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Aging and associated neurodegenerative diseases are accompanied by the

decline of several brain functions including cognitive abilities. Progressive

deleterious changes at biochemical and physiological levels lead to

the generation of oxidative stress, accumulation of protein aggregates,

mitochondrial dysfunctions, loss of synaptic connections, and ultimately

neurodegeneration and cognitive decline during aging. Oxidative stress that

arises due to an imbalance between the rates of production and elimination

of free radicles is the key factor for age-associated neurodegeneration and

cognitive decline. Due to high energy demand, the brain is more susceptible

to free radicals-mediated damages as they oxidize lipids, proteins, and

nucleic acids, thereby causing an imbalance in the homeostasis of the aging

brain. Animal, as well as human subject studies, showed that with almost

no or few side effects, dietary interventions and plant-derived bioactive

compounds could be beneficial to recovering the memory or delaying the

onset of memory impairment. As the plant-derived bioactive compounds have

antioxidative properties, several of them were used to recover the oxidative

stress-mediated changes in the aging brain. In the present article, we review

different aspects of oxidative stress-mediated cognitive change during aging

and its therapeutic intervention by natural bioactive compounds.
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Introduction

Aging is a multifactorial complex process, characterized by progressive loss of
biochemical and physiological functions, maintenance of tissue homeostasis, resistance
to multiple forms of stress, and increased susceptibility to numerous diseases.
This naturally occurring phenomenon is determined genetically and influenced
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epigenetically by the environment (Gorni and Finco,
2020; Kandlur et al., 2020). The increasing evidence
of cellular, biochemical, and molecular studies showed
an intimate link between the aging brain or associated
neurodegenerative diseases and oxidative stress conditions.
Oxidative stress denotes an imbalance between oxidants,
in particular reactive oxygen species (ROS) (free radicals)
and antioxidant reserve. ROS is generated in the electron
transport chain (ETC) during oxidative phosphorylation
in mitochondria (Grimm and Eckert, 2017; Ionescu-
Tucker and Cotman, 2021). The brain mostly depends
on oxidative phosphorylation to fulfill its high energy
demand due to the continuous requirement of proteins,
neurotransmitters synthesis, and polymerization of actin
filaments. The oxidative phosphorylation-driven ROS
generation is eliminated or neutralized by the antioxidant
enzymes present in the brain. However, antioxidant
defense systems are compromised in the aging brain, thus
making it more vulnerable to ROS (Mattson et al., 2008;
Srivas et al., 2020).

The “Free-radical theory of aging” stated that the damage
induced in the cells by the production of intracellular free
radicals is the major determinant of the aging process
(Harman, 1956, 1992, 2006). These free radicals have
deleterious effects on mitochondria and other subcellular
organelles by promoting the oxidation of nucleic acids,
proteins, and lipids, which accelerate the neurodegeneration
process and ultimately lead to the age-associated decline
of several cognitive functions including attention, sensory
perception, decision-making, as well as learning and
memory. Further, oxidative free radicals are the main
predisposing factors for the transition from normal brain
aging to the pathological conditions like mild cognitive
impairment and neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), and Huntington’s
disease (HD) (Cabral-Costa and Kowaltowski, 2020;
Norat et al., 2020).

As the majority of plants have high nutritional value, they
are consumed as food and medicine throughout the world.
They contain several compounds that are biologically active
and beneficial in different physiological and pathological
conditions (Thakur et al., 2017). These biologically active
compounds include polyphenols, carotenoids, phytoestrogens,
biogenic amines, etc. Due to their antioxidant properties,
these compounds efficiently scavenge or neutralize oxidative
free radicals and thereby improve or recover underlying
conditions (Fraga et al., 2019). Both animal models and
clinical trial studies showed that these plant-derived bioactive
compounds are neuroprotective and improve cognitive
decline associated with aging and neurodegenerative
diseases by reducing oxidative stress, mitochondrial
dysfunction, and oxidative stress-mediated neurodegeneration
(Singh et al., 2021).

Oxidative stress in the aging brain

Mitochondria: The key player of
age-associated oxidative damage to
the brain

The “free radical theory of aging” could not explain the
precise subcellular location of free radical generation and
its reactions, which are mainly focused on mitochondria.
Therefore, the mitochondrial theory of aging was proposed
later (Harman, 1972, 2006; Viña et al., 2003). Although many
free radicals contribute to the age-associated oxidative burden,
the majority of damage to the biological macromolecules was
contributed by ROS. The major portion of the cellular ROS
(95–98%) can be traced back to mitochondria, where it is
generated as a byproduct of oxidative phosphorylation, a process
that involves oxidation of NADH or FADH to produce energy
across the inner mitochondrial membrane, which will be then
used to phosphorylate the ADP. During mitochondrial electron
transport, a fraction of electrons derived from NADH or FADH
directly leak out of the ETC and react with oxygen or other
electron acceptors to generate free radicals. Subsequent studies
suggest that under physiological conditions, mitochondria from
the brain or other organs convert 0.2–2% of total oxygen
consumption into O2•– (Chance et al., 1979; Staniek and Nohl,
2000; St-Pierre et al., 2002). To detoxify these free radicals,
eukaryotic cells have an antioxidant defense mechanism that
includes several antioxidant enzymes such as superoxide
dismutase (SOD), catalase, superoxide reductase, glutathione
peroxidase, and heat shock proteins. MnSOD which is primarily
present in mitochondria neutralizes the superoxide anion to
yield H2O2. Further, glutathione peroxidase or catalase converts
this H2O2 into H2O (Gemma et al., 2007). Several other small
molecular weight antioxidants such as NADPH, thioredoxin,
vitamin C and E also directly scavenge the ROS (Kregel
and Zhang, 2007). Along with mitochondria, free radicals
are also generated in multiple subcellular compartments by
multiple enzymes such as NADPH oxidases within the plasma
membrane, cyclooxygenases in the cytosol, lipid metabolism in
the peroxisome, etc. (Lambeth, 2004).

