key parameters such 
as density‐dependent survival (Powell & Tabachnick, 2014). More 
broadly, the idea of genetic shifting and the models we presented 
here can apply with careful adaptations to any situation where 
modification of certain traits in the wild population is desired. For 
example, in rescuing endangered species, conservation biologists 
and managers can potentially select for resistance to environ‐
mental disturbance (e.g., climate change) or to diseases afflicting 
the endangered species, and then release them back to increase 
the population's overall resilience. This has been called “assisted 
evolution,” where one suggested use is to improve corals’ survival 
in rising sea temperature (van Oppen, Oliver, Putnam, & Gates, 
2015). Kelly and Phillips (2016) also proposed a framework of 
“targeted gene flow” to assist conservation of endangered spe‐
cies, which involves moving individuals with beneficial traits (e.g., 
stress resistance) to areas under threat (also termed “assisted gene 
flow” in the specific context of climate change; Aitken & Whitlock, 
2013). This idea is similar to genetic shifting but focuses on uti‐
lizing variance across populations in different geographic areas, 
instead of enhancing the within‐population variance as proposed 
here. A case study suggested it as a promising method to reduce 
the negative effects of invasive toxic toads on native Dasyurus 
hallucatus (northern quolls) in Australia (Kelly & Phillips, 2018). 
It is worth noting that applying genetic shifting or targeted gene 
flow in conservation may have different goals as well as different 
challenges than in vector control. Instead of aiming to increase a 
possible maladaptation and decrease population size in the wild 
vector populations, conservation programs usually desire the op‐
posite. Preserving genetic diversity may also be important and, in 
conservation management, the source and target populations may 
be more sensitive to demographic changes and stochasticity due 
to small population sizes. Moreover, releases and translocation 
of individuals may be more expensive and limited by resources. 
These diverse goals and challenges encourage further research to 
carefully assess the efficacy of genetic shifting in each specific ap‐
plication, both theoretically using similar coupled genetic–demo‐
graphic models as the one we presented and empirically by pilot 
experiments.
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