The brain is a high energy-consuming organ and to sustain
this high energy need, it almost exclusively depends on oxidative
phosphorylation. As mitochondria are the primary site for
oxidative phosphorylation, it is not only the major producer
of ROS but also the main target of oxyradical attack (Navarro
and Boveris, 2010; Grimm and Eckert, 2017). Mitochondria
of the aging brain have a marked deficit in electron transfer
in complex I and IV, decreased membrane potential, loss
of cristae, and increased size and fragility. A reduction in
the α-subunit of mitochondrial F1 ATP synthase leads to
decreased ATP production in the aging brain (Navarro and
Boveris, 2010; Ionescu-Tucker and Cotman, 2021). The aging
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brain has a compromised antioxidant defense system with
reduced antioxidant enzyme activity such as SOD, catalase, and
glutathione peroxidase (Gemma et al., 2007). Age-associated
accumulation of mitochondrial oxidative damage also disrupts
the mitochondrial dynamics by balancing its fission, fusion,
and autophagy mechanisms (Lee et al., 2007; Grimm and
Eckert, 2017; Mishra and Thakur, 2022). The mitochondrial
DNA (mtDNA) is also highly susceptible to oxidative stress-
mediated damages (Richter et al., 1988; Gemma et al., 2007).
Neuron as a post-mitotic cell seems to be more sensitive
to mitochondrial dysfunction-induced oxidative damages as
compared to dividing cells (Kowald and Kirkwood, 2000;
Terman et al., 2010). Overall, these studies suggest that age-
associated increase in free radical generation leads to damage
of mitochondrial lipids, proteins, and DNA which ultimately
causes mitochondrial dysfunction and thus plays a key role in
age-associated changes in the brain (Paradies et al., 2011).

Lipid peroxidation

The peroxidation of biological lipids is one of the major
outcomes of oxidative stress-mediated tissue damage. The
brain has an abundance of unsaturated lipids which make it
highly susceptible to peroxidation and oxidative modifications.
Free radical-mediated lipid peroxidation can directly damage
the cellular membranes or generate several highly reactive
secondary products such as malondialdehyde (MDA), 4-
hydroxy-2 hexenal (HHE), 4-hydroxyl-2-non-enal (HNE),
acrolein, isoprostanes, neuroprostanes through fission and
endocyclization of oxygenated fatty acids (Floyd and Hensley,
2002; Montine et al., 2002; Gemma et al., 2007; Paradies et al.,
2011). Sensitivity to oxidation also increases exponentially
with the number of double bonds per unsaturated fatty
acids. Unsaturated phospholipids such as polyunsaturated
fatty acid (PUFA) are the major components of plasma,
and mitochondrial membranes and are abundant in the
aging brain. Peroxidation of membrane lipid disrupts the
organization of lipid bilayer and thus alters the membrane
fluidity and permeability, lipid-lipid and lipid-protein
interaction dynamics, ion and nutrient transport, membrane
potential, membrane receptor-mediated signaling pathway,
and activity of membrane-bound enzymes (Pamplona, 2008;
Paradies et al., 2011; Catalá and Díaz, 2016). Cardiolipin, a
phospholipid that is exclusively localized within the inner
mitochondrial membrane, plays a key role in mitochondrial
membrane organization and several bioenergetic processes.
Free radical-mediated oxidation/depletion of cardiolipins
causes mitochondrial dysfunction during aging (Pamplona,
2008; Paradies et al., 2011).

Aldehydes and isoprostanes produced from lipid
peroxidation are biologically active. The aged brain of several
organisms including humans shows an increased level of MDA,

HNE, and isoprostanes (Yoritaka et al., 1996; Dei et al., 2002;
Zarkovic, 2003). HNE forms covalent adducts with histidine,
lysine, and cysteine residues of the proteins and causes the
inactivation of several enzymes such as glutathione peroxidase
and α-ketoglutarate dehydrogenase. Excessive production of
HNE disrupts Ca2+ ion homeostasis, impairment of glucose
and glutamate transport, suppression of NFkB activity, and
activates the caspase pathway (Floyd and Hensley, 2002; Sultana
et al., 2013). MDA reacts with several DNA bases such as
deoxyguanosine, deoxyadenosine and generates exocyclic
DNA adducts which ultimately disrupt the DNA base-pairing
(Gemma et al., 2007; Gentile et al., 2017). MDA also forms
adducts with proteins and causes age-associated accumulation
of lipofuscin, an intralysosomal fluorescent pigment in different
tissues including the brain (Pamplona, 2008; Jové et al., 2019).
Lipid peroxidation mediated damage to the α and β subunit of
the ATP synthase causes inactivation of the complex and deficits
in ATP synthesis (Jové et al., 2019).

Protein oxidation

Accumulation of oxidized and modified proteins is one of
the hallmarks of the aging brain. Along with other multitudes of
modification events (e.g., faulty post-translational modification,
halogenation, glycation, deamidation, racemization), reactive
oxygen or nitrogen species causes changes in both protein
backbone and amino acid side chains. Oxidative radical-induced
damage to the protein backbone results in the formation of
peroxyl radicals which ultimately cause fragmentation of the
protein backbone (Stadtman, 1992, 2004; Grimm et al., 2011;
Reeg and Grune, 2015). Oxidation of amino acid side chains
leads to the generation of several oxidation products. Some
widely studied protein oxidation products in the brain include
methionine sulfoxide, di-tyrosine, ortho-tyrosine, formation of
disulfide bonds at cysteine residues, and carbonyl derivatives.
The expression of protein carbonyls, ortho-tyrosine, and
methionine sulfoxide shows a logarithmic increase in several
regions of the brain with age (Davies et al., 1987; Dalle-
Donne et al., 2003; Kregel and Zhang, 2007; Reeg and Grune,
2015). Oxidation of proteins causes a partial unfolding of
their structure and thus impairs their function. Most amino
acid residues can be oxidized, though histidine, methionine,
and cysteine are more sensitive. Oxidative modifications of
those amino acid residues lead to the impairment of the
catalytic activity of several enzymes such as protein tyrosine
phosphatases, glutamine synthetase, and creatine kinase.
Oxidation of a methionine residue of calmodulin causes the
loss of its calcium-binding ability, responsible for the activation
of several calcium-sensitive enzymes and ion channels (Smith
et al., 1991; Kregel and Zhang, 2007; Drazic and Winter, 2014;
Reeg and Grune, 2015). ROS modulates the DNA binding
activity of several transcription factors such as NFkB, forkhead

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2022.944697
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-944697 July 19, 2022 Time: 14:29 # 4

Singh et al. 10.3389/fnagi.2022.944697

transcription factor, activator protein-1 (AP-1), and p53 either
by direct modification of their critical amino acid residues or via
indirect regulation of their phosphorylation/dephosphorylation
(Kregel and Zhang, 2007).

Cellular proteolytic mechanisms (proteasomal and
autophagic pathways) are responsible for the degradation
of most oxidized, aggregated, and misfolded proteins. Both 20S
and 26S proteasomes (ubiquitin-proteasome system or UPS)
play an important role in the removal of oxidized proteins and
are dysregulated in the aging brain and other neurodegenerative
diseases. Besides the proteasomal degradation system, the
autophagy-lysosomal pathway is also responsible for clearing
misfolded proteins. Recent studies suggest the age-associated
downregulation in macroautophagy and chaperone-mediated
autophagy (CMA) in the brain (Reeg and Grune, 2015; Zheng
et al., 2016; Loeffler, 2019; Kelmer Sacramento et al., 2020).
26S proteasome is found to be more vulnerable to oxidative
stress-mediated damages than the 20S proteasome. Oxidative
free radicals disrupt the integrity of 26S proteasome and result
in dissociation of 20S core from 19S regulator. Oxidative stress-
mediated dysregulation in proteasome gene expression and
post-translational modification of proteasome subunits have
also been reported. The 19S and 20S subunits are susceptible to
carbonylation and HNE modification which contribute to the
suppression of their proteolytic activity (Aiken et al., 2011; Reeg
and Grune, 2015). Thus, age-associated extensive oxidative
modification of proteins and progressive loss of proteasomal
degradation activity favor the accumulation of oxidized proteins
in the aging brain (Farout and Friguet, 2006; Grimm et al.,
2011). All these events have led to the concept of a vicious
cycle: increased ROS leads to protein oxidation which may act
as an endogenous inhibitor of proteasomal activity and causes
the accumulation of damaged proteins that, in turn, facilitates
further oxidative stress.

DNA damage and epigenetic
modifications

DNA bases are prone to oxidative stressors through direct
or epigenetic manipulations. Direct oxidative damage to DNA
leads to the generation of oxidized purines or pyrimidines
and DNA breaks (Floyd and Hensley, 2002; Ionescu-Tucker
and Cotman, 2021). Superoxide anions and hydroxyl radicals
mediated oxidization of adenine, guanine, or cytosine residues
causes the generation of 8-hydroxyadenine, 5-diamino-4H-
imidazolone, 8-oxo-2-deoxyguanosine (oxo8dG), 8-hydroxy-
2-deoxyguanosine (8-OHdG), 8-oxo-7,8-dihydroguanine (8-
oxoG), 5-hydroxy-5,6-dihydrocytos-6-yl and 6-hydroxy-5,6-
dihydrocytos-5-yl (Kandlur et al., 2020). Oxidative stress-
mediated DNA damages have been commonly assessed
through the presence of oxo8dG and 8-OHdG, both of
which show a manyfold increase in both mitochondrial and
nuclear DNA in normal aging and AD-associated brain tissue

(Floyd and Hensley, 2002; Balaban et al., 2005; Mecocci et al.,
2018). The mtDNA contains manyfold higher damaged DNA as
compared to nuclear DNA. Such high susceptibility of mtDNA
to oxidative stress might be due to its proximity to a primary
source of ROS, absence of protective histone covering, and
deficient repair mechanisms (Balaban et al., 2005; Kregel and
Zhang, 2007). DNA breaks can be both single or double-
stranded. As double-stranded breaks near the gene promoter
can change the gene transcription, it is more toxic than single-
strand breaks (Shanbhag et al., 2019; Ionescu-Tucker and
Cotman, 2021). During normal aging or AD, there are deficits in
the base excision repair pathway, which ultimately causes age-
related accumulation of double as well as single-strand DNA
breaks in the brain tissue (Rutten et al., 2007; Thanan et al.,
2014).

Oxidative stress directly modulates the epigenetic
modification of chromatin by changing DNA methylation
and post-translational histone modification. It downregulates
the DNA methylation by increasing TET-mediated
hydroxymethylation, interfering binding of DNA
methyltransferases, and oxidizing 5-methylcytosine (5mC)
or cytosine (Chia et al., 2011; Thanan et al., 2014). This
shows a positive correlation with the downregulation of global
methylation in the aging brain. ROS-mediated alteration
of histone acetylation and methylation can change the
chromatin structure, gene stability, and expression. The
emerging evidence suggests that oxidative stress-mediated
upregulation of H3K9 methylation might cause cognitive
aging and AD pathology (Gu et al., 2013; Kandlur et al., 2020;
Ionescu-Tucker and Cotman, 2021).

Oxidative stress-mediated memory
impairment during aging

Several cellular, molecular and behavioral studies suggest
accumulated oxidative stress as one of the main causal factors
involved in the initiation and progression of cognitive deficits
during aging or age-associated neurodegenerative diseases
(Mecocci et al., 2018; Kandlur et al., 2020). The hippocampus
and frontal lobe of the brain are more prone to oxidative stress-
induced damages, which suggests an intimate link between the
age-associated decline of cognitive abilities such as information
acquisition, retrieval of declarative memories, attention, and
language skill with increased oxidative stress (Nagai et al.,
2003; Rodrigues Siqueira et al., 2005; Castelli et al., 2019). This
phenomenon is supported by studies that the overexpression of
antioxidant enzymes or antioxidants supplementation in aging
animals showed alleviation of spatial learning memory, working
memory, and increased consolidation/retention capacity, and
vice versa young animals subjected to oxidative stress showed
a decline in memory function as found in normal aging (Fukui
et al., 2002; Hu et al., 2006; Head, 2009; Haddadi et al., 2014).
Age-associated memory impairment is believed to be a
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consequence of the functional deterioration of neurons and
their degeneration. Oxidative stress damages nerve terminals
by mitochondrial dysfunctioning, abnormal accumulation of
synaptic vesicles, and decline in neurotransmitter release
which ultimately induce a deficit of synaptic membrane
depolarization and cause deterioration of the neurotransmission
system (Fukui et al., 2002; Kamat et al., 2016). These
abnormalities are also commonly found in the aging brain.
Downregulated synaptic plasticity-related immediate-early gene
expression also plays a major role in age-associated cognitive
impairment (Barman et al., 2021). Oxidative stress-mediated
unrepaired DNA damage at those genes promoters causes
downregulation of their expression (Ionescu-Tucker and
Cotman, 2021). Due to their post-mitotic nature, neurons
are non-dividing cells which makes them especially prone
to oxidative stress-mediated aggregation of modified proteins
or other biological macromolecules, robust mitochondrial
dysfunctioning that ultimately leads to neuronal cell death
or neurodegeneration (Andersen, 2004; Grimm et al., 2011).
Another main contributing factor to age-associated cognitive
dysfunction is oxidative stress-mediated cellular senescence,
which causes an overall decrease in brain weight and volume and
expansion of cerebral ventricles (Haddadi et al., 2014; Mecocci
et al., 2018; Pesce et al., 2018).

Natural bioactive compounds and
their sources

Plant-derived bioactive compounds are widely used as
an antioxidant. The most commonly used molecules as
antioxidants are plant-derived polyphenols, i.e., resveratrol,
curcumin, genistein, epigallocatechin gallate, etc. Polyphenols
are plant-derived secondary metabolites synthesized from the
shikimate or polyketide pathway and commonly found in
fruits, vegetables, seeds, and nuts. Polyphenols contain multiple
phenols units (C6H5OH) where the hydroxyl group (OH) is
attached to the aromatic benzene ring (Quideau et al., 2011;
Figure 1). Based on their composition and number of phenol
subunits, polyphenols may be divided into flavonoids, phenolic
acids, stilbenes, and lignans (Brglez Mojzer et al., 2016; Table 1).
They have not only antioxidative properties, but these secondary
metabolites provide color and aroma to fruits and vegetables.
Apart from phenolic compounds, non-phenolic compounds
also play an important role in alleviating oxidative stress and
improving memory in animal models as well as human subjects
(el-Sayed et al., 2008).

Flavonoids

Flavonoids are major groups of polyphenols that
contain two aromatic rings (ring A and ring B) and one

heterocyclic ring (ring C). They are further classified
into six different groups- flavonols, flavones, isoflavones,
flavanones, flavanols, and anthocyanins. In flavonols, the
heterocyclic ring C contains a ketone group and a hydroxyl
group. Examples of flavonols are fisetin, quercetin, and
kaempferol. The major source of flavonols includes kale,
cucumber, broccoli, blueberries, strawberries, onions, etc.
(Tsao, 2010). In flavones, the heterocyclic ring C contains
a double bond and a ketone group. Examples of flavones
are sinensetin and tangeretin. Wheat, parsley, orange,
citrus peels, mandarins, etc., are rich sources of flavones
(Manach et al., 2004). The isoflavones are also known as
phytoestrogens as they show structural similarities with
the steroid hormone estrogen. Examples of isoflavones are
genistein and daidzein. The main source of isoflavones includes
soy and soy-based food such as milk, tofu, and beverages
(Rasouli et al., 2017). In flavanones, the heterocyclic ring
C is fully saturated. Examples of flavanones are hesperetin
and narirutin. Flavanones are mainly found in citrus fruits
such as orange and lemon. In flavanols, the heterocyclic
ring C contains a hydroxyl group. Examples of flavanols are
catechins and proanthocyanidins. The major dietary sources
of flavanols are blueberries, red wine, apples, apricots, etc.
(Quideau et al., 2011). Anthocyanins contain a three-carbon
positively charged oxygenated heterocyclic C ring. They
are plant pigments and provide color to flowers and fruits.
Examples of anthocyanins are delphinidin, pelargonidin,
peonidin, and malvidin. The major source includes fruits
and flowers of higher plants (Mazza and Miniati, 1993;
Table 1).

Phenolic acids

Phenolic acids are aromatic polyphenols that contain
phenolic rings and carboxylic acid. They may be
hydroxybenzoic acids (derived from benzoic acid) and
hydroxycinnamic acids (derived from cinnamic acid) (Quideau
et al., 2011). Examples of phenolic acids are curcumin,
ellagitannins, gallic acid, ferulic acid, etc. The dietary source
of phenolic acids is strawberries, blackberries, turmeric, tea,
cereals, and grains (Hano and Tungmunnithum, 2020).

Stilbenes

Stilbenes are a group of polyphenols that are synthesized
in low quantities as a result of injury or infection due to
microorganisms. They contain two aromatic phenolic rings
connected by a methylene group (Quideau et al., 2011).
Examples of stilbenes are resveratrol and diethylstilbestrol.
The major dietary source is grapes, berries, and red wines
(Cvejic et al., 2010).
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FIGURE 1

Chemical structure of selected plant-derived bioactive compounds.

TABLE 1 Major plant-derived bioactive compounds and their sources.

Bioactive compounds Examples Sources

Plant polyphenols Flavonoids Flavonols Quercetin, Kaempferol Cucumber, Broccoli, Strawberries

Flavones Sinensetin, Tangeretin Parsley, Orange, Citrus peels

Isoflavones Genistein, Daidzein Soy, Soy-based products

Flavanones Hesperetin, Narirutin Orange, Lemon

Flavanols Catechins, Proanthocyanidins Apple, Apricot, Blueberry

Anthocyanins Delphinidin, Peonidin Cherry, Peach, Plum, Cranberry

Phenolic acids Curcumin, Gallic acid Turmeric, Berries, Tea, Cereal

Stilbenes Resveratrol, Diethylstilbestrol Grapes, Berries

Lignans Pinoresinol 4-O-β-D-glucopyranoside Seeds, Cereals

Non-phenolic compounds Bacoside-A, Withaferin-A, Withanolide-A Brahmi, Ashwagandha
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TABLE 2 Antioxidative properties of plant-derived bioactive compounds and their involvement in memory recovery.

Bioactive compounds Antioxidative properties and role in memory recovery References

Flavonols (Quercetin, Kaempferol) Scavenging free radicals including ROS; improvement in memory recall
during contextual fear conditioning; improvement in spatial memory task
(e.g., Morris water maze test)

Tsao, 2010; Nakagawa et al., 2016;
Molaei et al., 2020

Isoflavones (Genistein, Daidzein) Scavenging oxidative free radicals; decreased malondialdehyde and
glutathione level; decreased activity of MAO; decreased ROS generation,
caspase-9/3 activities, and Aβ induced neuronal death; increased activity of
glutathione peroxidase, SOD and catalase; improvement in spatial memory
task, Y maze task, passive avoidance task, and RAM task

Bors et al., 1990; Huang and Zhang,
2010; Bagheri et al., 2011; Qian et al.,
2015; Lu et al., 2018

Flavanones (Hesperetin, Narirutin) Increased expression of antioxidant enzymes; decreased oxidative stress and
apoptosis; improved cognitive functions

Lee et al., 2020

Phenolic acids (Curcumin, Gallic acid) Scavenging free radicals and ROS; increased glutathione peroxidase and
SOD activity; decreased lipid peroxidation; decreased neurodegeneration;
improvement in spatial learning; slowdown of age-associated cognitive
decline and improved recognition memory

Bala et al., 2006; Suckow and Suckow,
2006; Malik and Mukherjee, 2014;
Sarker and Franks, 2018;
ELBini-Dhouib et al., 2021

Stilbenes (Resveratrol, Diethylstilbestrol) Scavenging free radicals, ROS and chelates metal ions; reduced
mitochondrial damage; protect neurons from apoptosis; increased SOD
activity and reduced MDA level; improved learning and memory in Morris
water maze and elevated plus-maze task

Leonard et al., 2003; Gülçin, 2010;
Huang et al., 2011; Wang et al., 2014

Lignans (Pinoresinol 4-O-glucoside) Decreased MDA level and increased catalase activity; restore impaired
memory in Morris water maze and Y maze test

Youssef et al., 2020; Lei et al., 2021

Non-phenolic compounds (Bacoside-A,
Withaferin-A, Withanolide-A)

Scavenging free radicals; decreased lipid peroxidation; increased activity of
SOD, catalase and glutathione peroxidase; reduction in the basal level of
ROS, MDA, hydroperoxides; decreased neurodegeneration; improved
cognitive behavior, spatial memory and motor learning

Mukherjee et al., 2011; Shalini et al.,
2021; Ben Bakrim et al., 2022

Lignans

Lignans are polyphenols that contain two phenylpropane
units. They are processed by gut microbes into beneficial
metabolites such as enterolactone and enterodiol. Examples
of lignans are pinoresinol 4-O-β-D-glucopyranoside,
secoisolariciresinol, and matairesinol. Cereals, seeds,
fruits, and vegetables are rich sources of lignans
(Sun et al., 2014).

Non-phenolic compounds

Non-phenolic bioactive compounds are also plant-
derived secondary metabolites. Their examples are bacoside-A
isolated from Bacopa monnieri (Brahmi), withaferin-A,
and withanolide-A isolated from Withania somnifera
(Ashwagandha), and ginkgolide-B and bilobalide isolated
from Ginkgo biloba. Brahmi and ashwagandha have been widely
used in Indian ayurvedic medicine as nootropics. Similar to
phenolic compounds, non-phenolic compounds are potent
antioxidants (Foti and Amorati, 2009).

Antioxidative properties of natural
bioactive compounds

The antioxidant properties of bioactive compounds are
contributed in two ways. First, the structures of the bioactive

compounds are responsible for the scavenging of free radicals.
Second, these compounds alter the expression and activities
of enzymes responsible for oxidative stress metabolism. These
plant-derived bioactive compounds decrease the synthesis of
free radical species and thereby reduce the oxidation of
biomolecules in the cells.

Free radical scavenging properties

Due to the presence of ring structure, conjugated double
bonds, and hydroxyl (OH) groups associated with the
unsaturated carbon (C = C) atoms in their skeleton, plant
bioactive compounds scavenge electrons and free radicals
generated during oxidative stress (Figure 1). These structures
scavenge or neutralize oxygen free radicals by donating the
hydrogen (H) atom or an electron from the hydroxyl group
or by delocalizing an unpaired electron in the conjugated
aromatic ring (Dai and Mumper, 2010). Genistein is a plant-
derived phytoestrogen belonging to the group of isoflavones.
It has been widely used as an antioxidant in the recovery
of oxidative stress. The free radical scavenging properties of
genistein are shown by the A, B, and C-ring as well as
the double bond (C-2,3) in association with the functional
group (4-oxo). The B and C-ring, double bond along with
the 4-oxo functional group delocalize the electrons from
the free radicals and neutralize them (Bors et al., 1990).
Apart from delocalizing electrons from free radicals, the
B-ring also forms stable compounds after reacting with
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the free radicals. The B-ring reacts with the peroxyl free
radicals to form stable compounds like orobol and 4′-
oxogenistein (Arora et al., 2000). Hydroxyl (–OH) groups on
A-ring (C-5′ and C-7′ positions) and B-ring (C-4′ position)
inhibit the oxidation of low-density lipoproteins or lipid
peroxidation (de Whalley et al., 1990; Chen et al., 1996;
Arora et al., 1998).

Polyphenol curcumin is an important plant-derived
compound that shows antioxidant properties. Similar to
genistein, the structure of curcumin plays an important
role in quenching or scavenging free radicals and ROS. The
antioxidant property of curcumin is due to the presence of
β-diketone structure and two hydroxyl groups present at the
ortho position of the aromatic ring (Jovanovic et al., 1999;
Malik and Mukherjee, 2014). Further, the hydroxyl group
along with the electron releasing ability of the methoxy group
(–OCH3) is also important for the scavenging of free radicals
(Somparn et al., 2007).

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a
phytochemical mainly found in the grapes and berries
such as blueberries and raspberries. It contains two aromatic
rings and three hydroxyl groups (two meta and one para). The
antioxidant properties of resveratrol are due to the chelating
as well as scavenging action. It chelates metal ions such as
zinc, iron, copper, and aluminum and scavenges oxygen
free radicals (Leonard et al., 2003; Gülçin, 2010). Stojanović
et al. (2001) reported that the para hydroxyl group shows
better free radical scavenging properties than the meta-
hydroxyl groups. Gallic acid (3,4,5-trihydroxy benzoic acid)
is a phenolic acid found in the tea leaves and bark of the
oak tree. Similarly, the free radical scavenging properties of
gallic acid are due to the presence of three hydroxyl groups
and the aromatic ring (Rajan and Muraleedharan, 2017;
Zeb, 2020). Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) is a
flavonol mostly found in the fruits and vegetables such as red
onion and kale. Due to the presence of five aromatic hydroxyl
groups, quercetin shows higher antioxidant and free radical
scavenging properties (Tsao, 2010). Mukherjee et al. (2011)
analyzed the free radical scavenging properties of Brahmi.
FRAP assay, DPPH free-radical scavenging assay, reducing
power assay, and lipid peroxidation assay showed that the
aqueous and ethanolic extracts of Brahmi efficiently scavenge
free radicals.

Regulation of the activity and
expression of antioxidant enzymes

Apart from direct quenching or scavenging oxidative
free radicals, plant-derived bioactive compounds also
alter the expression of pro and antioxidant enzymes in
different physiological conditions. The pro-oxidant enzyme
and metabolites are monoamine oxidase (MAO) and

malondialdehyde, and the antioxidant enzymes are catalase,
SOD, and glutathione peroxidase.

Previous research on animal models shows that isoflavone
genistein alters the pro and antioxidant enzyme system and thus
decreases oxidative stress. Chronic administration of genistein
(15 and 30 mg/kg) decreased the level of fatty acid oxidation
product malondialdehyde and the activity of prooxidant
enzyme MAO and increased the activity of the antioxidant
enzyme in the cortex and hippocampus of ovariectomized
(OVX) rats. Further, change in malondialdehyde level and
MAO and SOD activity lowered lipid peroxidation and
improved spatial memory in OVX rats (Huang and Zhang,
2010). Scopolamine is a muscarinic receptor antagonist which
increases the ROS level and induces amnesia (Konar et al.,
2011; Singh et al., 2015). Lu et al. (2018) reported that genistein
pretreatment showed beneficial effects on scopolamine-induced
amnesic mice. Scopolamine increased malondialdehyde level
and decreased glutathione content and SOD activity in the
hippocampus of control mice as compared to the genistein
pretreated mice. Similarly, Qian et al. (2015) also reported
that genistein pretreatment decreased ROS generation, caspase-
9/3 activities, and neuronal death in H2O2-treated cortical
neuronal culture. Resveratrol is a well-studied stilbene and
showed a beneficial effect in reducing oxidative stress in animal
models as well as in cell culture experiments. Pretreatment
of resveratrol increased the activities of antioxidant enzymes
glutathione peroxidase, catalase, and SOD and reduced lipid
peroxidation and cerebral edema in hypoxic-ischemic induced
brain injury in neonatal rats (Gao et al., 2018). In a similar
study, Wang et al. (2014) reported that pretreatment of
resveratrol increased the SOD activity and reduced MDA
levels in the hippocampus due to cerebral ischemia in rats.
Resveratrol pretreatment also reduced mitochondrial damage
and protected neurons from apoptosis in cerebral ischemia-
induced rats.

The phenolic acid curcumin is widely consumed as a
spice and herbal medicine in India and around the world.
Studies showed that curcumin modulates the expression and
activity of antioxidant enzymes in different animal models.
Curcumin supplementation increased the mean life span of
Drosophila and was associated with higher SOD enzyme
activity (Suckow and Suckow, 2006). Similarly, curcumin
treatment increased the SOD and glutathione peroxidase
activity and decreased lipid peroxidation in different brain
regions such as the cortex, hippocampus, and cerebellum
in 24-month-old rats (Bala et al., 2006). Youssef et al.
(2020) examined the antioxidant properties of pinoresinol-
4-O-β-D-glucopyranoside (PGu), a lignan isolated from the
plant Prunus domestica, in a lithium/pilocarpine-induced rat
model of epilepsy. They observed that PGu decreased the
malondialdehyde level and increased the activity of catalase
enzyme in the cerebral cortex and thus reducing seizures in the
epileptic rats.
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Role of natural bioactive
compounds in the recovery of
age-associated memory
impairment

Natural bioactive compounds have been extensively used
to improve or restore learning and memory in different animal
models. Such memory-enhancing or restoring properties
of bioactive compounds are achieved by reducing oxidative
stress as well as by decreasing the oxidative stress-mediated
mitochondrial dysfunctions, oxidation of biomolecules,
and neurodegeneration during aging and age-associated

neurodegenerative diseases. Antioxidative properties of plant-
derived bioactive compounds have been studied to recover
or improve learning and memory during aging as well as
during neurodegenerative diseases both in human subjects
and animal models.

AD is a neurodegenerative disease characterized by
accumulation of amyloid-beta (Aβ) peptide and neuronal cell
death leading to impairment of cognitive functions. The soy
isoflavone genistein is used both in physiological aging and
in neurodegenerative disease mouse models. Studies show that
genistein can easily cross the blood-brain barrier (Tsai, 2005;
Pierzynowska et al., 2018). Bagheri et al. (2011) examined the
antioxidant properties of genistein on an Aβ (1–40) induced

FIGURE 2

Schematic diagram representing the antioxidant properties of plant-derived bioactive compounds in the recovery of oxidative stress-mediated
changes in the aging brain. Age-associated cellular and biochemical changes such as mitochondrial dysfunction, and decline of antioxidant
enzyme systems lead to the generation of excessive reactive free radicals. These free radicals cause changes in the biological macromolecules
(lipid peroxidation, oxidation of protein, and nucleic acid) and thus facilitate cellular or mitochondrial membrane damage, modified protein
accumulation, double-stranded DNA break, and epigenetic modifications. These oxidative stress-mediated damages ultimately lead to
neurodegeneration and decline of cognitive functions during aging or associated neurodegenerative diseases. Supplementation of
plant-derived bioactive compounds ameliorates the age-associated neurodegeneration and cognitive dysfunctions by increasing the activities
of antioxidant enzymes and decreasing the oxidative stress-induced damages to biological macromolecules.

Frontiers in Aging Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2022.944697
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-944697 July 19, 2022 Time: 14:29 # 10

Singh et al. 10.3389/fnagi.2022.944697

AD rat model, which shows learning and memory impairment
in the Y maze task, passive avoidance task, and RAM task.
Further, genistein treatment decreased malondialdehyde levels,
increased SOD activity, and improved learning and memory
in an AD rat model. Similar to Aβ (1–40), Aβ (25–35)
also increased oxidative stress and induced neuronal cell
death. In an in vitro neuronal cell culture study, Aβ (25–35)
increased accumulation of oxygen free radicals, intracellular
Ca2+ level, and nuclear DNA damage. Further, administration
of genistein showed neuroprotection by reversing the effects
of Aβ (25–35) on cell culture (Zeng et al., 2004). HD is
a neurodegenerative disease characterized by the aggregation
of mutant HTT gene products in the neurons which leads
to neurodegeneration, motor abnormalities, and cognitive
dysfunction. 3-Nitropropionic acid (NPA), a mycotoxin and
inhibitor of mitochondrial respiratory complex II, is used to
induce HD phenotypes in animal models (Túnez et al., 2010).
Administration of NPA increased oxidative stress, expression
of cycloxygenase-2, inducible nitric oxide synthase (iNOS), and
impaired cognitive functions. Further, pretreatment of genistein
improved cognitive functions, decreased oxidative stress, and
expression of cycloxygenase-2 and iNOS in the cortex and
hippocampus of OVX rats (Menze et al., 2015). Lu et al. (2018)
reported that genistein pretreatment showed beneficial effects
on scopolamine-induced amnesic mice. Genistein treatment
increased the expression of memory-linked genes p-ERK,
p-CREB, and BDNF in the hippocampus of scopolamine-
induced amnesic mice.

The polyphenolic compounds resveratrol and its derivatives
such as piceatannol, pterostilbene, and scirpusin A showed
neuroprotective effects in aging and AD animal models
(Rege et al., 2014). Navarro-Cruz et al. (2017) examined the
antioxidant effects of resveratrol on the cognitive performance
of aging rats. They observed that chronic administration
of resveratrol reduced nitrite and malondialdehyde levels in
the brain and increased hippocampal-dependent recognition
memory during aging. Huang et al. (2011) reported that
Aβ peptide increased iNOS expression, lipid peroxidation
in the hippocampus, and impaired spatial memory in rats.
Resveratrol administration decreased Aβ peptide accumulation,
reversed iNOS expression, and lipid peroxidation, and improved
spatial memory in AD rat models. Microtubule-disrupting
compound colchicine causes loss of cholinergic neurons and
cognitive dysfunction similar to the phenotypes observed
in AD animal models. Intracerebroventricular colchicine
administration increased free radical generation, decreased
glutathione activity in the rat brain, and impaired memory
performance in Morris water maze and elevated plus-maze
task. Chronic resveratrol treatment decreased free radical
generation and improved memory in colchicine-treated rats
(Kumar et al., 2007).

Earlier studies showed that curcumin effectively attenuated
the oxidative stress-mediated cognitive impairment in different

animal models. Apart from normal physiological aging,
chemically induced (i.e., D-galactose) aging or senescence
model has been widely used to mimic the age-associated
changes. Chronic high dose intake of reducing sugar D-
galactose induced oxidative stress and neuronal cell death. Lee
et al. (2020) reported that D-galactose administration increased
oxidative stress, apoptosis, and expression of senescence marker
proteins such as p16 and p21. Supplementation of plant
flavonoids curcumin and hesperetin increased the expression
of antioxidant enzymes, decreased oxidative stress, apoptosis,
and the expression of p16 and p21. Further, supplementation
of curcumin and hesperetin alone or in combination improved
cognitive impairment due to D-galactose. Aluminum chloride
(AlCl3) treated animal models are used to study the sporadic
form of AD. The model is characterized by high oxidative
stress, decreased antioxidant enzyme activities, neuronal cell
death, and neurodegeneration. Supplementation of curcumin
significantly decreased MDA level and increased the activity
of SOD and catalase enzyme in the hippocampus of AD
rats. Further, curcumin attenuated the neurodegeneration and
decline of recognition memory in the AlCl3-treated AD rats
(ELBini-Dhouib et al., 2021; Table 2).

Conclusion and prospects

Several studies showed that the neuroprotective and
memory-enhancing activities of bioactive compounds are
mediated through alleviating mitochondrial dysfunction,
oxidative damage of carbohydrates, proteins, fats, and nucleic
acids, and altering the expression and activity of the pro and
antioxidant enzymes in the brain (Figure 2). Though these
bioactive compounds have high therapeutic potential and fewer
side effects, most of these molecules are still in the preclinical
phase due to the absence of in-depth studies on bioavailability,
metabolism, and blood-brain barrier permeability. In natural
conditions, bioactive compounds are present in a stable medium
and surrounded by other biomolecules. Upon isolation,
extraction, and processing, the activities of the compounds
get reduced or lost. Further, storage (pH, temperature, light,
etc.) as well as physiological changes, and alteration of pH
during digestion and metabolism by gut microbes also change
the activity of these compounds. The use of green extraction
technologies improves the extraction of particular compounds
from fruits and vegetables and limits the use of toxic solvents
(Soquetta et al., 2018; Giaconia et al., 2020). Several studies show
that after ingestion, these bioactive molecules (i.e., quercetin,
glycosides, and aglycone) are metabolized by enzymes in
the digestive tract which affects their bioavailability (Oracz
et al., 2020). Apart from digestive enzymes, gut microbes also
metabolize bioactive compounds and affect their bioavailability.
Gut microbes metabolize isoflavone daidzein into a more
effective equol molecule (Setchell et al., 2002). The passage
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of a molecule through the blood-brain barrier depends on
its chemical nature, molecular size, and charge on the
molecule, due to which several bioactive compounds are unable
to cross the blood-brain barrier. Nano-based encapsulation
and drug delivery systems are very useful to increase the
shelf life of these compounds as well as their solubility,
stability, and bioavailability (Upadhyay, 2014). Nano-based
formulation increased the solubility and antioxidant activity
of kaempferol as compared to normal kaempferol molecules
(Tzeng et al., 2011). PLGA nanoencapsulation increased
the half-life and bioavailability of curcumin to 5.6-fold as
compared to free curcumin (EFSA Scientific Committee
et al., 2011). Several bioactive compounds such as resveratrol,
quercetin, curcumin, etc. crossed the blood-brain barrier in
very low concentrations. Nanophytomedicine derived from
these bioactive compounds showed increased blood-brain
barrier permeability and effectively attenuated oxidative stress
in pathological conditions like PD (Ganesan et al., 2015).
Furthermore, in-depth clinical studies are needed for the future
use of those bioactive compounds as therapeutic agents.
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